Howosn commited on
Commit
3332197
·
verified ·
1 Parent(s): d0fb22a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -22
app.py CHANGED
@@ -1,27 +1,23 @@
1
  import streamlit as st
2
- import pandas as pd
3
 
4
- def main():
5
- st.set_page_config(page_title="Emotion analysis", page_icon="🦜")
6
- st.header("Turn Your Input Into Sentiment Score")
7
- uploaded_file = st.file_uploader("Upload CSV File", type="csv")
8
 
9
- if uploaded_file is not None:
10
- # Process the uploaded file
11
- processed_data = process_uploaded_file(uploaded_file)
12
- # Display the processed data or perform further actions
13
- st.write(processed_data)
14
 
15
- #Stage 1: Translate and summary the text from Chinese to English and summarize
16
- st.text('Processing translation...')
17
- trans = tras_sum(uploaded_file.name)
18
- st.write(trans)
19
 
20
- #Stage 2: Sentiment analysis
21
- st.text('Generating a Sentiment result...')
22
- senti = sentiment(trans)
23
- st.write(senti)
24
-
25
-
26
- if __name__ == "__main__":
27
- main()
 
 
1
  import streamlit as st
2
+ from transformers import pipeline
3
 
4
+ # Load the summarization & translation model pipeline
5
+ tran_sum_pipe = pipeline("translation", model='utrobinmv/t5_summary_en_ru_zh_base_2048')
6
+ sentiment_pipeline = pipeline("text-classification", model="Howosn/Sentiment_Model")
 
7
 
8
+ # Streamlit application title
9
+ st.title("Emotion analysis")
10
+ st.write("Turn Your Input Into Sentiment Score")
 
 
11
 
12
+ # Text input for the user to enter the text to analyse
13
+ text = st.text_area("Enter the text", "")
 
 
14
 
15
+ # Perform analysis result when the user clicks the "Analyse" button
16
+ if st.button("Analyse"):
17
+ # Perform text classification on the input text
18
+ trans_sum = tran_sum_pipe(text)
19
+ result = sentiment_pipeline(trans_sum)
20
+
21
+ # Display the analysis result
22
+ st.write("Text:", text)
23
+ st.write("result:", result)