HongxuanLi commited on
Commit
5edb1c2
·
verified ·
1 Parent(s): 0bb9310

Upload 8 files

Browse files
README.md CHANGED
@@ -1,3 +1,202 @@
1
  ---
2
- license: apache-2.0
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: peft
3
+ base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
4
  ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.1.dev0
adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj",
25
+ "down_proj",
26
+ "up_proj",
27
+ "o_proj",
28
+ "lm_head",
29
+ "gate_proj",
30
+ "k_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bea70c23840fe6501cad72a02b862cf2e250731f702847898b818f1c1a3b203
3
+ size 288506496
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5080dca898ff34d23bf644b3b88424f4a4bc1b7fc2eab083cbb0dd6a05aa53fa
3
+ size 14048020
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99eb85eda4049dc5426c772f8211476f668829df504297a3974de81043a518fb
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb7abe03cc0693b70973abe46c8e4fdcf77aa4dfb9543ba6f6e0984b3856055b
3
+ size 1064
trainer_state.json ADDED
@@ -0,0 +1,471 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 33.333333333333336,
5
+ "eval_steps": 50,
6
+ "global_step": 1500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.1111111111111112,
13
+ "grad_norm": 2.6699063777923584,
14
+ "learning_rate": 2.443609022556391e-05,
15
+ "loss": 1.8217,
16
+ "step": 50
17
+ },
18
+ {
19
+ "epoch": 1.1111111111111112,
20
+ "eval_loss": 1.0424705743789673,
21
+ "eval_runtime": 4.0916,
22
+ "eval_samples_per_second": 43.993,
23
+ "eval_steps_per_second": 5.621,
24
+ "step": 50
25
+ },
26
+ {
27
+ "epoch": 2.2222222222222223,
28
+ "grad_norm": 0.44133517146110535,
29
+ "learning_rate": 2.380952380952381e-05,
30
+ "loss": 0.5439,
31
+ "step": 100
32
+ },
33
+ {
34
+ "epoch": 2.2222222222222223,
35
+ "eval_loss": 0.3811015784740448,
36
+ "eval_runtime": 4.0749,
37
+ "eval_samples_per_second": 44.173,
38
+ "eval_steps_per_second": 5.644,
39
+ "step": 100
40
+ },
41
+ {
42
+ "epoch": 3.3333333333333335,
43
+ "grad_norm": 0.540984034538269,
44
+ "learning_rate": 2.3182957393483708e-05,
45
+ "loss": 0.3496,
46
+ "step": 150
47
+ },
48
+ {
49
+ "epoch": 3.3333333333333335,
50
+ "eval_loss": 0.3363141715526581,
51
+ "eval_runtime": 4.089,
52
+ "eval_samples_per_second": 44.02,
53
+ "eval_steps_per_second": 5.625,
54
+ "step": 150
55
+ },
56
+ {
57
+ "epoch": 4.444444444444445,
58
+ "grad_norm": 0.4714152216911316,
59
+ "learning_rate": 2.255639097744361e-05,
60
+ "loss": 0.3178,
61
+ "step": 200
62
+ },
63
+ {
64
+ "epoch": 4.444444444444445,
65
+ "eval_loss": 0.3166368007659912,
66
+ "eval_runtime": 4.0511,
67
+ "eval_samples_per_second": 44.432,
68
+ "eval_steps_per_second": 5.677,
69
+ "step": 200
70
+ },
71
+ {
72
+ "epoch": 5.555555555555555,
73
+ "grad_norm": 0.5102563500404358,
74
+ "learning_rate": 2.1929824561403507e-05,
75
+ "loss": 0.2971,
76
+ "step": 250
77
+ },
78
+ {
79
+ "epoch": 5.555555555555555,
80
+ "eval_loss": 0.304388165473938,
81
+ "eval_runtime": 4.0541,
82
+ "eval_samples_per_second": 44.399,
83
+ "eval_steps_per_second": 5.673,
84
+ "step": 250
85
+ },
86
+ {
87
+ "epoch": 6.666666666666667,
88
+ "grad_norm": 0.8356263041496277,
89
+ "learning_rate": 2.130325814536341e-05,
90
+ "loss": 0.2825,
91
+ "step": 300
92
+ },
93
+ {
94
+ "epoch": 6.666666666666667,
95
+ "eval_loss": 0.29874512553215027,
96
+ "eval_runtime": 4.0506,
97
+ "eval_samples_per_second": 44.438,
98
+ "eval_steps_per_second": 5.678,
99
+ "step": 300
100
+ },
101
+ {
102
+ "epoch": 7.777777777777778,
103
+ "grad_norm": 0.694858968257904,
104
+ "learning_rate": 2.067669172932331e-05,
105
+ "loss": 0.2714,
106
+ "step": 350
107
+ },
108
+ {
109
+ "epoch": 7.777777777777778,
110
+ "eval_loss": 0.2942558825016022,
111
+ "eval_runtime": 4.074,
112
+ "eval_samples_per_second": 44.182,
113
+ "eval_steps_per_second": 5.646,
114
+ "step": 350
115
+ },
116
+ {
117
+ "epoch": 8.88888888888889,
118
+ "grad_norm": 0.7505309581756592,
119
+ "learning_rate": 2.0050125313283208e-05,
120
+ "loss": 0.2616,
121
+ "step": 400
122
+ },
123
+ {
124
+ "epoch": 8.88888888888889,
125
+ "eval_loss": 0.29128891229629517,
126
+ "eval_runtime": 4.0871,
127
+ "eval_samples_per_second": 44.041,
128
+ "eval_steps_per_second": 5.627,
129
+ "step": 400
130
+ },
131
+ {
132
+ "epoch": 10.0,
133
+ "grad_norm": 0.7603775858879089,
134
+ "learning_rate": 1.942355889724311e-05,
135
+ "loss": 0.2552,
136
+ "step": 450
137
+ },
138
+ {
139
+ "epoch": 10.0,
140
+ "eval_loss": 0.28786608576774597,
141
+ "eval_runtime": 4.052,
142
+ "eval_samples_per_second": 44.422,
143
+ "eval_steps_per_second": 5.676,
144
+ "step": 450
145
+ },
146
+ {
147
+ "epoch": 11.11111111111111,
148
+ "grad_norm": 0.831240177154541,
149
+ "learning_rate": 1.8796992481203007e-05,
150
+ "loss": 0.2472,
151
+ "step": 500
152
+ },
153
+ {
154
+ "epoch": 11.11111111111111,
155
+ "eval_loss": 0.28864821791648865,
156
+ "eval_runtime": 4.0371,
157
+ "eval_samples_per_second": 44.586,
158
+ "eval_steps_per_second": 5.697,
159
+ "step": 500
160
+ },
161
+ {
162
+ "epoch": 12.222222222222221,
163
+ "grad_norm": 0.7524340152740479,
164
+ "learning_rate": 1.8170426065162908e-05,
165
+ "loss": 0.2388,
166
+ "step": 550
167
+ },
168
+ {
169
+ "epoch": 12.222222222222221,
170
+ "eval_loss": 0.28881773352622986,
171
+ "eval_runtime": 4.0933,
172
+ "eval_samples_per_second": 43.974,
173
+ "eval_steps_per_second": 5.619,
174
+ "step": 550
175
+ },
176
+ {
177
+ "epoch": 13.333333333333334,
178
+ "grad_norm": 0.8262473940849304,
179
+ "learning_rate": 1.7543859649122806e-05,
180
+ "loss": 0.2309,
181
+ "step": 600
182
+ },
183
+ {
184
+ "epoch": 13.333333333333334,
185
+ "eval_loss": 0.2914719581604004,
186
+ "eval_runtime": 4.0773,
187
+ "eval_samples_per_second": 44.147,
188
+ "eval_steps_per_second": 5.641,
189
+ "step": 600
190
+ },
191
+ {
192
+ "epoch": 14.444444444444445,
193
+ "grad_norm": 0.8302382826805115,
194
+ "learning_rate": 1.6917293233082707e-05,
195
+ "loss": 0.2263,
196
+ "step": 650
197
+ },
198
+ {
199
+ "epoch": 14.444444444444445,
200
+ "eval_loss": 0.2899852395057678,
201
+ "eval_runtime": 4.0443,
202
+ "eval_samples_per_second": 44.507,
203
+ "eval_steps_per_second": 5.687,
204
+ "step": 650
205
+ },
206
+ {
207
+ "epoch": 15.555555555555555,
208
+ "grad_norm": 0.957399845123291,
209
+ "learning_rate": 1.6290726817042605e-05,
210
+ "loss": 0.2181,
211
+ "step": 700
212
+ },
213
+ {
214
+ "epoch": 15.555555555555555,
215
+ "eval_loss": 0.29406097531318665,
216
+ "eval_runtime": 4.0913,
217
+ "eval_samples_per_second": 43.996,
218
+ "eval_steps_per_second": 5.622,
219
+ "step": 700
220
+ },
221
+ {
222
+ "epoch": 16.666666666666668,
223
+ "grad_norm": 1.0171995162963867,
224
+ "learning_rate": 1.5664160401002506e-05,
225
+ "loss": 0.2115,
226
+ "step": 750
227
+ },
228
+ {
229
+ "epoch": 16.666666666666668,
230
+ "eval_loss": 0.2935585081577301,
231
+ "eval_runtime": 4.0514,
232
+ "eval_samples_per_second": 44.429,
233
+ "eval_steps_per_second": 5.677,
234
+ "step": 750
235
+ },
236
+ {
237
+ "epoch": 17.77777777777778,
238
+ "grad_norm": 0.9579535722732544,
239
+ "learning_rate": 1.5037593984962406e-05,
240
+ "loss": 0.2056,
241
+ "step": 800
242
+ },
243
+ {
244
+ "epoch": 17.77777777777778,
245
+ "eval_loss": 0.2986494302749634,
246
+ "eval_runtime": 4.0426,
247
+ "eval_samples_per_second": 44.526,
248
+ "eval_steps_per_second": 5.689,
249
+ "step": 800
250
+ },
251
+ {
252
+ "epoch": 18.88888888888889,
253
+ "grad_norm": 1.0283973217010498,
254
+ "learning_rate": 1.4411027568922305e-05,
255
+ "loss": 0.1983,
256
+ "step": 850
257
+ },
258
+ {
259
+ "epoch": 18.88888888888889,
260
+ "eval_loss": 0.30257824063301086,
261
+ "eval_runtime": 4.0596,
262
+ "eval_samples_per_second": 44.339,
263
+ "eval_steps_per_second": 5.666,
264
+ "step": 850
265
+ },
266
+ {
267
+ "epoch": 20.0,
268
+ "grad_norm": 1.068368673324585,
269
+ "learning_rate": 1.3784461152882205e-05,
270
+ "loss": 0.1915,
271
+ "step": 900
272
+ },
273
+ {
274
+ "epoch": 20.0,
275
+ "eval_loss": 0.30601659417152405,
276
+ "eval_runtime": 4.0465,
277
+ "eval_samples_per_second": 44.483,
278
+ "eval_steps_per_second": 5.684,
279
+ "step": 900
280
+ },
281
+ {
282
+ "epoch": 21.11111111111111,
283
+ "grad_norm": 0.987966001033783,
284
+ "learning_rate": 1.3157894736842106e-05,
285
+ "loss": 0.1834,
286
+ "step": 950
287
+ },
288
+ {
289
+ "epoch": 21.11111111111111,
290
+ "eval_loss": 0.3163508176803589,
291
+ "eval_runtime": 4.0462,
292
+ "eval_samples_per_second": 44.486,
293
+ "eval_steps_per_second": 5.684,
294
+ "step": 950
295
+ },
296
+ {
297
+ "epoch": 22.22222222222222,
298
+ "grad_norm": 1.046950101852417,
299
+ "learning_rate": 1.2531328320802006e-05,
300
+ "loss": 0.1773,
301
+ "step": 1000
302
+ },
303
+ {
304
+ "epoch": 22.22222222222222,
305
+ "eval_loss": 0.32225680351257324,
306
+ "eval_runtime": 4.0814,
307
+ "eval_samples_per_second": 44.102,
308
+ "eval_steps_per_second": 5.635,
309
+ "step": 1000
310
+ },
311
+ {
312
+ "epoch": 23.333333333333332,
313
+ "grad_norm": 1.2292746305465698,
314
+ "learning_rate": 1.1904761904761905e-05,
315
+ "loss": 0.1707,
316
+ "step": 1050
317
+ },
318
+ {
319
+ "epoch": 23.333333333333332,
320
+ "eval_loss": 0.3270200490951538,
321
+ "eval_runtime": 4.0696,
322
+ "eval_samples_per_second": 44.23,
323
+ "eval_steps_per_second": 5.652,
324
+ "step": 1050
325
+ },
326
+ {
327
+ "epoch": 24.444444444444443,
328
+ "grad_norm": 1.107651948928833,
329
+ "learning_rate": 1.1278195488721805e-05,
330
+ "loss": 0.1641,
331
+ "step": 1100
332
+ },
333
+ {
334
+ "epoch": 24.444444444444443,
335
+ "eval_loss": 0.3326013684272766,
336
+ "eval_runtime": 4.0592,
337
+ "eval_samples_per_second": 44.343,
338
+ "eval_steps_per_second": 5.666,
339
+ "step": 1100
340
+ },
341
+ {
342
+ "epoch": 25.555555555555557,
343
+ "grad_norm": 1.3203223943710327,
344
+ "learning_rate": 1.0651629072681704e-05,
345
+ "loss": 0.1575,
346
+ "step": 1150
347
+ },
348
+ {
349
+ "epoch": 25.555555555555557,
350
+ "eval_loss": 0.33997443318367004,
351
+ "eval_runtime": 4.0804,
352
+ "eval_samples_per_second": 44.113,
353
+ "eval_steps_per_second": 5.637,
354
+ "step": 1150
355
+ },
356
+ {
357
+ "epoch": 26.666666666666668,
358
+ "grad_norm": 1.2884823083877563,
359
+ "learning_rate": 1.0025062656641604e-05,
360
+ "loss": 0.1517,
361
+ "step": 1200
362
+ },
363
+ {
364
+ "epoch": 26.666666666666668,
365
+ "eval_loss": 0.3428906202316284,
366
+ "eval_runtime": 4.0803,
367
+ "eval_samples_per_second": 44.114,
368
+ "eval_steps_per_second": 5.637,
369
+ "step": 1200
370
+ },
371
+ {
372
+ "epoch": 27.77777777777778,
373
+ "grad_norm": 1.4833685159683228,
374
+ "learning_rate": 9.398496240601503e-06,
375
+ "loss": 0.1442,
376
+ "step": 1250
377
+ },
378
+ {
379
+ "epoch": 27.77777777777778,
380
+ "eval_loss": 0.35523876547813416,
381
+ "eval_runtime": 4.0449,
382
+ "eval_samples_per_second": 44.5,
383
+ "eval_steps_per_second": 5.686,
384
+ "step": 1250
385
+ },
386
+ {
387
+ "epoch": 28.88888888888889,
388
+ "grad_norm": 1.4259836673736572,
389
+ "learning_rate": 8.771929824561403e-06,
390
+ "loss": 0.1397,
391
+ "step": 1300
392
+ },
393
+ {
394
+ "epoch": 28.88888888888889,
395
+ "eval_loss": 0.36296555399894714,
396
+ "eval_runtime": 4.0386,
397
+ "eval_samples_per_second": 44.57,
398
+ "eval_steps_per_second": 5.695,
399
+ "step": 1300
400
+ },
401
+ {
402
+ "epoch": 30.0,
403
+ "grad_norm": 1.5832905769348145,
404
+ "learning_rate": 8.145363408521302e-06,
405
+ "loss": 0.1345,
406
+ "step": 1350
407
+ },
408
+ {
409
+ "epoch": 30.0,
410
+ "eval_loss": 0.3718196153640747,
411
+ "eval_runtime": 4.0526,
412
+ "eval_samples_per_second": 44.416,
413
+ "eval_steps_per_second": 5.675,
414
+ "step": 1350
415
+ },
416
+ {
417
+ "epoch": 31.11111111111111,
418
+ "grad_norm": 1.5873230695724487,
419
+ "learning_rate": 7.518796992481203e-06,
420
+ "loss": 0.1289,
421
+ "step": 1400
422
+ },
423
+ {
424
+ "epoch": 31.11111111111111,
425
+ "eval_loss": 0.38369277119636536,
426
+ "eval_runtime": 4.0471,
427
+ "eval_samples_per_second": 44.476,
428
+ "eval_steps_per_second": 5.683,
429
+ "step": 1400
430
+ },
431
+ {
432
+ "epoch": 32.22222222222222,
433
+ "grad_norm": 1.3492352962493896,
434
+ "learning_rate": 6.892230576441102e-06,
435
+ "loss": 0.1234,
436
+ "step": 1450
437
+ },
438
+ {
439
+ "epoch": 32.22222222222222,
440
+ "eval_loss": 0.39153799414634705,
441
+ "eval_runtime": 4.0507,
442
+ "eval_samples_per_second": 44.436,
443
+ "eval_steps_per_second": 5.678,
444
+ "step": 1450
445
+ },
446
+ {
447
+ "epoch": 33.333333333333336,
448
+ "grad_norm": 1.5531470775604248,
449
+ "learning_rate": 6.265664160401003e-06,
450
+ "loss": 0.1194,
451
+ "step": 1500
452
+ },
453
+ {
454
+ "epoch": 33.333333333333336,
455
+ "eval_loss": 0.3885114789009094,
456
+ "eval_runtime": 4.0759,
457
+ "eval_samples_per_second": 44.162,
458
+ "eval_steps_per_second": 5.643,
459
+ "step": 1500
460
+ }
461
+ ],
462
+ "logging_steps": 50,
463
+ "max_steps": 2000,
464
+ "num_input_tokens_seen": 0,
465
+ "num_train_epochs": 45,
466
+ "save_steps": 25,
467
+ "total_flos": 3.996628758124954e+16,
468
+ "train_batch_size": 4,
469
+ "trial_name": null,
470
+ "trial_params": null
471
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31fb09a8ca46eab683c0c509a96068143a53814b2d3e954b809726f49a16ece0
3
+ size 4984