Horken commited on
Commit
b9b057d
1 Parent(s): 2b44659

ADD PPO LunarLander-v2 trained agent using notebook default parameters

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 261.35 +/- 16.44
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f37579f0820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f37579f08b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f37579f0940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f37579f09d0>", "_build": "<function ActorCriticPolicy._build at 0x7f37579f0a60>", "forward": "<function ActorCriticPolicy.forward at 0x7f37579f0af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f37579f0b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f37579f0c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7f37579f0ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f37579f0d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f37579f0dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f37579f0e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f37579e7f90>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677085770296953631, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJq93bxI36S6YZ0uucZeP7RJDaw6/nJIOAAAgD8AAIA/MysFPb5uEz8eYNm9iXKtvudaoDxp37+9AAAAAAAAAAAAVj69KTxxur1AzDrzfS82wIN0O8ZC6bkAAIA/AACAPwDjqDwp8Gu66hyZu8lLdrZn/X06joOvOgAAgD8AAIA/AO6cvClAGbpSFTK6W7yOtY8TlTsy7U05AACAPwAAgD8zU5i6w1FuuqbMY7rvNHy1JK+at7I1hTkAAIA/AACAPxpeET32PDO6suWLOa2iVDTeUIk6/rKfuAAAgD8AAIA/ABS8POxpp7mVkZq6NYzsNVjkMjoW6LU5AACAPwAAgD+aNrO8jy5muknYBjwgL+64CiF8umsk4bcAAIA/AACAP9o34b32jCu6IsvtO9rPBLWygBQ65bLrswAAgD8AAIA/zV04PnZDLryCJjU6dENSuEZpmb32Eyi5AAAAAAAAgD+aXua8rkGfujptPDzsCSO289AeOnC9GbUAAIA/AACAPwB8LzwpcHa6VcMuOzf3ULYS1kW7Es1AtQAAAAAAAIA/mjRdvY/SGbrmC6O7gk6MtgaZ5zpqEbs6AAAAAAAAAACzJhY9FD6TuuVR1zvzU561pncSO5QwkLQAAIA/AACAP9oc0D0pJCC6CCg3uwDGLzbRKvU6QwZXOgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIK6T8pFpnY0CUhpRSlIwBbJRN6AOMAXSUR0Cf/2tlZowmdX2UKGgGaAloD0MIWU3XE91fZECUhpRSlGgVTegDaBZHQKAAw384xUN1fZQoaAZoCWgPQwhYjSWsDa9jQJSGlFKUaBVN6ANoFkdAoAGYSnLq2XV9lChoBmgJaA9DCIOkT6toqWNAlIaUUpRoFU3oA2gWR0CgBFc7QswtdX2UKGgGaAloD0MI8bioFhEyZ0CUhpRSlGgVTegDaBZHQKAIeclPact1fZQoaAZoCWgPQwgw16IF6I9gQJSGlFKUaBVN6ANoFkdAoAk/d/J/5XV9lChoBmgJaA9DCBkcJa/OiWJAlIaUUpRoFU3oA2gWR0CgDCYBFNL2dX2UKGgGaAloD0MIGlJF8SqUYkCUhpRSlGgVTegDaBZHQKAMiEs8PnV1fZQoaAZoCWgPQwiySBPvgIduQJSGlFKUaBVNIQFoFkdAoA06BAfMfXV9lChoBmgJaA9DCCdp/phWrGJAlIaUUpRoFU3oA2gWR0CgEOyQgcLjdX2UKGgGaAloD0MIiIVa07yBZUCUhpRSlGgVTegDaBZHQKARSJMQEp11fZQoaAZoCWgPQwhjDoKO1jBkQJSGlFKUaBVN6ANoFkdAoBIyh8IAwXV9lChoBmgJaA9DCDOID+x4smVAlIaUUpRoFU3oA2gWR0CgEpxgiNbUdX2UKGgGaAloD0MIQuigSziSYkCUhpRSlGgVTegDaBZHQKAT7SKm8/V1fZQoaAZoCWgPQwiH4SNiyttgQJSGlFKUaBVN6ANoFkdAoBVTmfXf7HV9lChoBmgJaA9DCIKRlzWxS2JAlIaUUpRoFU3oA2gWR0CgFZH0kGA1dX2UKGgGaAloD0MI93ZLckCcYUCUhpRSlGgVTegDaBZHQKAcmY2Kl551fZQoaAZoCWgPQwgK2XkbGwJjQJSGlFKUaBVN6ANoFkdAoC3m+K0laHV9lChoBmgJaA9DCFlQGJTp+2BAlIaUUpRoFU3oA2gWR0CgLu5mAbyZdX2UKGgGaAloD0MIychZ2NOTZECUhpRSlGgVTegDaBZHQKAyIQTVUdd1fZQoaAZoCWgPQwhens4VJSVjQJSGlFKUaBVN6ANoFkdAoDV3ggow23V9lChoBmgJaA9DCJhRLLc07GRAlIaUUpRoFU3oA2gWR0CgNe5dGAkLdX2UKGgGaAloD0MIpMSu7e2JYkCUhpRSlGgVTegDaBZHQKA39TjvNNd1fZQoaAZoCWgPQwj4iQPo96BeQJSGlFKUaBVN6ANoFkdAoDg4bZOBUnV9lChoBmgJaA9DCDp15bO8w2JAlIaUUpRoFU3oA2gWR0CgOK+UyHmBdX2UKGgGaAloD0MIyAbSxaYyYUCUhpRSlGgVTegDaBZHQKA7ISfUWmB1fZQoaAZoCWgPQwh7gsR2d6FmQJSGlFKUaBVN6ANoFkdAoDtthTfixXV9lChoBmgJaA9DCPM64pANkWBAlIaUUpRoFU3oA2gWR0CgPEvwEyLydX2UKGgGaAloD0MIPPTdrayiY0CUhpRSlGgVTegDaBZHQKA8sWmgrYp1fZQoaAZoCWgPQwit2jUhrZFiQJSGlFKUaBVN6ANoFkdAoD38dBBzFXV9lChoBmgJaA9DCP58W7DUDmZAlIaUUpRoFU3oA2gWR0CgP1p4jbBXdX2UKGgGaAloD0MIHomXp3MYZUCUhpRSlGgVTegDaBZHQKA/mG9Htnh1fZQoaAZoCWgPQwipTgeyHrNmQJSGlFKUaBVN6ANoFkdAoEhgte2NN3V9lChoBmgJaA9DCCOkbmffXmRAlIaUUpRoFU3oA2gWR0CgWFUTlDF7dX2UKGgGaAloD0MIih9j7tr/YUCUhpRSlGgVTegDaBZHQKBZTVU+9rZ1fZQoaAZoCWgPQwhtc2N6wmBLQJSGlFKUaBVL2GgWR0CgWkFotcv/dX2UKGgGaAloD0MIxt6LL9rbXkCUhpRSlGgVTegDaBZHQKBcaSnLq2V1fZQoaAZoCWgPQwjT3uALE7lmQJSGlFKUaBVN6ANoFkdAoF9sqnWJ8HV9lChoBmgJaA9DCOwzZ31KMGFAlIaUUpRoFU3oA2gWR0CgX9yeiBXkdX2UKGgGaAloD0MIuf3yyYq2WECUhpRSlGgVTegDaBZHQKBidNTtLL91fZQoaAZoCWgPQwjBq+XOTFdkQJSGlFKUaBVN6ANoFkdAoGLK8cuJ13V9lChoBmgJaA9DCNRjWwacU2NAlIaUUpRoFU3oA2gWR0CgY24Ju2qldX2UKGgGaAloD0MIAYqRJfMwYUCUhpRSlGgVTegDaBZHQKBmt+AEt/Z1fZQoaAZoCWgPQwjC9pMxPkFkQJSGlFKUaBVN6ANoFkdAoGcg4jrzG3V9lChoBmgJaA9DCM4ZUdobxmZAlIaUUpRoFU3oA2gWR0CgaFm7aqS6dX2UKGgGaAloD0MIpwaaz7lAX0CUhpRSlGgVTegDaBZHQKBo6unuRcN1fZQoaAZoCWgPQwgTu7a32/NmQJSGlFKUaBVN6ANoFkdAoGpDgydnTXV9lChoBmgJaA9DCLMMcayLg2BAlIaUUpRoFU3oA2gWR0Cga5RTsIE9dX2UKGgGaAloD0MIj1a1pKNwZECUhpRSlGgVTegDaBZHQKBr0ciGFi91fZQoaAZoCWgPQwgtXiwMkVtiQJSGlFKUaBVN6ANoFkdAoITdYjjaPHV9lChoBmgJaA9DCNehmpKsnWBAlIaUUpRoFU3oA2gWR0CghlTMA3kxdX2UKGgGaAloD0MIIGCt2rUCZkCUhpRSlGgVTegDaBZHQKCHhlQMx491fZQoaAZoCWgPQwhIUWfuoeNiQJSGlFKUaBVN6ANoFkdAoInGxGDtgXV9lChoBmgJaA9DCKlnQSjvk2FAlIaUUpRoFU3oA2gWR0CgjQkN4JNTdX2UKGgGaAloD0MIzosTX23WZUCUhpRSlGgVTegDaBZHQKCNhQXQ+ll1fZQoaAZoCWgPQwh9XBsqxh1oQJSGlFKUaBVN6ANoFkdAoI936uW8iHV9lChoBmgJaA9DCDHT9q+swmBAlIaUUpRoFU3oA2gWR0Cgj7vXTVlPdX2UKGgGaAloD0MI6Q5iZwosXECUhpRSlGgVTegDaBZHQKCQMzKLbYd1fZQoaAZoCWgPQwgw2uOFdJZlQJSGlFKUaBVN6ANoFkdAoJKgfwI+n3V9lChoBmgJaA9DCKbxC68kOF5AlIaUUpRoFU3oA2gWR0Cgkuwh4dIYdX2UKGgGaAloD0MI2nOZmgQMYkCUhpRSlGgVTegDaBZHQKCTxx6OYIB1fZQoaAZoCWgPQwhNu5hmutZgQJSGlFKUaBVN6ANoFkdAoJQndVNpNHV9lChoBmgJaA9DCEZfQZoxEGNAlIaUUpRoFU3oA2gWR0CglWdKmKqGdX2UKGgGaAloD0MIorJhTWUAX0CUhpRSlGgVTegDaBZHQKCWpkzXSSh1fZQoaAZoCWgPQwgLXvQVpMVjQJSGlFKUaBVN6ANoFkdAoJbeu/1xsHV9lChoBmgJaA9DCGCUoL+QEHJAlIaUUpRoFU01AWgWR0Cgl9QxWT5gdX2UKGgGaAloD0MId0gxQKJnQ0CUhpRSlGgVTQgBaBZHQKCfGRRMvh91fZQoaAZoCWgPQwjekEYFzs5jQJSGlFKUaBVN6ANoFkdAoK4xqwhW53V9lChoBmgJaA9DCE33Oqkvp2BAlIaUUpRoFU3oA2gWR0Cgrwoo/iYLdX2UKGgGaAloD0MIgGWlSamvZkCUhpRSlGgVTegDaBZHQKCv95FgDzR1fZQoaAZoCWgPQwheTZ6yGoVmQJSGlFKUaBVN6ANoFkdAoLHccbR4QnV9lChoBmgJaA9DCJoF2h1SKWVAlIaUUpRoFU3oA2gWR0CgtN6xHG0edX2UKGgGaAloD0MIzSN/MHCyZUCUhpRSlGgVTegDaBZHQKC1TFuNxVB1fZQoaAZoCWgPQwgejNgngKNhQJSGlFKUaBVN6ANoFkdAoLcnFJg9eXV9lChoBmgJaA9DCMuGNZVFcGVAlIaUUpRoFU3oA2gWR0Cgt2hX8wYcdX2UKGgGaAloD0MIgnLbvkdxZECUhpRSlGgVTegDaBZHQKC7at5D7ZZ1fZQoaAZoCWgPQwi/fLJiuF5lQJSGlFKUaBVN6ANoFkdAoLvl/e+EiHV9lChoBmgJaA9DCHRcjexKu2BAlIaUUpRoFU3oA2gWR0CgvXhQFcIJdX2UKGgGaAloD0MICRhd3hywYkCUhpRSlGgVTegDaBZHQKC+KC+10DF1fZQoaAZoCWgPQwgdyHpq9YdiQJSGlFKUaBVN6ANoFkdAoMAa814xDnV9lChoBmgJaA9DCIgNFk7SLCNAlIaUUpRoFUv7aBZHQKDBORwIdEN1fZQoaAZoCWgPQwh9PPTdrVdfQJSGlFKUaBVN6ANoFkdAoMHPzpX6qXV9lChoBmgJaA9DCIJYNnNIKWJAlIaUUpRoFU3oA2gWR0Cgwx6P0Zm7dX2UKGgGaAloD0MIETXR56MpXkCUhpRSlGgVTegDaBZHQKDJWJ79hql1fZQoaAZoCWgPQwgvqG+Z0+xeQJSGlFKUaBVN6ANoFkdAoNtBC2MKkXV9lChoBmgJaA9DCEa0HVN3W11AlIaUUpRoFU3oA2gWR0Cg3IY3FUADdX2UKGgGaAloD0MIUOEIUqmmYUCUhpRSlGgVTegDaBZHQKDd4YwZflZ1fZQoaAZoCWgPQwjf+xu013lkQJSGlFKUaBVN6ANoFkdAoN/7syBTXXV9lChoBmgJaA9DCNBE2PB0BmZAlIaUUpRoFU3oA2gWR0Cg4vt03fhudX2UKGgGaAloD0MIPwCpTZw/W0CUhpRSlGgVTegDaBZHQKDjaa/h2nt1fZQoaAZoCWgPQwjohTsXRnhmQJSGlFKUaBVN6ANoFkdAoOU6RZEDyXV9lChoBmgJaA9DCEp/L4WHxWZAlIaUUpRoFU3oA2gWR0Cg6H7zbvgFdX2UKGgGaAloD0MI/YNIhhxUZECUhpRSlGgVTegDaBZHQKDo0QYDT0B1fZQoaAZoCWgPQwiNJ4I4D/FaQJSGlFKUaBVN6ANoFkdAoOnEuDjBEnV9lChoBmgJaA9DCGlXIeWnGGNAlIaUUpRoFU3oA2gWR0Cg6i/L9uP4dX2UKGgGaAloD0MIAMgJE0b6XkCUhpRSlGgVTegDaBZHQKDrhK3/gix1fZQoaAZoCWgPQwg/AKlNHL5mQJSGlFKUaBVN6ANoFkdAoOw/rhR64XV9lChoBmgJaA9DCD7qr1dYLWZAlIaUUpRoFU3oA2gWR0Cg7MztkWhzdX2UKGgGaAloD0MI3jmUoarVYkCUhpRSlGgVTegDaBZHQKDuEDOC5Et1fZQoaAZoCWgPQwjMtP0rKxZiQJSGlFKUaBVN6ANoFkdAoPU7gGbCrXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d17f0742c23296cc955400b73383d8290e9f5f09a61ada117746b969e878e34
3
+ size 147424
ppo-LunarLander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f37579f0820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f37579f08b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f37579f0940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f37579f09d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f37579f0a60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f37579f0af0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f37579f0b80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f37579f0c10>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f37579f0ca0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f37579f0d30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f37579f0dc0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f37579f0e50>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f37579e7f90>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677085770296953631,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJq93bxI36S6YZ0uucZeP7RJDaw6/nJIOAAAgD8AAIA/MysFPb5uEz8eYNm9iXKtvudaoDxp37+9AAAAAAAAAAAAVj69KTxxur1AzDrzfS82wIN0O8ZC6bkAAIA/AACAPwDjqDwp8Gu66hyZu8lLdrZn/X06joOvOgAAgD8AAIA/AO6cvClAGbpSFTK6W7yOtY8TlTsy7U05AACAPwAAgD8zU5i6w1FuuqbMY7rvNHy1JK+at7I1hTkAAIA/AACAPxpeET32PDO6suWLOa2iVDTeUIk6/rKfuAAAgD8AAIA/ABS8POxpp7mVkZq6NYzsNVjkMjoW6LU5AACAPwAAgD+aNrO8jy5muknYBjwgL+64CiF8umsk4bcAAIA/AACAP9o34b32jCu6IsvtO9rPBLWygBQ65bLrswAAgD8AAIA/zV04PnZDLryCJjU6dENSuEZpmb32Eyi5AAAAAAAAgD+aXua8rkGfujptPDzsCSO289AeOnC9GbUAAIA/AACAPwB8LzwpcHa6VcMuOzf3ULYS1kW7Es1AtQAAAAAAAIA/mjRdvY/SGbrmC6O7gk6MtgaZ5zpqEbs6AAAAAAAAAACzJhY9FD6TuuVR1zvzU561pncSO5QwkLQAAIA/AACAP9oc0D0pJCC6CCg3uwDGLzbRKvU6QwZXOgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIK6T8pFpnY0CUhpRSlIwBbJRN6AOMAXSUR0Cf/2tlZowmdX2UKGgGaAloD0MIWU3XE91fZECUhpRSlGgVTegDaBZHQKAAw384xUN1fZQoaAZoCWgPQwhYjSWsDa9jQJSGlFKUaBVN6ANoFkdAoAGYSnLq2XV9lChoBmgJaA9DCIOkT6toqWNAlIaUUpRoFU3oA2gWR0CgBFc7QswtdX2UKGgGaAloD0MI8bioFhEyZ0CUhpRSlGgVTegDaBZHQKAIeclPact1fZQoaAZoCWgPQwgw16IF6I9gQJSGlFKUaBVN6ANoFkdAoAk/d/J/5XV9lChoBmgJaA9DCBkcJa/OiWJAlIaUUpRoFU3oA2gWR0CgDCYBFNL2dX2UKGgGaAloD0MIGlJF8SqUYkCUhpRSlGgVTegDaBZHQKAMiEs8PnV1fZQoaAZoCWgPQwiySBPvgIduQJSGlFKUaBVNIQFoFkdAoA06BAfMfXV9lChoBmgJaA9DCCdp/phWrGJAlIaUUpRoFU3oA2gWR0CgEOyQgcLjdX2UKGgGaAloD0MIiIVa07yBZUCUhpRSlGgVTegDaBZHQKARSJMQEp11fZQoaAZoCWgPQwhjDoKO1jBkQJSGlFKUaBVN6ANoFkdAoBIyh8IAwXV9lChoBmgJaA9DCDOID+x4smVAlIaUUpRoFU3oA2gWR0CgEpxgiNbUdX2UKGgGaAloD0MIQuigSziSYkCUhpRSlGgVTegDaBZHQKAT7SKm8/V1fZQoaAZoCWgPQwiH4SNiyttgQJSGlFKUaBVN6ANoFkdAoBVTmfXf7HV9lChoBmgJaA9DCIKRlzWxS2JAlIaUUpRoFU3oA2gWR0CgFZH0kGA1dX2UKGgGaAloD0MI93ZLckCcYUCUhpRSlGgVTegDaBZHQKAcmY2Kl551fZQoaAZoCWgPQwgK2XkbGwJjQJSGlFKUaBVN6ANoFkdAoC3m+K0laHV9lChoBmgJaA9DCFlQGJTp+2BAlIaUUpRoFU3oA2gWR0CgLu5mAbyZdX2UKGgGaAloD0MIychZ2NOTZECUhpRSlGgVTegDaBZHQKAyIQTVUdd1fZQoaAZoCWgPQwhens4VJSVjQJSGlFKUaBVN6ANoFkdAoDV3ggow23V9lChoBmgJaA9DCJhRLLc07GRAlIaUUpRoFU3oA2gWR0CgNe5dGAkLdX2UKGgGaAloD0MIpMSu7e2JYkCUhpRSlGgVTegDaBZHQKA39TjvNNd1fZQoaAZoCWgPQwj4iQPo96BeQJSGlFKUaBVN6ANoFkdAoDg4bZOBUnV9lChoBmgJaA9DCDp15bO8w2JAlIaUUpRoFU3oA2gWR0CgOK+UyHmBdX2UKGgGaAloD0MIyAbSxaYyYUCUhpRSlGgVTegDaBZHQKA7ISfUWmB1fZQoaAZoCWgPQwh7gsR2d6FmQJSGlFKUaBVN6ANoFkdAoDtthTfixXV9lChoBmgJaA9DCPM64pANkWBAlIaUUpRoFU3oA2gWR0CgPEvwEyLydX2UKGgGaAloD0MIPPTdrayiY0CUhpRSlGgVTegDaBZHQKA8sWmgrYp1fZQoaAZoCWgPQwit2jUhrZFiQJSGlFKUaBVN6ANoFkdAoD38dBBzFXV9lChoBmgJaA9DCP58W7DUDmZAlIaUUpRoFU3oA2gWR0CgP1p4jbBXdX2UKGgGaAloD0MIHomXp3MYZUCUhpRSlGgVTegDaBZHQKA/mG9Htnh1fZQoaAZoCWgPQwipTgeyHrNmQJSGlFKUaBVN6ANoFkdAoEhgte2NN3V9lChoBmgJaA9DCCOkbmffXmRAlIaUUpRoFU3oA2gWR0CgWFUTlDF7dX2UKGgGaAloD0MIih9j7tr/YUCUhpRSlGgVTegDaBZHQKBZTVU+9rZ1fZQoaAZoCWgPQwhtc2N6wmBLQJSGlFKUaBVL2GgWR0CgWkFotcv/dX2UKGgGaAloD0MIxt6LL9rbXkCUhpRSlGgVTegDaBZHQKBcaSnLq2V1fZQoaAZoCWgPQwjT3uALE7lmQJSGlFKUaBVN6ANoFkdAoF9sqnWJ8HV9lChoBmgJaA9DCOwzZ31KMGFAlIaUUpRoFU3oA2gWR0CgX9yeiBXkdX2UKGgGaAloD0MIuf3yyYq2WECUhpRSlGgVTegDaBZHQKBidNTtLL91fZQoaAZoCWgPQwjBq+XOTFdkQJSGlFKUaBVN6ANoFkdAoGLK8cuJ13V9lChoBmgJaA9DCNRjWwacU2NAlIaUUpRoFU3oA2gWR0CgY24Ju2qldX2UKGgGaAloD0MIAYqRJfMwYUCUhpRSlGgVTegDaBZHQKBmt+AEt/Z1fZQoaAZoCWgPQwjC9pMxPkFkQJSGlFKUaBVN6ANoFkdAoGcg4jrzG3V9lChoBmgJaA9DCM4ZUdobxmZAlIaUUpRoFU3oA2gWR0CgaFm7aqS6dX2UKGgGaAloD0MIpwaaz7lAX0CUhpRSlGgVTegDaBZHQKBo6unuRcN1fZQoaAZoCWgPQwgTu7a32/NmQJSGlFKUaBVN6ANoFkdAoGpDgydnTXV9lChoBmgJaA9DCLMMcayLg2BAlIaUUpRoFU3oA2gWR0Cga5RTsIE9dX2UKGgGaAloD0MIj1a1pKNwZECUhpRSlGgVTegDaBZHQKBr0ciGFi91fZQoaAZoCWgPQwgtXiwMkVtiQJSGlFKUaBVN6ANoFkdAoITdYjjaPHV9lChoBmgJaA9DCNehmpKsnWBAlIaUUpRoFU3oA2gWR0CghlTMA3kxdX2UKGgGaAloD0MIIGCt2rUCZkCUhpRSlGgVTegDaBZHQKCHhlQMx491fZQoaAZoCWgPQwhIUWfuoeNiQJSGlFKUaBVN6ANoFkdAoInGxGDtgXV9lChoBmgJaA9DCKlnQSjvk2FAlIaUUpRoFU3oA2gWR0CgjQkN4JNTdX2UKGgGaAloD0MIzosTX23WZUCUhpRSlGgVTegDaBZHQKCNhQXQ+ll1fZQoaAZoCWgPQwh9XBsqxh1oQJSGlFKUaBVN6ANoFkdAoI936uW8iHV9lChoBmgJaA9DCDHT9q+swmBAlIaUUpRoFU3oA2gWR0Cgj7vXTVlPdX2UKGgGaAloD0MI6Q5iZwosXECUhpRSlGgVTegDaBZHQKCQMzKLbYd1fZQoaAZoCWgPQwgw2uOFdJZlQJSGlFKUaBVN6ANoFkdAoJKgfwI+n3V9lChoBmgJaA9DCKbxC68kOF5AlIaUUpRoFU3oA2gWR0Cgkuwh4dIYdX2UKGgGaAloD0MI2nOZmgQMYkCUhpRSlGgVTegDaBZHQKCTxx6OYIB1fZQoaAZoCWgPQwhNu5hmutZgQJSGlFKUaBVN6ANoFkdAoJQndVNpNHV9lChoBmgJaA9DCEZfQZoxEGNAlIaUUpRoFU3oA2gWR0CglWdKmKqGdX2UKGgGaAloD0MIorJhTWUAX0CUhpRSlGgVTegDaBZHQKCWpkzXSSh1fZQoaAZoCWgPQwgLXvQVpMVjQJSGlFKUaBVN6ANoFkdAoJbeu/1xsHV9lChoBmgJaA9DCGCUoL+QEHJAlIaUUpRoFU01AWgWR0Cgl9QxWT5gdX2UKGgGaAloD0MId0gxQKJnQ0CUhpRSlGgVTQgBaBZHQKCfGRRMvh91fZQoaAZoCWgPQwjekEYFzs5jQJSGlFKUaBVN6ANoFkdAoK4xqwhW53V9lChoBmgJaA9DCE33Oqkvp2BAlIaUUpRoFU3oA2gWR0Cgrwoo/iYLdX2UKGgGaAloD0MIgGWlSamvZkCUhpRSlGgVTegDaBZHQKCv95FgDzR1fZQoaAZoCWgPQwheTZ6yGoVmQJSGlFKUaBVN6ANoFkdAoLHccbR4QnV9lChoBmgJaA9DCJoF2h1SKWVAlIaUUpRoFU3oA2gWR0CgtN6xHG0edX2UKGgGaAloD0MIzSN/MHCyZUCUhpRSlGgVTegDaBZHQKC1TFuNxVB1fZQoaAZoCWgPQwgejNgngKNhQJSGlFKUaBVN6ANoFkdAoLcnFJg9eXV9lChoBmgJaA9DCMuGNZVFcGVAlIaUUpRoFU3oA2gWR0Cgt2hX8wYcdX2UKGgGaAloD0MIgnLbvkdxZECUhpRSlGgVTegDaBZHQKC7at5D7ZZ1fZQoaAZoCWgPQwi/fLJiuF5lQJSGlFKUaBVN6ANoFkdAoLvl/e+EiHV9lChoBmgJaA9DCHRcjexKu2BAlIaUUpRoFU3oA2gWR0CgvXhQFcIJdX2UKGgGaAloD0MICRhd3hywYkCUhpRSlGgVTegDaBZHQKC+KC+10DF1fZQoaAZoCWgPQwgdyHpq9YdiQJSGlFKUaBVN6ANoFkdAoMAa814xDnV9lChoBmgJaA9DCIgNFk7SLCNAlIaUUpRoFUv7aBZHQKDBORwIdEN1fZQoaAZoCWgPQwh9PPTdrVdfQJSGlFKUaBVN6ANoFkdAoMHPzpX6qXV9lChoBmgJaA9DCIJYNnNIKWJAlIaUUpRoFU3oA2gWR0Cgwx6P0Zm7dX2UKGgGaAloD0MIETXR56MpXkCUhpRSlGgVTegDaBZHQKDJWJ79hql1fZQoaAZoCWgPQwgvqG+Z0+xeQJSGlFKUaBVN6ANoFkdAoNtBC2MKkXV9lChoBmgJaA9DCEa0HVN3W11AlIaUUpRoFU3oA2gWR0Cg3IY3FUADdX2UKGgGaAloD0MIUOEIUqmmYUCUhpRSlGgVTegDaBZHQKDd4YwZflZ1fZQoaAZoCWgPQwjf+xu013lkQJSGlFKUaBVN6ANoFkdAoN/7syBTXXV9lChoBmgJaA9DCNBE2PB0BmZAlIaUUpRoFU3oA2gWR0Cg4vt03fhudX2UKGgGaAloD0MIPwCpTZw/W0CUhpRSlGgVTegDaBZHQKDjaa/h2nt1fZQoaAZoCWgPQwjohTsXRnhmQJSGlFKUaBVN6ANoFkdAoOU6RZEDyXV9lChoBmgJaA9DCEp/L4WHxWZAlIaUUpRoFU3oA2gWR0Cg6H7zbvgFdX2UKGgGaAloD0MI/YNIhhxUZECUhpRSlGgVTegDaBZHQKDo0QYDT0B1fZQoaAZoCWgPQwiNJ4I4D/FaQJSGlFKUaBVN6ANoFkdAoOnEuDjBEnV9lChoBmgJaA9DCGlXIeWnGGNAlIaUUpRoFU3oA2gWR0Cg6i/L9uP4dX2UKGgGaAloD0MIAMgJE0b6XkCUhpRSlGgVTegDaBZHQKDrhK3/gix1fZQoaAZoCWgPQwg/AKlNHL5mQJSGlFKUaBVN6ANoFkdAoOw/rhR64XV9lChoBmgJaA9DCD7qr1dYLWZAlIaUUpRoFU3oA2gWR0Cg7MztkWhzdX2UKGgGaAloD0MI3jmUoarVYkCUhpRSlGgVTegDaBZHQKDuEDOC5Et1fZQoaAZoCWgPQwjMtP0rKxZiQJSGlFKUaBVN6ANoFkdAoPU7gGbCrXVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db62d3c3a3bd74e56f1df8fdfd6e1c3e2aed38efc000a6b86d42ec697400f653
3
+ size 87929
ppo-LunarLander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:787fc80cd7d9413ed6373cbb0014aec8e45591826eeca9b196dc92c29825b56f
3
+ size 43393
ppo-LunarLander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (225 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 261.3523503641834, "std_reward": 16.442713538584808, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-22T17:37:28.681194"}