|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from abc import ABC, abstractmethod |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import json |
|
import os |
|
import transformers |
|
import safetensors |
|
from transformers.deepspeed import is_deepspeed_zero3_enabled |
|
import deepspeed |
|
|
|
from .multimodal_encoder.builder import build_vision_tower, build_vision_tower_aux |
|
from .multimodal_projector.builder import build_vision_projector |
|
|
|
from mgm.constants import (IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, |
|
DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN) |
|
|
|
IS_NEW_TRANSFORMERS = transformers.__version__ >= "4.34.0" |
|
|
|
class MGMMetaModel: |
|
|
|
def __init__(self, config): |
|
super(MGMMetaModel, self).__init__(config) |
|
|
|
if hasattr(config, "mm_vision_tower"): |
|
self.vision_tower = build_vision_tower(config, delay_load=True) |
|
self.mm_projector = build_vision_projector(config) |
|
|
|
if hasattr(config, "mm_vision_tower_aux"): |
|
self.vision_tower_aux = build_vision_tower_aux(config, delay_load=True) |
|
|
|
def get_vision_tower(self): |
|
vision_tower = getattr(self, 'vision_tower', None) |
|
if type(vision_tower) is list: |
|
vision_tower = vision_tower[0] |
|
return vision_tower |
|
|
|
def get_vision_tower_aux(self): |
|
vision_tower_aux = getattr(self, 'vision_tower_aux', None) |
|
if type(vision_tower_aux) is list: |
|
vision_tower_aux = vision_tower_aux[0] |
|
return vision_tower_aux |
|
|
|
def initialize_vision_modules(self, model_args, fsdp=None): |
|
vision_tower = model_args.vision_tower |
|
vision_tower_aux = model_args.vision_tower_aux |
|
mm_vision_select_layer = model_args.mm_vision_select_layer |
|
mm_vision_select_feature = model_args.mm_vision_select_feature |
|
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter |
|
|
|
self.config.mm_vision_tower = vision_tower |
|
self.config.mm_vision_tower_aux = vision_tower_aux |
|
|
|
if self.get_vision_tower() is None: |
|
vision_tower = build_vision_tower(model_args) |
|
|
|
if fsdp is not None and len(fsdp) > 0: |
|
self.vision_tower = [vision_tower] |
|
else: |
|
self.vision_tower = vision_tower |
|
else: |
|
if fsdp is not None and len(fsdp) > 0: |
|
vision_tower = self.vision_tower[0] |
|
else: |
|
vision_tower = self.vision_tower |
|
vision_tower.load_model() |
|
|
|
if vision_tower_aux is not None: |
|
if self.get_vision_tower_aux() is None: |
|
vision_tower_aux = build_vision_tower_aux(model_args) |
|
|
|
if fsdp is not None and len(fsdp) > 0: |
|
self.vision_tower_aux = [vision_tower_aux] |
|
else: |
|
self.vision_tower_aux = vision_tower_aux |
|
else: |
|
if fsdp is not None and len(fsdp) > 0: |
|
vision_tower_aux = self.vision_tower_aux[0] |
|
else: |
|
vision_tower_aux = self.vision_tower_aux |
|
vision_tower_aux.load_model() |
|
self.config.mm_hidden_size_aux = vision_tower_aux.hidden_size |
|
|
|
self.config.use_mm_proj = True |
|
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') |
|
|
|
self.config.mm_hidden_size = 3072 |
|
self.config.mm_hidden_size_uni = vision_tower.hidden_size |
|
self.config.mm_vision_select_layer = mm_vision_select_layer |
|
self.config.mm_vision_select_feature = mm_vision_select_feature |
|
|
|
if getattr(self, 'mm_projector', None) is None: |
|
self.mm_projector = build_vision_projector(self.config) |
|
else: |
|
|
|
for p in self.mm_projector.parameters(): |
|
p.requires_grad = True |
|
|
|
if pretrain_mm_mlp_adapter is not None: |
|
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') |
|
def get_w(weights, keyword): |
|
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword + '.' in k} |
|
|
|
if 'model' in mm_projector_weights.keys(): |
|
mm_projector_weights = mm_projector_weights['model'] |
|
if is_deepspeed_zero3_enabled(): |
|
if len(mm_projector_weights) > 0: |
|
with deepspeed.zero.GatheredParameters(mm_projector_weights, modifier_rank=0): |
|
if torch.distributed.get_rank() == 0: |
|
self.mm_projector.load_state_dict(mm_projector_weights) |
|
else: |
|
status = self.mm_projector.load_state_dict(mm_projector_weights, strict=False) |
|
print('missing_keys:', status.missing_keys) |
|
else: |
|
if is_deepspeed_zero3_enabled(): |
|
named_parameters = get_w(mm_projector_weights, 'mm_projector') |
|
if len(named_parameters) > 0: |
|
with deepspeed.zero.GatheredParameters(named_parameters, modifier_rank=0): |
|
if torch.distributed.get_rank() == 0: |
|
self.mm_projector.load_state_dict(named_parameters) |
|
else: |
|
status = self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'), strict=False) |
|
print('missing_keys:', status.missing_keys) |
|
self.mm_projector = self.mm_projector.to(device='cuda') |
|
|
|
def initialize_uni_modules(self, model_args, for_eval=False): |
|
pretrain_mm_mlp_adapter = getattr(model_args, "pretrain_mm_mlp_adapter", None) |
|
self.config.image_size_aux = getattr(model_args, 'image_size_aux', 320) |
|
self.config.optimize_vision_tower = getattr(model_args, 'optimize_vision_tower', False) |
|
self.config.optimize_vision_tower_aux = getattr(model_args, 'optimize_vision_tower_aux', False) |
|
|
|
self.vlm_uni_query_projector = nn.Sequential(nn.LayerNorm(self.config.mm_hidden_size_uni), |
|
nn.Linear(self.config.mm_hidden_size_uni, self.config.mm_hidden_size_uni)) |
|
self.vlm_uni_aux_projector = nn.Sequential(nn.LayerNorm(self.config.mm_hidden_size_aux), |
|
nn.Linear(self.config.mm_hidden_size_aux, self.config.mm_hidden_size_uni)) |
|
self.vlm_uni_val_projector = nn.Sequential(nn.LayerNorm(self.config.mm_hidden_size_aux), |
|
nn.Linear(self.config.mm_hidden_size_aux, self.config.mm_hidden_size_uni)) |
|
|
|
if pretrain_mm_mlp_adapter is not None: |
|
projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') |
|
else: |
|
trainable_module = ['vlm_uni', 'vision_fpn', 'vision_stages'] |
|
if hasattr(model_args, 'model_name_or_path'): |
|
model_save_path = model_args.model_name_or_path |
|
else: |
|
model_save_path = model_args.model_path |
|
model_idx_path = getattr(model_args, 'model_path', model_save_path) |
|
if IS_NEW_TRANSFORMERS: |
|
try: |
|
weight_file = json.load(open(os.path.join(model_idx_path, 'model.safetensors.index.json'), 'r'))['weight_map'] |
|
except: |
|
weight_file = json.load(open(os.path.join(model_idx_path, 'pytorch_model.bin.index.json'), 'r'))['weight_map'] |
|
else: |
|
weight_file = json.load(open(os.path.join(model_idx_path, 'pytorch_model.bin.index.json'), 'r'))['weight_map'] |
|
model_path = set([weight_file[_key] for _key in weight_file if any([_module in _key for _module in trainable_module])]) |
|
projector_weights = {} |
|
for _model in model_path: |
|
if not IS_NEW_TRANSFORMERS: |
|
projector_weights.update(torch.load(os.path.join(model_idx_path, _model), map_location='cpu')) |
|
else: |
|
with safetensors.safe_open(os.path.join(model_idx_path, _model), framework="pt", device='cpu') as f: |
|
for _key in f.keys(): |
|
projector_weights.update({_key: f.get_tensor(_key)}) |
|
if len(projector_weights) == 0: |
|
return |
|
|
|
def get_w(weights, keyword, main_module, sub_module): |
|
if getattr(main_module, sub_module, None) is None: |
|
return |
|
|
|
pretrain_weight = {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword + '.' in k} |
|
if len(pretrain_weight) == 0: |
|
return |
|
if is_deepspeed_zero3_enabled(): |
|
named_parameters = [v for k, v in getattr(main_module, sub_module).named_parameters()] |
|
if len(named_parameters) > 0: |
|
|
|
|
|
|
|
with deepspeed.zero.GatheredParameters(named_parameters, modifier_rank=0): |
|
if torch.distributed.get_rank() == 0: |
|
getattr(main_module, sub_module).load_state_dict(pretrain_weight) |
|
with deepspeed.zero.GatheredParameters(self.mm_projector[0].weight, modifier_rank=None): |
|
weight_type = self.mm_projector[0].weight.dtype |
|
device_type = self.mm_projector[0].weight.device |
|
else: |
|
weight_type = self.mm_projector[0].weight.dtype |
|
device_type = self.mm_projector[0].weight.device |
|
getattr(main_module, sub_module).load_state_dict(pretrain_weight) |
|
if weight_type == torch.uint8 or weight_type == torch.int8 or weight_type == torch.int16: |
|
weight_type = torch.float16 |
|
getattr(main_module, sub_module).to(device=device_type, dtype=weight_type) |
|
print(f"Loading {sub_module} weights...") |
|
|
|
|
|
get_w(projector_weights, 'vision_tower.vision_tower', self.vision_tower, 'vision_tower') |
|
|
|
|
|
if self.config.optimize_vision_tower_aux: |
|
|
|
get_w(projector_weights, 'vision_tower_aux.vision_stem', self.vision_tower_aux, 'vision_stem') |
|
get_w(projector_weights, 'vision_tower_aux.vision_stages', self.vision_tower_aux, 'vision_stages') |
|
get_w(projector_weights, 'vlm_uni_query_projector', self, 'vlm_uni_query_projector') |
|
get_w(projector_weights, 'vlm_uni_aux_projector', self, 'vlm_uni_aux_projector') |
|
get_w(projector_weights, 'vlm_uni_val_projector', self, 'vlm_uni_val_projector') |
|
|
|
class MGMMetaForCausalLM(ABC): |
|
|
|
@abstractmethod |
|
def get_model(self): |
|
pass |
|
|
|
def get_vision_tower(self): |
|
return self.get_model().get_vision_tower() |
|
|
|
def get_vision_tower_aux(self): |
|
return self.get_model().get_vision_tower_aux() |
|
|
|
def encode_images(self, images, images_aux=None, is_video=False): |
|
image_grid = getattr(self.config, 'image_grid', 1) |
|
image_global = getattr(self.config, 'image_global', False) |
|
if image_grid > 1: |
|
batch_size = images.shape[0] |
|
if image_global: |
|
global_images = images[:, -1:].flatten(0,1).contiguous() |
|
grid_images = images[:, :-1].flatten(0,1).contiguous() |
|
images = torch.cat([grid_images, global_images], dim=0) |
|
else: |
|
images = images.flatten(0,1).contiguous() |
|
|
|
image_features, image_forward_outs = self.get_model().get_vision_tower()(images) |
|
|
|
if image_global: |
|
image_feat_global = image_features[-len(global_images):] |
|
image_features = image_features[:len(grid_images)] |
|
|
|
if images_aux is not None: |
|
image_aux_features_raw = self.get_model().get_vision_tower_aux()(images_aux).to( |
|
dtype=image_features.dtype, device=image_features.device) |
|
|
|
if image_global: |
|
image_aux_features_global = F.interpolate(image_aux_features_raw.float(), |
|
scale_factor=1/image_grid, |
|
mode='bilinear', |
|
align_corners=False).to(dtype=image_aux_features_raw.dtype) |
|
image_feat_global, image_aux_feat_global = self.unified_resampler(image_feat_global, image_aux_features_global) |
|
|
|
if image_grid > 1: |
|
image_aux_features_raw = image_aux_features_raw.reshape(*image_aux_features_raw.shape[:2], |
|
image_grid, |
|
image_aux_features_raw.shape[-2]//image_grid, |
|
image_grid, |
|
image_aux_features_raw.shape[-1]//image_grid) |
|
image_aux_features_raw = image_aux_features_raw.permute(0, 2, 4, 1, 3, 5).flatten(1,2).flatten(0,1).contiguous() |
|
image_features, image_aux_features = self.unified_resampler(image_features, image_aux_features_raw) |
|
|
|
if image_grid > 1: |
|
image_features = image_features.reshape(batch_size, image_grid**2, *image_features.shape[1:]) |
|
image_features = image_features.flatten(1,2).contiguous() |
|
image_aux_features = image_aux_features.reshape(batch_size, image_grid**2, *image_aux_features.shape[1:]) |
|
image_aux_features = image_aux_features.flatten(1,2).contiguous() |
|
|
|
|
|
if image_global: |
|
image_features = torch.cat([image_feat_global, image_features], dim=1) |
|
image_aux_features = torch.cat([image_aux_feat_global, image_aux_features], dim=1) |
|
|
|
|
|
image_features = image_features + image_aux_features |
|
|
|
|
|
image_features_1 = [] |
|
image_features_2 = [] |
|
for i in range(0, 12): |
|
image_features_1.append(image_forward_outs.hidden_states[i][:, 1:].to(image_features.dtype)) |
|
image_features_1 = torch.stack(image_features_1, dim=0) |
|
image_features_1 = torch.sum(image_features_1, dim=0) / 12 |
|
for i in range(12, 24): |
|
image_features_2.append(image_forward_outs.hidden_states[i][:, 1:].to(image_features.dtype)) |
|
image_features_2 = torch.stack(image_features_2, dim=0) |
|
image_features_2 = torch.sum(image_features_2, dim=0) / 12 |
|
|
|
image_features = torch.cat([image_features, image_features_1, image_features_2], dim=-1) |
|
|
|
|
|
|
|
image_features = self.get_model().mm_projector(image_features) |
|
|
|
return image_features |
|
|
|
def unified_resampler(self, images, images_aux): |
|
|
|
patch_num = int(images.shape[1]**0.5) |
|
patch_size = images_aux.shape[-1]//patch_num |
|
|
|
images_aux = images_aux.permute(0,2,3,1) |
|
images_aux = images_aux.reshape(len(images_aux), patch_num, patch_size, patch_num, patch_size, images_aux.shape[-1]) |
|
images_aux = images_aux.permute(0,1,3,2,4,5) |
|
images_aux = images_aux.reshape(len(images_aux), patch_num**2, patch_size**2, images_aux.shape[-1]).contiguous() |
|
|
|
|
|
embed_query = self.get_model().vlm_uni_query_projector(images) |
|
embed_aux = self.get_model().vlm_uni_aux_projector(images_aux) |
|
embed_value = self.get_model().vlm_uni_val_projector(images_aux) |
|
embed_att = embed_query[:,:,None] @ (embed_aux.transpose(-1,-2) / (embed_aux.shape[-1]**0.5)) |
|
embed_att = embed_att.nan_to_num() |
|
embed_feat = (embed_att.softmax(-1) @ embed_value).mean(2) |
|
|
|
return images, embed_feat |
|
|
|
def prepare_inputs_labels_for_multimodal( |
|
self, input_ids, position_ids, attention_mask, past_key_values, labels, images=None, images_aux=None, |
|
): |
|
vision_tower = self.get_vision_tower() |
|
if vision_tower is None or images is None or input_ids.shape[1] == 1: |
|
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1: |
|
target_shape = past_key_values[-1][-1].shape[-2] + 1 |
|
attention_mask = torch.cat((attention_mask, torch.ones( |
|
(attention_mask.shape[0], target_shape - attention_mask.shape[1]), |
|
dtype=attention_mask.dtype, |
|
device=attention_mask.device |
|
)), dim=1) |
|
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 |
|
return input_ids, position_ids, attention_mask, past_key_values, None, labels |
|
|
|
if isinstance(images, list): |
|
images = torch.stack(images, dim=0) |
|
if isinstance(images_aux, list): |
|
images_aux = torch.stack(images_aux, dim=0) |
|
|
|
image_features = self.encode_images(images, images_aux) |
|
|
|
|
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): |
|
raise NotImplementedError |
|
|
|
|
|
|
|
|
|
|
|
_labels = labels |
|
_position_ids = position_ids |
|
_attention_mask = attention_mask |
|
if attention_mask is None: |
|
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) |
|
else: |
|
attention_mask = attention_mask.bool() |
|
if position_ids is None: |
|
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) |
|
if labels is None: |
|
labels = torch.full_like(input_ids, IGNORE_INDEX) |
|
|
|
|
|
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] |
|
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] |
|
|
|
new_input_embeds = [] |
|
new_labels = [] |
|
cur_image_idx = 0 |
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() |
|
if num_images == 0: |
|
cur_image_features = image_features[cur_image_idx] |
|
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) |
|
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0) |
|
new_input_embeds.append(cur_input_embeds) |
|
new_labels.append(labels[batch_idx]) |
|
cur_image_idx += 1 |
|
continue |
|
|
|
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] |
|
cur_input_ids_noim = [] |
|
cur_labels = labels[batch_idx] |
|
cur_labels_noim = [] |
|
for i in range(len(image_token_indices) - 1): |
|
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]]) |
|
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]]) |
|
split_sizes = [x.shape[0] for x in cur_labels_noim] |
|
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) |
|
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) |
|
cur_new_input_embeds = [] |
|
cur_new_labels = [] |
|
|
|
max_pos_id = 0 |
|
for i in range(num_images + 1): |
|
cur_new_input_embeds.append(cur_input_embeds_no_im[i]) |
|
cur_new_labels.append(cur_labels_noim[i]) |
|
max_pos_id += cur_input_embeds_no_im[i].shape[0] |
|
if i < num_images: |
|
cur_image_features = image_features[cur_image_idx] |
|
cur_image_idx += 1 |
|
cur_new_input_embeds.append(cur_image_features) |
|
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) |
|
max_pos_id += cur_image_features.shape[0] |
|
|
|
cur_new_input_embeds = [x.to(device=cur_input_embeds.device) for x in cur_new_input_embeds] |
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds) |
|
cur_new_labels = torch.cat(cur_new_labels) |
|
|
|
new_input_embeds.append(cur_new_input_embeds) |
|
new_labels.append(cur_new_labels) |
|
|
|
|
|
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None) |
|
if tokenizer_model_max_length is not None: |
|
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds] |
|
new_labels = [x[:tokenizer_model_max_length] for x in new_labels] |
|
|
|
|
|
max_len = max(x.shape[0] for x in new_input_embeds) |
|
batch_size = len(new_input_embeds) |
|
|
|
new_input_embeds_padded = [] |
|
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device) |
|
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) |
|
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): |
|
cur_len = cur_new_embed.shape[0] |
|
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left": |
|
new_input_embeds_padded.append(torch.cat(( |
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), |
|
cur_new_embed |
|
), dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, -cur_len:] = cur_new_labels |
|
attention_mask[i, -cur_len:] = True |
|
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
else: |
|
new_input_embeds_padded.append(torch.cat(( |
|
cur_new_embed, |
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device) |
|
), dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, :cur_len] = cur_new_labels |
|
attention_mask[i, :cur_len] = True |
|
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) |
|
|
|
if _labels is None: |
|
new_labels = None |
|
else: |
|
new_labels = new_labels_padded |
|
|
|
if _attention_mask is None: |
|
attention_mask = None |
|
else: |
|
attention_mask = attention_mask.to(dtype=_attention_mask.dtype) |
|
|
|
if _position_ids is None: |
|
position_ids = None |
|
|
|
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels |
|
|
|
def initialize_vision_tokenizer(self, model_args, tokenizer): |
|
if model_args.mm_use_im_patch_token: |
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
|
|
if model_args.mm_use_im_start_end: |
|
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
|
|
if num_new_tokens > 0: |
|
input_embeddings = self.get_input_embeddings().weight.data |
|
output_embeddings = self.get_output_embeddings().weight.data |
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
|
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg |
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg |
|
|
|
if model_args.tune_mm_mlp_adapter: |
|
for p in self.get_input_embeddings().parameters(): |
|
p.requires_grad = True |
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = False |
|
|
|
if model_args.pretrain_mm_mlp_adapter: |
|
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') |
|
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] |
|
assert num_new_tokens == 2 |
|
if input_embeddings.shape == embed_tokens_weight.shape: |
|
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] |
|
elif embed_tokens_weight.shape[0] == num_new_tokens: |
|
input_embeddings[-num_new_tokens:] = embed_tokens_weight |
|
else: |
|
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") |
|
elif model_args.mm_use_im_patch_token: |
|
if model_args.tune_mm_mlp_adapter: |
|
for p in self.get_input_embeddings().parameters(): |
|
p.requires_grad = False |
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = False |
|
|