update model card README.md
Browse files
README.md
CHANGED
@@ -13,13 +13,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
|
14 |
This model is a fine-tuned version of [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) on the None dataset.
|
15 |
It achieves the following results on the evaluation set:
|
16 |
-
- Loss: 0.
|
17 |
-
- Ebegin: {'precision': 0.
|
18 |
-
- Eend: {'precision': 0.
|
19 |
-
- Overall Precision: 0.
|
20 |
-
- Overall Recall: 0.
|
21 |
-
- Overall F1: 0.
|
22 |
-
- Overall Accuracy: 0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -44,26 +44,42 @@ The following hyperparameters were used during training:
|
|
44 |
- seed: 42
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
-
- training_steps:
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
53 |
-
| No log | 0.07 | 300 | 0.
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
|
64 |
### Framework versions
|
65 |
|
66 |
-
- Transformers 4.26.
|
67 |
- Pytorch 1.13.1+cu116
|
68 |
- Datasets 2.9.0
|
69 |
- Tokenizers 0.13.2
|
|
|
13 |
|
14 |
This model is a fine-tuned version of [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) on the None dataset.
|
15 |
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.0104
|
17 |
+
- Ebegin: {'precision': 0.9969477298740939, 'recall': 0.9827002632568634, 'f1': 0.9897727272727271, 'number': 2659}
|
18 |
+
- Eend: {'precision': 0.9988553987027852, 'recall': 0.9783258594917787, 'f1': 0.9884840475740986, 'number': 2676}
|
19 |
+
- Overall Precision: 0.9979
|
20 |
+
- Overall Recall: 0.9805
|
21 |
+
- Overall F1: 0.9891
|
22 |
+
- Overall Accuracy: 0.9981
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
44 |
- seed: 42
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
+
- training_steps: 7500
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
53 |
+
| No log | 0.07 | 300 | 0.0368 | 0.9643 | 0.9797 | 0.9719 | 0.9960 |
|
54 |
+
| 0.1994 | 0.14 | 600 | 0.0176 | 0.9847 | 0.9854 | 0.9851 | 0.9976 |
|
55 |
+
| 0.1994 | 0.21 | 900 | 0.0137 | 0.9926 | 0.9800 | 0.9862 | 0.9976 |
|
56 |
+
| 0.0225 | 0.29 | 1200 | 0.0102 | 0.9900 | 0.9901 | 0.9901 | 0.9983 |
|
57 |
+
| 0.0124 | 0.36 | 1500 | 0.0075 | 0.9930 | 0.9909 | 0.9919 | 0.9985 |
|
58 |
+
| 0.0124 | 0.43 | 1800 | 0.0065 | 0.9947 | 0.9905 | 0.9926 | 0.9987 |
|
59 |
+
| 0.0093 | 0.5 | 2100 | 0.0066 | 0.9952 | 0.9903 | 0.9928 | 0.9987 |
|
60 |
+
| 0.0093 | 0.57 | 2400 | 0.0068 | 0.9897 | 0.9935 | 0.9916 | 0.9985 |
|
61 |
+
| 0.0095 | 0.64 | 2700 | 0.0064 | 0.9938 | 0.9907 | 0.9923 | 0.9986 |
|
62 |
+
| 0.0068 | 0.72 | 3000 | 0.0051 | 0.9927 | 0.9935 | 0.9931 | 0.9988 |
|
63 |
+
| 0.0068 | 0.79 | 3300 | 0.0050 | 0.9907 | 0.9948 | 0.9927 | 0.9987 |
|
64 |
+
| 0.0064 | 0.86 | 3600 | 0.0064 | 0.9881 | 0.9955 | 0.9918 | 0.9985 |
|
65 |
+
| 0.0064 | 0.93 | 3900 | 0.0073 | 0.9895 | 0.9910 | 0.9902 | 0.9983 |
|
66 |
+
| 0.0057 | 1.0 | 4200 | 0.0051 | 0.9966 | 0.9896 | 0.9931 | 0.9988 |
|
67 |
+
| 0.0042 | 1.07 | 4500 | 0.0050 | 0.9943 | 0.9935 | 0.9939 | 0.9989 |
|
68 |
+
| 0.0042 | 1.14 | 4800 | 0.0050 | 0.9966 | 0.9903 | 0.9934 | 0.9988 |
|
69 |
+
| 0.0039 | 1.22 | 5100 | 0.0050 | 0.9947 | 0.9934 | 0.9940 | 0.9989 |
|
70 |
+
| 0.0039 | 1.29 | 5400 | 0.0049 | 0.9941 | 0.9931 | 0.9936 | 0.9989 |
|
71 |
+
| 0.0034 | 1.36 | 5700 | 0.0043 | 0.9966 | 0.9914 | 0.9940 | 0.9989 |
|
72 |
+
| 0.0034 | 1.43 | 6000 | 0.0045 | 0.9958 | 0.9920 | 0.9939 | 0.9989 |
|
73 |
+
| 0.0034 | 1.5 | 6300 | 0.0043 | 0.9935 | 0.9935 | 0.9935 | 0.9988 |
|
74 |
+
| 0.002 | 1.57 | 6600 | 0.0044 | 0.9953 | 0.9934 | 0.9944 | 0.9990 |
|
75 |
+
| 0.002 | 1.65 | 6900 | 0.0044 | 0.9952 | 0.9929 | 0.9940 | 0.9989 |
|
76 |
+
| 0.0037 | 1.72 | 7200 | 0.0041 | 0.9952 | 0.9931 | 0.9941 | 0.9990 |
|
77 |
+
| 0.0028 | 1.79 | 7500 | 0.0042 | 0.9958 | 0.9930 | 0.9944 | 0.9990 |
|
78 |
|
79 |
|
80 |
### Framework versions
|
81 |
|
82 |
+
- Transformers 4.26.1
|
83 |
- Pytorch 1.13.1+cu116
|
84 |
- Datasets 2.9.0
|
85 |
- Tokenizers 0.13.2
|