update model card README.md
Browse files
README.md
CHANGED
@@ -13,12 +13,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
|
14 |
This model is a fine-tuned version of [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) on the None dataset.
|
15 |
It achieves the following results on the evaluation set:
|
16 |
-
- Loss: 0.
|
17 |
-
- Ebegin: {'precision': 0.
|
18 |
-
- Eend: {'precision': 0.
|
19 |
-
- Overall Precision: 0.
|
20 |
-
- Overall Recall: 0.
|
21 |
-
- Overall F1: 0.
|
22 |
- Overall Accuracy: 0.9954
|
23 |
|
24 |
## Model description
|
@@ -50,19 +50,13 @@ The following hyperparameters were used during training:
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
53 |
-
| No log | 0.07 | 300 | 0.
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.0141 | 0.57 | 2400 | 0.0249 | 0.9917 | 0.9488 | 0.9697 | 0.9939 |
|
61 |
-
| 0.0158 | 0.64 | 2700 | 0.0130 | 0.9980 | 0.9713 | 0.9844 | 0.9968 |
|
62 |
-
| 0.0143 | 0.72 | 3000 | 0.0128 | 0.9888 | 0.9759 | 0.9823 | 0.9964 |
|
63 |
-
| 0.0143 | 0.79 | 3300 | 0.0145 | 0.9888 | 0.9760 | 0.9823 | 0.9964 |
|
64 |
-
| 0.0124 | 0.86 | 3600 | 0.0144 | 0.9857 | 0.9802 | 0.9829 | 0.9965 |
|
65 |
-
| 0.0124 | 0.93 | 3900 | 0.0141 | 0.9871 | 0.9804 | 0.9837 | 0.9967 |
|
66 |
|
67 |
|
68 |
### Framework versions
|
|
|
13 |
|
14 |
This model is a fine-tuned version of [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) on the None dataset.
|
15 |
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.0191
|
17 |
+
- Ebegin: {'precision': 0.993127147766323, 'recall': 0.9626915389740173, 'f1': 0.9776725304465493, 'number': 3002}
|
18 |
+
- Eend: {'precision': 0.9910313901345291, 'recall': 0.9576666666666667, 'f1': 0.9740634005763689, 'number': 3000}
|
19 |
+
- Overall Precision: 0.9921
|
20 |
+
- Overall Recall: 0.9602
|
21 |
+
- Overall F1: 0.9759
|
22 |
- Overall Accuracy: 0.9954
|
23 |
|
24 |
## Model description
|
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
53 |
+
| No log | 0.07 | 300 | 0.0312 | 0.9804 | 0.9791 | 0.9797 | 0.9960 |
|
54 |
+
| 0.1423 | 0.14 | 600 | 0.0232 | 0.9920 | 0.9670 | 0.9793 | 0.9958 |
|
55 |
+
| 0.1423 | 0.21 | 900 | 0.0164 | 0.9959 | 0.9696 | 0.9825 | 0.9965 |
|
56 |
+
| 0.0242 | 0.29 | 1200 | 0.0174 | 0.9850 | 0.9744 | 0.9797 | 0.9959 |
|
57 |
+
| 0.0169 | 0.36 | 1500 | 0.0165 | 0.9913 | 0.9696 | 0.9803 | 0.9960 |
|
58 |
+
| 0.0169 | 0.43 | 1800 | 0.0168 | 0.9908 | 0.9715 | 0.9810 | 0.9962 |
|
59 |
+
| 0.0153 | 0.5 | 2100 | 0.0164 | 0.9884 | 0.9702 | 0.9793 | 0.9960 |
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
|
62 |
### Framework versions
|