Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- .summary/0/events.out.tfevents.1688482360.4c41bf599422 +3 -0
- .summary/0/events.out.tfevents.1688482563.4c41bf599422 +3 -0
- .summary/0/events.out.tfevents.1688482767.4c41bf599422 +3 -0
- .summary/0/events.out.tfevents.1688482948.4c41bf599422 +0 -0
- README.md +56 -0
- cfg.json +141 -0
- checkpoint_p0/best_000000112_458752_reward_4.720.pth +3 -0
- checkpoint_p0/checkpoint_000000112_458752.pth +3 -0
- checkpoint_p0/checkpoint_000000113_462848.pth +3 -0
- config.json +143 -0
- replay.mp4 +3 -0
- sf_log.txt +1183 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
.summary/0/events.out.tfevents.1688482360.4c41bf599422
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e2c311d468e3240ab8832eed36f0db1db3b85b84163a6041d35b446347bd3a3
|
3 |
+
size 40
|
.summary/0/events.out.tfevents.1688482563.4c41bf599422
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25b950b8049f5c82f645139bf8f653c0a7613b33df1845b19ea84a06956d6252
|
3 |
+
size 68047
|
.summary/0/events.out.tfevents.1688482767.4c41bf599422
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1ad7eee8f02d44e079ad8faa000e046ba9f6551110bfefad139ba37a9e362fd
|
3 |
+
size 2409
|
.summary/0/events.out.tfevents.1688482948.4c41bf599422
ADDED
File without changes
|
README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sample-factory
|
3 |
+
tags:
|
4 |
+
- deep-reinforcement-learning
|
5 |
+
- reinforcement-learning
|
6 |
+
- sample-factory
|
7 |
+
model-index:
|
8 |
+
- name: APPO
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: reinforcement-learning
|
12 |
+
name: reinforcement-learning
|
13 |
+
dataset:
|
14 |
+
name: doom_health_gathering_supreme
|
15 |
+
type: doom_health_gathering_supreme
|
16 |
+
metrics:
|
17 |
+
- type: mean_reward
|
18 |
+
value: 4.56 +/- 0.74
|
19 |
+
name: mean_reward
|
20 |
+
verified: false
|
21 |
+
---
|
22 |
+
|
23 |
+
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
|
24 |
+
|
25 |
+
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
|
26 |
+
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
|
27 |
+
|
28 |
+
|
29 |
+
## Downloading the model
|
30 |
+
|
31 |
+
After installing Sample-Factory, download the model with:
|
32 |
+
```
|
33 |
+
python -m sample_factory.huggingface.load_from_hub -r HilbertS/rl_course_vizdoom_health_gathering_supreme
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
## Using the model
|
38 |
+
|
39 |
+
To run the model after download, use the `enjoy` script corresponding to this environment:
|
40 |
+
```
|
41 |
+
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
|
42 |
+
```
|
43 |
+
|
44 |
+
|
45 |
+
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
|
46 |
+
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
|
47 |
+
|
48 |
+
## Training with this model
|
49 |
+
|
50 |
+
To continue training with this model, use the `train` script corresponding to this environment:
|
51 |
+
```
|
52 |
+
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
|
53 |
+
```
|
54 |
+
|
55 |
+
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
56 |
+
|
cfg.json
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"help": false,
|
3 |
+
"algo": "APPO",
|
4 |
+
"env": "doom_health_gathering_supreme",
|
5 |
+
"experiment": "default_experiment",
|
6 |
+
"train_dir": "/content/train_dir",
|
7 |
+
"restart_behavior": "resume",
|
8 |
+
"device": "gpu",
|
9 |
+
"seed": null,
|
10 |
+
"num_policies": 1,
|
11 |
+
"async_rl": true,
|
12 |
+
"serial_mode": false,
|
13 |
+
"batched_sampling": false,
|
14 |
+
"num_batches_to_accumulate": 2,
|
15 |
+
"worker_num_splits": 2,
|
16 |
+
"policy_workers_per_policy": 1,
|
17 |
+
"max_policy_lag": 1000,
|
18 |
+
"num_workers": 8,
|
19 |
+
"num_envs_per_worker": 4,
|
20 |
+
"batch_size": 1024,
|
21 |
+
"num_batches_per_epoch": 1,
|
22 |
+
"num_epochs": 1,
|
23 |
+
"rollout": 32,
|
24 |
+
"recurrence": 32,
|
25 |
+
"shuffle_minibatches": false,
|
26 |
+
"gamma": 0.99,
|
27 |
+
"reward_scale": 1.0,
|
28 |
+
"reward_clip": 1000.0,
|
29 |
+
"value_bootstrap": false,
|
30 |
+
"normalize_returns": true,
|
31 |
+
"exploration_loss_coeff": 0.001,
|
32 |
+
"value_loss_coeff": 0.5,
|
33 |
+
"kl_loss_coeff": 0.0,
|
34 |
+
"exploration_loss": "symmetric_kl",
|
35 |
+
"gae_lambda": 0.95,
|
36 |
+
"ppo_clip_ratio": 0.1,
|
37 |
+
"ppo_clip_value": 0.2,
|
38 |
+
"with_vtrace": false,
|
39 |
+
"vtrace_rho": 1.0,
|
40 |
+
"vtrace_c": 1.0,
|
41 |
+
"optimizer": "adam",
|
42 |
+
"adam_eps": 1e-06,
|
43 |
+
"adam_beta1": 0.9,
|
44 |
+
"adam_beta2": 0.999,
|
45 |
+
"max_grad_norm": 4.0,
|
46 |
+
"learning_rate": 0.0001,
|
47 |
+
"lr_schedule": "constant",
|
48 |
+
"lr_schedule_kl_threshold": 0.008,
|
49 |
+
"obs_subtract_mean": 0.0,
|
50 |
+
"obs_scale": 255.0,
|
51 |
+
"normalize_input": true,
|
52 |
+
"normalize_input_keys": null,
|
53 |
+
"decorrelate_experience_max_seconds": 0,
|
54 |
+
"decorrelate_envs_on_one_worker": true,
|
55 |
+
"actor_worker_gpus": [],
|
56 |
+
"set_workers_cpu_affinity": true,
|
57 |
+
"force_envs_single_thread": false,
|
58 |
+
"default_niceness": 0,
|
59 |
+
"log_to_file": true,
|
60 |
+
"experiment_summaries_interval": 10,
|
61 |
+
"flush_summaries_interval": 30,
|
62 |
+
"stats_avg": 100,
|
63 |
+
"summaries_use_frameskip": true,
|
64 |
+
"heartbeat_interval": 20,
|
65 |
+
"heartbeat_reporting_interval": 600,
|
66 |
+
"train_for_env_steps": 25000,
|
67 |
+
"train_for_seconds": 10000000000,
|
68 |
+
"save_every_sec": 120,
|
69 |
+
"keep_checkpoints": 2,
|
70 |
+
"load_checkpoint_kind": "latest",
|
71 |
+
"save_milestones_sec": -1,
|
72 |
+
"save_best_every_sec": 5,
|
73 |
+
"save_best_metric": "reward",
|
74 |
+
"save_best_after": 100000,
|
75 |
+
"benchmark": false,
|
76 |
+
"encoder_mlp_layers": [
|
77 |
+
512,
|
78 |
+
512
|
79 |
+
],
|
80 |
+
"encoder_conv_architecture": "convnet_simple",
|
81 |
+
"encoder_conv_mlp_layers": [
|
82 |
+
512
|
83 |
+
],
|
84 |
+
"use_rnn": true,
|
85 |
+
"rnn_size": 512,
|
86 |
+
"rnn_type": "gru",
|
87 |
+
"rnn_num_layers": 1,
|
88 |
+
"decoder_mlp_layers": [],
|
89 |
+
"nonlinearity": "elu",
|
90 |
+
"policy_initialization": "orthogonal",
|
91 |
+
"policy_init_gain": 1.0,
|
92 |
+
"actor_critic_share_weights": true,
|
93 |
+
"adaptive_stddev": true,
|
94 |
+
"continuous_tanh_scale": 0.0,
|
95 |
+
"initial_stddev": 1.0,
|
96 |
+
"use_env_info_cache": false,
|
97 |
+
"env_gpu_actions": false,
|
98 |
+
"env_gpu_observations": true,
|
99 |
+
"env_frameskip": 4,
|
100 |
+
"env_framestack": 1,
|
101 |
+
"pixel_format": "CHW",
|
102 |
+
"use_record_episode_statistics": false,
|
103 |
+
"with_wandb": false,
|
104 |
+
"wandb_user": null,
|
105 |
+
"wandb_project": "sample_factory",
|
106 |
+
"wandb_group": null,
|
107 |
+
"wandb_job_type": "SF",
|
108 |
+
"wandb_tags": [],
|
109 |
+
"with_pbt": false,
|
110 |
+
"pbt_mix_policies_in_one_env": true,
|
111 |
+
"pbt_period_env_steps": 5000000,
|
112 |
+
"pbt_start_mutation": 20000000,
|
113 |
+
"pbt_replace_fraction": 0.3,
|
114 |
+
"pbt_mutation_rate": 0.15,
|
115 |
+
"pbt_replace_reward_gap": 0.1,
|
116 |
+
"pbt_replace_reward_gap_absolute": 1e-06,
|
117 |
+
"pbt_optimize_gamma": false,
|
118 |
+
"pbt_target_objective": "true_objective",
|
119 |
+
"pbt_perturb_min": 1.1,
|
120 |
+
"pbt_perturb_max": 1.5,
|
121 |
+
"num_agents": -1,
|
122 |
+
"num_humans": 0,
|
123 |
+
"num_bots": -1,
|
124 |
+
"start_bot_difficulty": null,
|
125 |
+
"timelimit": null,
|
126 |
+
"res_w": 128,
|
127 |
+
"res_h": 72,
|
128 |
+
"wide_aspect_ratio": false,
|
129 |
+
"eval_env_frameskip": 1,
|
130 |
+
"fps": 35,
|
131 |
+
"command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
|
132 |
+
"cli_args": {
|
133 |
+
"env": "doom_health_gathering_supreme",
|
134 |
+
"num_workers": 8,
|
135 |
+
"num_envs_per_worker": 4,
|
136 |
+
"train_for_env_steps": 4000000
|
137 |
+
},
|
138 |
+
"git_hash": "unknown",
|
139 |
+
"git_repo_name": "not a git repository",
|
140 |
+
"train_script": ".usr.local.lib.python3.10.dist-packages.ipykernel_launcher"
|
141 |
+
}
|
checkpoint_p0/best_000000112_458752_reward_4.720.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa01e96f24316f451761602db0c9bee351f367917dc559e2f2adc23ad44385c1
|
3 |
+
size 34928614
|
checkpoint_p0/checkpoint_000000112_458752.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1bf72ed4c23507a81c897a14d729e46b1fd1e2537398862b19aeed69530aad37
|
3 |
+
size 34929028
|
checkpoint_p0/checkpoint_000000113_462848.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce7d2579da71521b3a1fa1140d4c0c5ac3cbaaa71a65742ca09dbd881c28c0e4
|
3 |
+
size 34929220
|
config.json
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"help": false,
|
3 |
+
"algo": "APPO",
|
4 |
+
"env": "doom_health_gathering_supreme",
|
5 |
+
"experiment": "default_experiment",
|
6 |
+
"train_dir": "/content/train_dir",
|
7 |
+
"restart_behavior": "resume",
|
8 |
+
"device": "gpu",
|
9 |
+
"seed": null,
|
10 |
+
"num_policies": 1,
|
11 |
+
"async_rl": true,
|
12 |
+
"serial_mode": false,
|
13 |
+
"batched_sampling": false,
|
14 |
+
"num_batches_to_accumulate": 2,
|
15 |
+
"worker_num_splits": 2,
|
16 |
+
"policy_workers_per_policy": 1,
|
17 |
+
"max_policy_lag": 1000,
|
18 |
+
"num_workers": 8,
|
19 |
+
"num_envs_per_worker": 4,
|
20 |
+
"batch_size": 1024,
|
21 |
+
"num_batches_per_epoch": 1,
|
22 |
+
"num_epochs": 1,
|
23 |
+
"rollout": 32,
|
24 |
+
"recurrence": 32,
|
25 |
+
"shuffle_minibatches": false,
|
26 |
+
"gamma": 0.99,
|
27 |
+
"reward_scale": 1.0,
|
28 |
+
"reward_clip": 1000.0,
|
29 |
+
"value_bootstrap": false,
|
30 |
+
"normalize_returns": true,
|
31 |
+
"exploration_loss_coeff": 0.001,
|
32 |
+
"value_loss_coeff": 0.5,
|
33 |
+
"kl_loss_coeff": 0.0,
|
34 |
+
"exploration_loss": "symmetric_kl",
|
35 |
+
"gae_lambda": 0.95,
|
36 |
+
"ppo_clip_ratio": 0.1,
|
37 |
+
"ppo_clip_value": 0.2,
|
38 |
+
"with_vtrace": false,
|
39 |
+
"vtrace_rho": 1.0,
|
40 |
+
"vtrace_c": 1.0,
|
41 |
+
"optimizer": "adam",
|
42 |
+
"adam_eps": 1e-06,
|
43 |
+
"adam_beta1": 0.9,
|
44 |
+
"adam_beta2": 0.999,
|
45 |
+
"max_grad_norm": 4.0,
|
46 |
+
"learning_rate": 0.0001,
|
47 |
+
"lr_schedule": "constant",
|
48 |
+
"lr_schedule_kl_threshold": 0.008,
|
49 |
+
"obs_subtract_mean": 0.0,
|
50 |
+
"obs_scale": 255.0,
|
51 |
+
"normalize_input": true,
|
52 |
+
"normalize_input_keys": null,
|
53 |
+
"decorrelate_experience_max_seconds": 0,
|
54 |
+
"decorrelate_envs_on_one_worker": true,
|
55 |
+
"actor_worker_gpus": [],
|
56 |
+
"set_workers_cpu_affinity": true,
|
57 |
+
"force_envs_single_thread": false,
|
58 |
+
"default_niceness": 0,
|
59 |
+
"log_to_file": true,
|
60 |
+
"experiment_summaries_interval": 10,
|
61 |
+
"flush_summaries_interval": 30,
|
62 |
+
"stats_avg": 100,
|
63 |
+
"summaries_use_frameskip": true,
|
64 |
+
"heartbeat_interval": 20,
|
65 |
+
"heartbeat_reporting_interval": 600,
|
66 |
+
"train_for_env_steps": 25000,
|
67 |
+
"train_for_seconds": 10000000000,
|
68 |
+
"save_every_sec": 120,
|
69 |
+
"keep_checkpoints": 2,
|
70 |
+
"load_checkpoint_kind": "latest",
|
71 |
+
"save_milestones_sec": -1,
|
72 |
+
"save_best_every_sec": 5,
|
73 |
+
"save_best_metric": "reward",
|
74 |
+
"save_best_after": 100000,
|
75 |
+
"benchmark": false,
|
76 |
+
"encoder_mlp_layers": [
|
77 |
+
512,
|
78 |
+
512
|
79 |
+
],
|
80 |
+
"encoder_conv_architecture": "convnet_simple",
|
81 |
+
"encoder_conv_mlp_layers": [
|
82 |
+
512
|
83 |
+
],
|
84 |
+
"use_rnn": true,
|
85 |
+
"rnn_size": 512,
|
86 |
+
"rnn_type": "gru",
|
87 |
+
"rnn_num_layers": 1,
|
88 |
+
"decoder_mlp_layers": [],
|
89 |
+
"nonlinearity": "elu",
|
90 |
+
"policy_initialization": "orthogonal",
|
91 |
+
"policy_init_gain": 1.0,
|
92 |
+
"actor_critic_share_weights": true,
|
93 |
+
"adaptive_stddev": true,
|
94 |
+
"continuous_tanh_scale": 0.0,
|
95 |
+
"initial_stddev": 1.0,
|
96 |
+
"use_env_info_cache": false,
|
97 |
+
"env_gpu_actions": false,
|
98 |
+
"env_gpu_observations": true,
|
99 |
+
"env_frameskip": 4,
|
100 |
+
"env_framestack": 1,
|
101 |
+
"pixel_format": "CHW",
|
102 |
+
"use_record_episode_statistics": false,
|
103 |
+
"with_wandb": false,
|
104 |
+
"wandb_user": null,
|
105 |
+
"wandb_project": "sample_factory",
|
106 |
+
"wandb_group": null,
|
107 |
+
"wandb_job_type": "SF",
|
108 |
+
"wandb_tags": [],
|
109 |
+
"with_pbt": false,
|
110 |
+
"pbt_mix_policies_in_one_env": true,
|
111 |
+
"pbt_period_env_steps": 5000000,
|
112 |
+
"pbt_start_mutation": 20000000,
|
113 |
+
"pbt_replace_fraction": 0.3,
|
114 |
+
"pbt_mutation_rate": 0.15,
|
115 |
+
"pbt_replace_reward_gap": 0.1,
|
116 |
+
"pbt_replace_reward_gap_absolute": 1e-06,
|
117 |
+
"pbt_optimize_gamma": false,
|
118 |
+
"pbt_target_objective": "true_objective",
|
119 |
+
"pbt_perturb_min": 1.1,
|
120 |
+
"pbt_perturb_max": 1.5,
|
121 |
+
"num_agents": -1,
|
122 |
+
"num_humans": 0,
|
123 |
+
"num_bots": -1,
|
124 |
+
"start_bot_difficulty": null,
|
125 |
+
"timelimit": null,
|
126 |
+
"res_w": 128,
|
127 |
+
"res_h": 72,
|
128 |
+
"wide_aspect_ratio": false,
|
129 |
+
"eval_env_frameskip": 1,
|
130 |
+
"fps": 35,
|
131 |
+
"command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
|
132 |
+
"cli_args": {
|
133 |
+
"env": "doom_health_gathering_supreme",
|
134 |
+
"num_workers": 8,
|
135 |
+
"num_envs_per_worker": 4,
|
136 |
+
"train_for_env_steps": 4000000
|
137 |
+
},
|
138 |
+
"git_hash": "unknown",
|
139 |
+
"git_repo_name": "not a git repository",
|
140 |
+
"train_script": ".usr.local.lib.python3.10.dist-packages.ipykernel_launcher",
|
141 |
+
"lr_adaptive_min": 1e-06,
|
142 |
+
"lr_adaptive_max": 0.01
|
143 |
+
}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:463bde631ab069a76964585704799764fbe4fceee77e43db534eb6cbb14fa44b
|
3 |
+
size 7192687
|
sf_log.txt
ADDED
@@ -0,0 +1,1183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[2023-07-04 14:52:45,345][00220] Saving configuration to /content/train_dir/default_experiment/config.json...
|
2 |
+
[2023-07-04 14:52:45,348][00220] Rollout worker 0 uses device cpu
|
3 |
+
[2023-07-04 14:52:45,352][00220] Rollout worker 1 uses device cpu
|
4 |
+
[2023-07-04 14:52:45,355][00220] Rollout worker 2 uses device cpu
|
5 |
+
[2023-07-04 14:52:45,357][00220] Rollout worker 3 uses device cpu
|
6 |
+
[2023-07-04 14:52:45,358][00220] Rollout worker 4 uses device cpu
|
7 |
+
[2023-07-04 14:52:45,359][00220] Rollout worker 5 uses device cpu
|
8 |
+
[2023-07-04 14:52:45,363][00220] Rollout worker 6 uses device cpu
|
9 |
+
[2023-07-04 14:52:45,364][00220] Rollout worker 7 uses device cpu
|
10 |
+
[2023-07-04 14:52:45,565][00220] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
11 |
+
[2023-07-04 14:52:45,567][00220] InferenceWorker_p0-w0: min num requests: 2
|
12 |
+
[2023-07-04 14:52:45,611][00220] Starting all processes...
|
13 |
+
[2023-07-04 14:52:45,614][00220] Starting process learner_proc0
|
14 |
+
[2023-07-04 14:52:45,621][00220] EvtLoop [Runner_EvtLoop, process=main process 220] unhandled exception in slot='_on_start' connected to emitter=Emitter(object_id='Runner_EvtLoop', signal_name='start'), args=()
|
15 |
+
Traceback (most recent call last):
|
16 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
17 |
+
slot_callable(*args)
|
18 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/runners/runner_parallel.py", line 49, in _on_start
|
19 |
+
self._start_processes()
|
20 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/runners/runner_parallel.py", line 56, in _start_processes
|
21 |
+
p.start()
|
22 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 515, in start
|
23 |
+
self._process.start()
|
24 |
+
File "/usr/lib/python3.10/multiprocessing/process.py", line 121, in start
|
25 |
+
self._popen = self._Popen(self)
|
26 |
+
File "/usr/lib/python3.10/multiprocessing/context.py", line 288, in _Popen
|
27 |
+
return Popen(process_obj)
|
28 |
+
File "/usr/lib/python3.10/multiprocessing/popen_spawn_posix.py", line 32, in __init__
|
29 |
+
super().__init__(process_obj)
|
30 |
+
File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 19, in __init__
|
31 |
+
self._launch(process_obj)
|
32 |
+
File "/usr/lib/python3.10/multiprocessing/popen_spawn_posix.py", line 47, in _launch
|
33 |
+
reduction.dump(process_obj, fp)
|
34 |
+
File "/usr/lib/python3.10/multiprocessing/reduction.py", line 60, in dump
|
35 |
+
ForkingPickler(file, protocol).dump(obj)
|
36 |
+
TypeError: cannot pickle 'TLSBuffer' object
|
37 |
+
[2023-07-04 14:52:45,628][00220] Unhandled exception cannot pickle 'TLSBuffer' object in evt loop Runner_EvtLoop
|
38 |
+
[2023-07-04 14:52:45,631][00220] Uncaught exception in Runner evt loop
|
39 |
+
Traceback (most recent call last):
|
40 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/runners/runner.py", line 770, in run
|
41 |
+
evt_loop_status = self.event_loop.exec()
|
42 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 403, in exec
|
43 |
+
raise exc
|
44 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 399, in exec
|
45 |
+
while self._loop_iteration():
|
46 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 383, in _loop_iteration
|
47 |
+
self._process_signal(s)
|
48 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 358, in _process_signal
|
49 |
+
raise exc
|
50 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
51 |
+
slot_callable(*args)
|
52 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/runners/runner_parallel.py", line 49, in _on_start
|
53 |
+
self._start_processes()
|
54 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/runners/runner_parallel.py", line 56, in _start_processes
|
55 |
+
p.start()
|
56 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 515, in start
|
57 |
+
self._process.start()
|
58 |
+
File "/usr/lib/python3.10/multiprocessing/process.py", line 121, in start
|
59 |
+
self._popen = self._Popen(self)
|
60 |
+
File "/usr/lib/python3.10/multiprocessing/context.py", line 288, in _Popen
|
61 |
+
return Popen(process_obj)
|
62 |
+
File "/usr/lib/python3.10/multiprocessing/popen_spawn_posix.py", line 32, in __init__
|
63 |
+
super().__init__(process_obj)
|
64 |
+
File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 19, in __init__
|
65 |
+
self._launch(process_obj)
|
66 |
+
File "/usr/lib/python3.10/multiprocessing/popen_spawn_posix.py", line 47, in _launch
|
67 |
+
reduction.dump(process_obj, fp)
|
68 |
+
File "/usr/lib/python3.10/multiprocessing/reduction.py", line 60, in dump
|
69 |
+
ForkingPickler(file, protocol).dump(obj)
|
70 |
+
TypeError: cannot pickle 'TLSBuffer' object
|
71 |
+
[2023-07-04 14:52:45,636][00220] Runner profile tree view:
|
72 |
+
main_loop: 0.0248
|
73 |
+
[2023-07-04 14:52:45,637][00220] Collected {}, FPS: 0.0
|
74 |
+
[2023-07-04 14:56:08,351][13487] Saving configuration to /content/train_dir/default_experiment/cfg.json...
|
75 |
+
[2023-07-04 14:56:08,364][13487] Rollout worker 0 uses device cpu
|
76 |
+
[2023-07-04 14:56:08,368][13487] Rollout worker 1 uses device cpu
|
77 |
+
[2023-07-04 14:56:08,371][13487] Rollout worker 2 uses device cpu
|
78 |
+
[2023-07-04 14:56:08,378][13487] Rollout worker 3 uses device cpu
|
79 |
+
[2023-07-04 14:56:08,380][13487] Rollout worker 4 uses device cpu
|
80 |
+
[2023-07-04 14:56:08,381][13487] Rollout worker 5 uses device cpu
|
81 |
+
[2023-07-04 14:56:08,383][13487] Rollout worker 6 uses device cpu
|
82 |
+
[2023-07-04 14:56:08,384][13487] Rollout worker 7 uses device cpu
|
83 |
+
[2023-07-04 14:56:08,681][13487] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
84 |
+
[2023-07-04 14:56:08,686][13487] InferenceWorker_p0-w0: min num requests: 2
|
85 |
+
[2023-07-04 14:56:08,755][13487] Starting all processes...
|
86 |
+
[2023-07-04 14:56:08,764][13487] Starting process learner_proc0
|
87 |
+
[2023-07-04 14:56:08,849][13487] Starting all processes...
|
88 |
+
[2023-07-04 14:56:08,965][13487] Starting process inference_proc0-0
|
89 |
+
[2023-07-04 14:56:08,971][13487] Starting process rollout_proc0
|
90 |
+
[2023-07-04 14:56:08,971][13487] Starting process rollout_proc1
|
91 |
+
[2023-07-04 14:56:08,971][13487] Starting process rollout_proc2
|
92 |
+
[2023-07-04 14:56:08,971][13487] Starting process rollout_proc3
|
93 |
+
[2023-07-04 14:56:08,972][13487] Starting process rollout_proc4
|
94 |
+
[2023-07-04 14:56:08,972][13487] Starting process rollout_proc5
|
95 |
+
[2023-07-04 14:56:08,972][13487] Starting process rollout_proc6
|
96 |
+
[2023-07-04 14:56:08,972][13487] Starting process rollout_proc7
|
97 |
+
[2023-07-04 14:56:22,840][13825] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
98 |
+
[2023-07-04 14:56:22,855][13825] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
|
99 |
+
[2023-07-04 14:56:22,937][13825] Num visible devices: 1
|
100 |
+
[2023-07-04 14:56:22,984][13825] Starting seed is not provided
|
101 |
+
[2023-07-04 14:56:22,984][13825] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
102 |
+
[2023-07-04 14:56:22,984][13825] Initializing actor-critic model on device cuda:0
|
103 |
+
[2023-07-04 14:56:22,985][13825] RunningMeanStd input shape: (3, 72, 128)
|
104 |
+
[2023-07-04 14:56:22,988][13825] RunningMeanStd input shape: (1,)
|
105 |
+
[2023-07-04 14:56:23,216][13825] ConvEncoder: input_channels=3
|
106 |
+
[2023-07-04 14:56:24,689][13838] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
107 |
+
[2023-07-04 14:56:24,689][13838] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
|
108 |
+
[2023-07-04 14:56:24,866][13838] Num visible devices: 1
|
109 |
+
[2023-07-04 14:56:25,312][13825] Conv encoder output size: 512
|
110 |
+
[2023-07-04 14:56:25,328][13825] Policy head output size: 512
|
111 |
+
[2023-07-04 14:56:25,504][13846] Worker 7 uses CPU cores [1]
|
112 |
+
[2023-07-04 14:56:25,522][13825] Created Actor Critic model with architecture:
|
113 |
+
[2023-07-04 14:56:25,533][13825] ActorCriticSharedWeights(
|
114 |
+
(obs_normalizer): ObservationNormalizer(
|
115 |
+
(running_mean_std): RunningMeanStdDictInPlace(
|
116 |
+
(running_mean_std): ModuleDict(
|
117 |
+
(obs): RunningMeanStdInPlace()
|
118 |
+
)
|
119 |
+
)
|
120 |
+
)
|
121 |
+
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
|
122 |
+
(encoder): VizdoomEncoder(
|
123 |
+
(basic_encoder): ConvEncoder(
|
124 |
+
(enc): RecursiveScriptModule(
|
125 |
+
original_name=ConvEncoderImpl
|
126 |
+
(conv_head): RecursiveScriptModule(
|
127 |
+
original_name=Sequential
|
128 |
+
(0): RecursiveScriptModule(original_name=Conv2d)
|
129 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
130 |
+
(2): RecursiveScriptModule(original_name=Conv2d)
|
131 |
+
(3): RecursiveScriptModule(original_name=ELU)
|
132 |
+
(4): RecursiveScriptModule(original_name=Conv2d)
|
133 |
+
(5): RecursiveScriptModule(original_name=ELU)
|
134 |
+
)
|
135 |
+
(mlp_layers): RecursiveScriptModule(
|
136 |
+
original_name=Sequential
|
137 |
+
(0): RecursiveScriptModule(original_name=Linear)
|
138 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
139 |
+
)
|
140 |
+
)
|
141 |
+
)
|
142 |
+
)
|
143 |
+
(core): ModelCoreRNN(
|
144 |
+
(core): GRU(512, 512)
|
145 |
+
)
|
146 |
+
(decoder): MlpDecoder(
|
147 |
+
(mlp): Identity()
|
148 |
+
)
|
149 |
+
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
|
150 |
+
(action_parameterization): ActionParameterizationDefault(
|
151 |
+
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
|
152 |
+
)
|
153 |
+
)
|
154 |
+
[2023-07-04 14:56:25,542][13844] Worker 4 uses CPU cores [0]
|
155 |
+
[2023-07-04 14:56:25,565][13840] Worker 1 uses CPU cores [1]
|
156 |
+
[2023-07-04 14:56:25,624][13841] Worker 2 uses CPU cores [0]
|
157 |
+
[2023-07-04 14:56:25,641][13845] Worker 6 uses CPU cores [0]
|
158 |
+
[2023-07-04 14:56:25,811][13842] Worker 3 uses CPU cores [1]
|
159 |
+
[2023-07-04 14:56:25,832][13839] Worker 0 uses CPU cores [0]
|
160 |
+
[2023-07-04 14:56:25,886][13843] Worker 5 uses CPU cores [1]
|
161 |
+
[2023-07-04 14:56:28,667][13487] Heartbeat connected on Batcher_0
|
162 |
+
[2023-07-04 14:56:28,682][13487] Heartbeat connected on InferenceWorker_p0-w0
|
163 |
+
[2023-07-04 14:56:28,697][13487] Heartbeat connected on RolloutWorker_w0
|
164 |
+
[2023-07-04 14:56:28,707][13487] Heartbeat connected on RolloutWorker_w1
|
165 |
+
[2023-07-04 14:56:28,714][13487] Heartbeat connected on RolloutWorker_w2
|
166 |
+
[2023-07-04 14:56:28,720][13487] Heartbeat connected on RolloutWorker_w3
|
167 |
+
[2023-07-04 14:56:28,724][13487] Heartbeat connected on RolloutWorker_w4
|
168 |
+
[2023-07-04 14:56:28,729][13487] Heartbeat connected on RolloutWorker_w5
|
169 |
+
[2023-07-04 14:56:28,753][13487] Heartbeat connected on RolloutWorker_w6
|
170 |
+
[2023-07-04 14:56:28,759][13487] Heartbeat connected on RolloutWorker_w7
|
171 |
+
[2023-07-04 14:56:32,229][13825] Using optimizer <class 'torch.optim.adam.Adam'>
|
172 |
+
[2023-07-04 14:56:32,230][13825] No checkpoints found
|
173 |
+
[2023-07-04 14:56:32,230][13825] Did not load from checkpoint, starting from scratch!
|
174 |
+
[2023-07-04 14:56:32,230][13825] Initialized policy 0 weights for model version 0
|
175 |
+
[2023-07-04 14:56:32,233][13825] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
176 |
+
[2023-07-04 14:56:32,240][13825] LearnerWorker_p0 finished initialization!
|
177 |
+
[2023-07-04 14:56:32,241][13487] Heartbeat connected on LearnerWorker_p0
|
178 |
+
[2023-07-04 14:56:32,459][13838] RunningMeanStd input shape: (3, 72, 128)
|
179 |
+
[2023-07-04 14:56:32,460][13838] RunningMeanStd input shape: (1,)
|
180 |
+
[2023-07-04 14:56:32,473][13838] ConvEncoder: input_channels=3
|
181 |
+
[2023-07-04 14:56:32,585][13838] Conv encoder output size: 512
|
182 |
+
[2023-07-04 14:56:32,586][13838] Policy head output size: 512
|
183 |
+
[2023-07-04 14:56:33,357][13487] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
184 |
+
[2023-07-04 14:56:33,926][13487] Inference worker 0-0 is ready!
|
185 |
+
[2023-07-04 14:56:33,928][13487] All inference workers are ready! Signal rollout workers to start!
|
186 |
+
[2023-07-04 14:56:34,046][13840] Doom resolution: 160x120, resize resolution: (128, 72)
|
187 |
+
[2023-07-04 14:56:34,065][13841] Doom resolution: 160x120, resize resolution: (128, 72)
|
188 |
+
[2023-07-04 14:56:34,066][13846] Doom resolution: 160x120, resize resolution: (128, 72)
|
189 |
+
[2023-07-04 14:56:34,074][13842] Doom resolution: 160x120, resize resolution: (128, 72)
|
190 |
+
[2023-07-04 14:56:34,075][13843] Doom resolution: 160x120, resize resolution: (128, 72)
|
191 |
+
[2023-07-04 14:56:34,079][13845] Doom resolution: 160x120, resize resolution: (128, 72)
|
192 |
+
[2023-07-04 14:56:34,077][13839] Doom resolution: 160x120, resize resolution: (128, 72)
|
193 |
+
[2023-07-04 14:56:34,081][13844] Doom resolution: 160x120, resize resolution: (128, 72)
|
194 |
+
[2023-07-04 14:56:35,868][13840] Decorrelating experience for 0 frames...
|
195 |
+
[2023-07-04 14:56:35,862][13843] Decorrelating experience for 0 frames...
|
196 |
+
[2023-07-04 14:56:35,860][13846] Decorrelating experience for 0 frames...
|
197 |
+
[2023-07-04 14:56:36,440][13844] Decorrelating experience for 0 frames...
|
198 |
+
[2023-07-04 14:56:36,449][13841] Decorrelating experience for 0 frames...
|
199 |
+
[2023-07-04 14:56:36,444][13839] Decorrelating experience for 0 frames...
|
200 |
+
[2023-07-04 14:56:36,450][13845] Decorrelating experience for 0 frames...
|
201 |
+
[2023-07-04 14:56:37,968][13842] Decorrelating experience for 0 frames...
|
202 |
+
[2023-07-04 14:56:37,979][13843] Decorrelating experience for 32 frames...
|
203 |
+
[2023-07-04 14:56:37,986][13840] Decorrelating experience for 32 frames...
|
204 |
+
[2023-07-04 14:56:38,089][13839] Decorrelating experience for 32 frames...
|
205 |
+
[2023-07-04 14:56:38,355][13487] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
206 |
+
[2023-07-04 14:56:38,401][13846] Decorrelating experience for 32 frames...
|
207 |
+
[2023-07-04 14:56:39,856][13842] Decorrelating experience for 32 frames...
|
208 |
+
[2023-07-04 14:56:40,243][13843] Decorrelating experience for 64 frames...
|
209 |
+
[2023-07-04 14:56:40,337][13844] Decorrelating experience for 32 frames...
|
210 |
+
[2023-07-04 14:56:40,507][13841] Decorrelating experience for 32 frames...
|
211 |
+
[2023-07-04 14:56:40,623][13846] Decorrelating experience for 64 frames...
|
212 |
+
[2023-07-04 14:56:40,968][13839] Decorrelating experience for 64 frames...
|
213 |
+
[2023-07-04 14:56:42,209][13845] Decorrelating experience for 32 frames...
|
214 |
+
[2023-07-04 14:56:42,228][13840] Decorrelating experience for 64 frames...
|
215 |
+
[2023-07-04 14:56:42,476][13842] Decorrelating experience for 64 frames...
|
216 |
+
[2023-07-04 14:56:42,619][13844] Decorrelating experience for 64 frames...
|
217 |
+
[2023-07-04 14:56:42,739][13843] Decorrelating experience for 96 frames...
|
218 |
+
[2023-07-04 14:56:42,924][13841] Decorrelating experience for 64 frames...
|
219 |
+
[2023-07-04 14:56:43,355][13487] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
220 |
+
[2023-07-04 14:56:43,972][13842] Decorrelating experience for 96 frames...
|
221 |
+
[2023-07-04 14:56:44,395][13840] Decorrelating experience for 96 frames...
|
222 |
+
[2023-07-04 14:56:45,050][13839] Decorrelating experience for 96 frames...
|
223 |
+
[2023-07-04 14:56:45,170][13845] Decorrelating experience for 64 frames...
|
224 |
+
[2023-07-04 14:56:45,431][13844] Decorrelating experience for 96 frames...
|
225 |
+
[2023-07-04 14:56:45,813][13846] Decorrelating experience for 96 frames...
|
226 |
+
[2023-07-04 14:56:46,956][13841] Decorrelating experience for 96 frames...
|
227 |
+
[2023-07-04 14:56:47,275][13845] Decorrelating experience for 96 frames...
|
228 |
+
[2023-07-04 14:56:48,355][13487] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 2.1. Samples: 32. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
229 |
+
[2023-07-04 14:56:48,361][13487] Avg episode reward: [(0, '1.747')]
|
230 |
+
[2023-07-04 14:56:49,762][13825] Signal inference workers to stop experience collection...
|
231 |
+
[2023-07-04 14:56:49,786][13838] InferenceWorker_p0-w0: stopping experience collection
|
232 |
+
[2023-07-04 14:56:52,138][13825] Signal inference workers to resume experience collection...
|
233 |
+
[2023-07-04 14:56:52,138][13838] InferenceWorker_p0-w0: resuming experience collection
|
234 |
+
[2023-07-04 14:56:53,355][13487] Fps is (10 sec: 409.6, 60 sec: 204.8, 300 sec: 204.8). Total num frames: 4096. Throughput: 0: 120.3. Samples: 2406. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
|
235 |
+
[2023-07-04 14:56:53,365][13487] Avg episode reward: [(0, '2.567')]
|
236 |
+
[2023-07-04 14:56:58,359][13487] Fps is (10 sec: 2048.0, 60 sec: 819.3, 300 sec: 819.3). Total num frames: 20480. Throughput: 0: 242.9. Samples: 6072. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
|
237 |
+
[2023-07-04 14:56:58,364][13487] Avg episode reward: [(0, '3.442')]
|
238 |
+
[2023-07-04 14:57:03,356][13487] Fps is (10 sec: 2867.2, 60 sec: 1092.3, 300 sec: 1092.3). Total num frames: 32768. Throughput: 0: 266.5. Samples: 7996. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
239 |
+
[2023-07-04 14:57:03,363][13487] Avg episode reward: [(0, '3.844')]
|
240 |
+
[2023-07-04 14:57:05,411][13838] Updated weights for policy 0, policy_version 10 (0.0013)
|
241 |
+
[2023-07-04 14:57:08,358][13487] Fps is (10 sec: 2866.5, 60 sec: 1404.3, 300 sec: 1404.3). Total num frames: 49152. Throughput: 0: 341.9. Samples: 11968. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
242 |
+
[2023-07-04 14:57:08,362][13487] Avg episode reward: [(0, '4.352')]
|
243 |
+
[2023-07-04 14:57:13,355][13487] Fps is (10 sec: 3276.9, 60 sec: 1638.5, 300 sec: 1638.5). Total num frames: 65536. Throughput: 0: 424.9. Samples: 16996. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
244 |
+
[2023-07-04 14:57:13,364][13487] Avg episode reward: [(0, '4.580')]
|
245 |
+
[2023-07-04 14:57:17,518][13838] Updated weights for policy 0, policy_version 20 (0.0028)
|
246 |
+
[2023-07-04 14:57:18,355][13487] Fps is (10 sec: 3277.7, 60 sec: 1820.5, 300 sec: 1820.5). Total num frames: 81920. Throughput: 0: 438.8. Samples: 19746. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
247 |
+
[2023-07-04 14:57:18,362][13487] Avg episode reward: [(0, '4.505')]
|
248 |
+
[2023-07-04 14:57:23,355][13487] Fps is (10 sec: 3276.8, 60 sec: 1966.2, 300 sec: 1966.2). Total num frames: 98304. Throughput: 0: 544.0. Samples: 24482. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
|
249 |
+
[2023-07-04 14:57:23,364][13487] Avg episode reward: [(0, '4.418')]
|
250 |
+
[2023-07-04 14:57:28,355][13487] Fps is (10 sec: 2867.2, 60 sec: 2010.8, 300 sec: 2010.8). Total num frames: 110592. Throughput: 0: 618.8. Samples: 27846. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
251 |
+
[2023-07-04 14:57:28,358][13487] Avg episode reward: [(0, '4.334')]
|
252 |
+
[2023-07-04 14:57:28,364][13825] Saving new best policy, reward=4.334!
|
253 |
+
[2023-07-04 14:57:33,355][13487] Fps is (10 sec: 2048.0, 60 sec: 1979.8, 300 sec: 1979.8). Total num frames: 118784. Throughput: 0: 653.3. Samples: 29430. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
254 |
+
[2023-07-04 14:57:33,365][13487] Avg episode reward: [(0, '4.259')]
|
255 |
+
[2023-07-04 14:57:33,917][13838] Updated weights for policy 0, policy_version 30 (0.0029)
|
256 |
+
[2023-07-04 14:57:38,355][13487] Fps is (10 sec: 2867.2, 60 sec: 2321.1, 300 sec: 2142.6). Total num frames: 139264. Throughput: 0: 705.0. Samples: 34132. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
257 |
+
[2023-07-04 14:57:38,358][13487] Avg episode reward: [(0, '4.359')]
|
258 |
+
[2023-07-04 14:57:38,361][13825] Saving new best policy, reward=4.359!
|
259 |
+
[2023-07-04 14:57:43,355][13487] Fps is (10 sec: 3686.4, 60 sec: 2594.1, 300 sec: 2223.6). Total num frames: 155648. Throughput: 0: 743.9. Samples: 39548. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
260 |
+
[2023-07-04 14:57:43,359][13487] Avg episode reward: [(0, '4.429')]
|
261 |
+
[2023-07-04 14:57:43,367][13825] Saving new best policy, reward=4.429!
|
262 |
+
[2023-07-04 14:57:46,324][13838] Updated weights for policy 0, policy_version 40 (0.0014)
|
263 |
+
[2023-07-04 14:57:48,358][13487] Fps is (10 sec: 2866.3, 60 sec: 2798.8, 300 sec: 2239.1). Total num frames: 167936. Throughput: 0: 741.1. Samples: 41348. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
264 |
+
[2023-07-04 14:57:48,370][13487] Avg episode reward: [(0, '4.436')]
|
265 |
+
[2023-07-04 14:57:48,372][13825] Saving new best policy, reward=4.436!
|
266 |
+
[2023-07-04 14:57:53,358][13487] Fps is (10 sec: 2456.9, 60 sec: 2935.3, 300 sec: 2252.8). Total num frames: 180224. Throughput: 0: 727.6. Samples: 44708. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
|
267 |
+
[2023-07-04 14:57:53,364][13487] Avg episode reward: [(0, '4.338')]
|
268 |
+
[2023-07-04 14:57:58,356][13487] Fps is (10 sec: 2458.2, 60 sec: 2867.2, 300 sec: 2264.9). Total num frames: 192512. Throughput: 0: 701.2. Samples: 48550. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
|
269 |
+
[2023-07-04 14:57:58,358][13487] Avg episode reward: [(0, '4.355')]
|
270 |
+
[2023-07-04 14:58:01,471][13838] Updated weights for policy 0, policy_version 50 (0.0025)
|
271 |
+
[2023-07-04 14:58:03,355][13487] Fps is (10 sec: 2868.0, 60 sec: 2935.5, 300 sec: 2321.1). Total num frames: 208896. Throughput: 0: 701.0. Samples: 51292. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
272 |
+
[2023-07-04 14:58:03,362][13487] Avg episode reward: [(0, '4.364')]
|
273 |
+
[2023-07-04 14:58:03,372][13825] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000051_208896.pth...
|
274 |
+
[2023-07-04 14:58:08,355][13487] Fps is (10 sec: 3277.0, 60 sec: 2935.6, 300 sec: 2371.4). Total num frames: 225280. Throughput: 0: 711.7. Samples: 56508. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
275 |
+
[2023-07-04 14:58:08,360][13487] Avg episode reward: [(0, '4.315')]
|
276 |
+
[2023-07-04 14:58:13,355][13487] Fps is (10 sec: 2867.2, 60 sec: 2867.2, 300 sec: 2375.7). Total num frames: 237568. Throughput: 0: 720.0. Samples: 60244. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
277 |
+
[2023-07-04 14:58:13,360][13487] Avg episode reward: [(0, '4.179')]
|
278 |
+
[2023-07-04 14:58:15,912][13838] Updated weights for policy 0, policy_version 60 (0.0016)
|
279 |
+
[2023-07-04 14:58:18,355][13487] Fps is (10 sec: 2457.5, 60 sec: 2798.9, 300 sec: 2379.6). Total num frames: 249856. Throughput: 0: 727.3. Samples: 62160. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
280 |
+
[2023-07-04 14:58:18,360][13487] Avg episode reward: [(0, '4.397')]
|
281 |
+
[2023-07-04 14:58:23,355][13487] Fps is (10 sec: 2867.2, 60 sec: 2798.9, 300 sec: 2420.4). Total num frames: 266240. Throughput: 0: 727.3. Samples: 66860. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
282 |
+
[2023-07-04 14:58:23,357][13487] Avg episode reward: [(0, '4.491')]
|
283 |
+
[2023-07-04 14:58:23,418][13825] Saving new best policy, reward=4.491!
|
284 |
+
[2023-07-04 14:58:27,577][13838] Updated weights for policy 0, policy_version 70 (0.0032)
|
285 |
+
[2023-07-04 14:58:28,355][13487] Fps is (10 sec: 3686.5, 60 sec: 2935.5, 300 sec: 2493.3). Total num frames: 286720. Throughput: 0: 734.4. Samples: 72596. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
286 |
+
[2023-07-04 14:58:28,358][13487] Avg episode reward: [(0, '4.461')]
|
287 |
+
[2023-07-04 14:58:33,355][13487] Fps is (10 sec: 3686.4, 60 sec: 3072.0, 300 sec: 2525.9). Total num frames: 303104. Throughput: 0: 752.8. Samples: 75222. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
288 |
+
[2023-07-04 14:58:33,358][13487] Avg episode reward: [(0, '4.361')]
|
289 |
+
[2023-07-04 14:58:38,355][13487] Fps is (10 sec: 2867.2, 60 sec: 2935.5, 300 sec: 2523.2). Total num frames: 315392. Throughput: 0: 765.6. Samples: 79156. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
290 |
+
[2023-07-04 14:58:38,358][13487] Avg episode reward: [(0, '4.276')]
|
291 |
+
[2023-07-04 14:58:41,845][13838] Updated weights for policy 0, policy_version 80 (0.0032)
|
292 |
+
[2023-07-04 14:58:43,355][13487] Fps is (10 sec: 2457.6, 60 sec: 2867.2, 300 sec: 2520.7). Total num frames: 327680. Throughput: 0: 766.1. Samples: 83024. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
293 |
+
[2023-07-04 14:58:43,357][13487] Avg episode reward: [(0, '4.358')]
|
294 |
+
[2023-07-04 14:58:48,355][13487] Fps is (10 sec: 3276.8, 60 sec: 3003.9, 300 sec: 2579.0). Total num frames: 348160. Throughput: 0: 770.8. Samples: 85976. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
295 |
+
[2023-07-04 14:58:48,360][13487] Avg episode reward: [(0, '4.336')]
|
296 |
+
[2023-07-04 14:58:52,573][13838] Updated weights for policy 0, policy_version 90 (0.0013)
|
297 |
+
[2023-07-04 14:58:53,357][13487] Fps is (10 sec: 4095.3, 60 sec: 3140.3, 300 sec: 2633.1). Total num frames: 368640. Throughput: 0: 792.8. Samples: 92186. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
298 |
+
[2023-07-04 14:58:53,360][13487] Avg episode reward: [(0, '4.373')]
|
299 |
+
[2023-07-04 14:58:58,355][13487] Fps is (10 sec: 3276.8, 60 sec: 3140.3, 300 sec: 2627.1). Total num frames: 380928. Throughput: 0: 807.2. Samples: 96570. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
300 |
+
[2023-07-04 14:58:58,358][13487] Avg episode reward: [(0, '4.562')]
|
301 |
+
[2023-07-04 14:58:58,364][13825] Saving new best policy, reward=4.562!
|
302 |
+
[2023-07-04 14:59:03,355][13487] Fps is (10 sec: 2867.7, 60 sec: 3140.3, 300 sec: 2648.8). Total num frames: 397312. Throughput: 0: 807.0. Samples: 98474. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
|
303 |
+
[2023-07-04 14:59:03,367][13487] Avg episode reward: [(0, '4.574')]
|
304 |
+
[2023-07-04 14:59:03,382][13825] Saving new best policy, reward=4.574!
|
305 |
+
[2023-07-04 14:59:07,557][13838] Updated weights for policy 0, policy_version 100 (0.0027)
|
306 |
+
[2023-07-04 14:59:08,355][13487] Fps is (10 sec: 2867.2, 60 sec: 3072.0, 300 sec: 2642.6). Total num frames: 409600. Throughput: 0: 791.1. Samples: 102458. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
|
307 |
+
[2023-07-04 14:59:08,363][13487] Avg episode reward: [(0, '4.634')]
|
308 |
+
[2023-07-04 14:59:08,369][13825] Saving new best policy, reward=4.634!
|
309 |
+
[2023-07-04 14:59:13,355][13487] Fps is (10 sec: 3686.4, 60 sec: 3276.8, 300 sec: 2713.6). Total num frames: 434176. Throughput: 0: 800.0. Samples: 108596. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
310 |
+
[2023-07-04 14:59:13,357][13487] Avg episode reward: [(0, '4.654')]
|
311 |
+
[2023-07-04 14:59:13,371][13825] Saving new best policy, reward=4.654!
|
312 |
+
[2023-07-04 14:59:17,911][13838] Updated weights for policy 0, policy_version 110 (0.0022)
|
313 |
+
[2023-07-04 14:59:18,355][13487] Fps is (10 sec: 4096.0, 60 sec: 3345.1, 300 sec: 2730.7). Total num frames: 450560. Throughput: 0: 809.2. Samples: 111636. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
|
314 |
+
[2023-07-04 14:59:18,360][13487] Avg episode reward: [(0, '4.615')]
|
315 |
+
[2023-07-04 14:59:23,355][13487] Fps is (10 sec: 2457.6, 60 sec: 3208.5, 300 sec: 2698.6). Total num frames: 458752. Throughput: 0: 800.2. Samples: 115164. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
316 |
+
[2023-07-04 14:59:23,363][13487] Avg episode reward: [(0, '4.720')]
|
317 |
+
[2023-07-04 14:59:23,384][13825] Saving new best policy, reward=4.720!
|
318 |
+
[2023-07-04 14:59:24,904][13487] Keyboard interrupt detected in the event loop EvtLoop [Runner_EvtLoop, process=main process 13487], exiting...
|
319 |
+
[2023-07-04 14:59:24,912][13825] Stopping Batcher_0...
|
320 |
+
[2023-07-04 14:59:24,914][13825] Loop batcher_evt_loop terminating...
|
321 |
+
[2023-07-04 14:59:24,913][13825] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000112_458752.pth...
|
322 |
+
[2023-07-04 14:59:24,911][13487] Runner profile tree view:
|
323 |
+
main_loop: 196.1569
|
324 |
+
[2023-07-04 14:59:24,931][13487] Collected {0: 458752}, FPS: 2338.7
|
325 |
+
[2023-07-04 14:59:25,139][13845] EvtLoop [rollout_proc6_evt_loop, process=rollout_proc6] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance6'), args=(0, 0)
|
326 |
+
Traceback (most recent call last):
|
327 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
328 |
+
slot_callable(*args)
|
329 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
|
330 |
+
complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
|
331 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 632, in advance_rollouts
|
332 |
+
new_obs, rewards, terminated, truncated, infos = e.step(actions)
|
333 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 319, in step
|
334 |
+
return self.env.step(action)
|
335 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 129, in step
|
336 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
337 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 115, in step
|
338 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
339 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
|
340 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
341 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 384, in step
|
342 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
343 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/envs/env_wrappers.py", line 88, in step
|
344 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
345 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 319, in step
|
346 |
+
return self.env.step(action)
|
347 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
|
348 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
349 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
|
350 |
+
reward = self.game.make_action(actions_flattened, self.skip_frames)
|
351 |
+
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
|
352 |
+
[2023-07-04 14:59:25,197][13845] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc6_evt_loop
|
353 |
+
[2023-07-04 14:59:25,069][13841] EvtLoop [rollout_proc2_evt_loop, process=rollout_proc2] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance2'), args=(1, 0)
|
354 |
+
Traceback (most recent call last):
|
355 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
356 |
+
slot_callable(*args)
|
357 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
|
358 |
+
complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
|
359 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 632, in advance_rollouts
|
360 |
+
new_obs, rewards, terminated, truncated, infos = e.step(actions)
|
361 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 319, in step
|
362 |
+
return self.env.step(action)
|
363 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 129, in step
|
364 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
365 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 115, in step
|
366 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
367 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
|
368 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
369 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 384, in step
|
370 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
371 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/envs/env_wrappers.py", line 88, in step
|
372 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
373 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 319, in step
|
374 |
+
return self.env.step(action)
|
375 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
|
376 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
377 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
|
378 |
+
reward = self.game.make_action(actions_flattened, self.skip_frames)
|
379 |
+
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
|
380 |
+
[2023-07-04 14:59:25,225][13838] Weights refcount: 2 0
|
381 |
+
[2023-07-04 14:59:25,335][13841] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc2_evt_loop
|
382 |
+
[2023-07-04 14:59:25,343][13838] Stopping InferenceWorker_p0-w0...
|
383 |
+
[2023-07-04 14:59:25,344][13838] Loop inference_proc0-0_evt_loop terminating...
|
384 |
+
[2023-07-04 14:59:25,319][13839] EvtLoop [rollout_proc0_evt_loop, process=rollout_proc0] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance0'), args=(0, 0)
|
385 |
+
Traceback (most recent call last):
|
386 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
387 |
+
slot_callable(*args)
|
388 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
|
389 |
+
complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
|
390 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 632, in advance_rollouts
|
391 |
+
new_obs, rewards, terminated, truncated, infos = e.step(actions)
|
392 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 319, in step
|
393 |
+
return self.env.step(action)
|
394 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 129, in step
|
395 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
396 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 115, in step
|
397 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
398 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
|
399 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
400 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 384, in step
|
401 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
402 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/envs/env_wrappers.py", line 88, in step
|
403 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
404 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 319, in step
|
405 |
+
return self.env.step(action)
|
406 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
|
407 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
408 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
|
409 |
+
reward = self.game.make_action(actions_flattened, self.skip_frames)
|
410 |
+
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
|
411 |
+
[2023-07-04 14:59:25,204][13840] EvtLoop [rollout_proc1_evt_loop, process=rollout_proc1] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance1'), args=(0, 0)
|
412 |
+
Traceback (most recent call last):
|
413 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
414 |
+
slot_callable(*args)
|
415 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
|
416 |
+
complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
|
417 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 632, in advance_rollouts
|
418 |
+
new_obs, rewards, terminated, truncated, infos = e.step(actions)
|
419 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 319, in step
|
420 |
+
return self.env.step(action)
|
421 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 129, in step
|
422 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
423 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 115, in step
|
424 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
425 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
|
426 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
427 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 384, in step
|
428 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
429 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/envs/env_wrappers.py", line 88, in step
|
430 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
431 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 319, in step
|
432 |
+
return self.env.step(action)
|
433 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
|
434 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
435 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
|
436 |
+
reward = self.game.make_action(actions_flattened, self.skip_frames)
|
437 |
+
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
|
438 |
+
[2023-07-04 14:59:25,386][13840] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc1_evt_loop
|
439 |
+
[2023-07-04 14:59:25,167][13843] EvtLoop [rollout_proc5_evt_loop, process=rollout_proc5] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance5'), args=(1, 0)
|
440 |
+
Traceback (most recent call last):
|
441 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
442 |
+
slot_callable(*args)
|
443 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
|
444 |
+
complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
|
445 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 632, in advance_rollouts
|
446 |
+
new_obs, rewards, terminated, truncated, infos = e.step(actions)
|
447 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 319, in step
|
448 |
+
return self.env.step(action)
|
449 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 129, in step
|
450 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
451 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 115, in step
|
452 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
453 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
|
454 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
455 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 384, in step
|
456 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
457 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/envs/env_wrappers.py", line 88, in step
|
458 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
459 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 319, in step
|
460 |
+
return self.env.step(action)
|
461 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
|
462 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
463 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
|
464 |
+
reward = self.game.make_action(actions_flattened, self.skip_frames)
|
465 |
+
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
|
466 |
+
[2023-07-04 14:59:25,387][13843] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc5_evt_loop
|
467 |
+
[2023-07-04 14:59:25,188][13846] EvtLoop [rollout_proc7_evt_loop, process=rollout_proc7] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance7'), args=(0, 0)
|
468 |
+
Traceback (most recent call last):
|
469 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
470 |
+
slot_callable(*args)
|
471 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
|
472 |
+
complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
|
473 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 632, in advance_rollouts
|
474 |
+
new_obs, rewards, terminated, truncated, infos = e.step(actions)
|
475 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 319, in step
|
476 |
+
return self.env.step(action)
|
477 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 129, in step
|
478 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
479 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 115, in step
|
480 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
481 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
|
482 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
483 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 384, in step
|
484 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
485 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/envs/env_wrappers.py", line 88, in step
|
486 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
487 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 319, in step
|
488 |
+
return self.env.step(action)
|
489 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
|
490 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
491 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
|
492 |
+
reward = self.game.make_action(actions_flattened, self.skip_frames)
|
493 |
+
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
|
494 |
+
[2023-07-04 14:59:25,388][13846] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc7_evt_loop
|
495 |
+
[2023-07-04 14:59:25,235][13844] EvtLoop [rollout_proc4_evt_loop, process=rollout_proc4] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance4'), args=(1, 0)
|
496 |
+
Traceback (most recent call last):
|
497 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
498 |
+
slot_callable(*args)
|
499 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
|
500 |
+
complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
|
501 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 632, in advance_rollouts
|
502 |
+
new_obs, rewards, terminated, truncated, infos = e.step(actions)
|
503 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 319, in step
|
504 |
+
return self.env.step(action)
|
505 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 129, in step
|
506 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
507 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 115, in step
|
508 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
509 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
|
510 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
511 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 384, in step
|
512 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
513 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/envs/env_wrappers.py", line 88, in step
|
514 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
515 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 319, in step
|
516 |
+
return self.env.step(action)
|
517 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
|
518 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
519 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
|
520 |
+
reward = self.game.make_action(actions_flattened, self.skip_frames)
|
521 |
+
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
|
522 |
+
[2023-07-04 14:59:25,408][13844] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc4_evt_loop
|
523 |
+
[2023-07-04 14:59:25,248][13842] EvtLoop [rollout_proc3_evt_loop, process=rollout_proc3] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance3'), args=(1, 0)
|
524 |
+
Traceback (most recent call last):
|
525 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
526 |
+
slot_callable(*args)
|
527 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
|
528 |
+
complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
|
529 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 632, in advance_rollouts
|
530 |
+
new_obs, rewards, terminated, truncated, infos = e.step(actions)
|
531 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 319, in step
|
532 |
+
return self.env.step(action)
|
533 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 129, in step
|
534 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
535 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 115, in step
|
536 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
537 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
|
538 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
539 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 384, in step
|
540 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
541 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/envs/env_wrappers.py", line 88, in step
|
542 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
543 |
+
File "/usr/local/lib/python3.10/dist-packages/gym/core.py", line 319, in step
|
544 |
+
return self.env.step(action)
|
545 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
|
546 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
547 |
+
File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
|
548 |
+
reward = self.game.make_action(actions_flattened, self.skip_frames)
|
549 |
+
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
|
550 |
+
[2023-07-04 14:59:25,417][13842] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc3_evt_loop
|
551 |
+
[2023-07-04 14:59:25,365][13839] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc0_evt_loop
|
552 |
+
[2023-07-04 14:59:25,570][13825] Stopping LearnerWorker_p0...
|
553 |
+
[2023-07-04 14:59:25,571][13825] Loop learner_proc0_evt_loop terminating...
|
554 |
+
[2023-07-04 14:59:27,388][13487] Environment doom_basic already registered, overwriting...
|
555 |
+
[2023-07-04 14:59:27,391][13487] Environment doom_two_colors_easy already registered, overwriting...
|
556 |
+
[2023-07-04 14:59:27,396][13487] Environment doom_two_colors_hard already registered, overwriting...
|
557 |
+
[2023-07-04 14:59:27,403][13487] Environment doom_dm already registered, overwriting...
|
558 |
+
[2023-07-04 14:59:27,409][13487] Environment doom_dwango5 already registered, overwriting...
|
559 |
+
[2023-07-04 14:59:27,416][13487] Environment doom_my_way_home_flat_actions already registered, overwriting...
|
560 |
+
[2023-07-04 14:59:27,428][13487] Environment doom_defend_the_center_flat_actions already registered, overwriting...
|
561 |
+
[2023-07-04 14:59:27,431][13487] Environment doom_my_way_home already registered, overwriting...
|
562 |
+
[2023-07-04 14:59:27,432][13487] Environment doom_deadly_corridor already registered, overwriting...
|
563 |
+
[2023-07-04 14:59:27,436][13487] Environment doom_defend_the_center already registered, overwriting...
|
564 |
+
[2023-07-04 14:59:27,437][13487] Environment doom_defend_the_line already registered, overwriting...
|
565 |
+
[2023-07-04 14:59:27,441][13487] Environment doom_health_gathering already registered, overwriting...
|
566 |
+
[2023-07-04 14:59:27,445][13487] Environment doom_health_gathering_supreme already registered, overwriting...
|
567 |
+
[2023-07-04 14:59:27,447][13487] Environment doom_battle already registered, overwriting...
|
568 |
+
[2023-07-04 14:59:27,453][13487] Environment doom_battle2 already registered, overwriting...
|
569 |
+
[2023-07-04 14:59:27,454][13487] Environment doom_duel_bots already registered, overwriting...
|
570 |
+
[2023-07-04 14:59:27,458][13487] Environment doom_deathmatch_bots already registered, overwriting...
|
571 |
+
[2023-07-04 14:59:27,459][13487] Environment doom_duel already registered, overwriting...
|
572 |
+
[2023-07-04 14:59:27,462][13487] Environment doom_deathmatch_full already registered, overwriting...
|
573 |
+
[2023-07-04 14:59:27,463][13487] Environment doom_benchmark already registered, overwriting...
|
574 |
+
[2023-07-04 14:59:27,468][13487] register_encoder_factory: <function make_vizdoom_encoder at 0x7f4c7f7d0af0>
|
575 |
+
[2023-07-04 14:59:27,519][13487] Loading existing experiment configuration from /content/train_dir/default_experiment/cfg.json
|
576 |
+
[2023-07-04 14:59:27,536][13487] Overriding arg 'train_for_env_steps' with value 25000 passed from command line
|
577 |
+
[2023-07-04 14:59:27,547][13487] Experiment dir /content/train_dir/default_experiment already exists!
|
578 |
+
[2023-07-04 14:59:27,559][13487] Resuming existing experiment from /content/train_dir/default_experiment...
|
579 |
+
[2023-07-04 14:59:27,562][13487] Weights and Biases integration disabled
|
580 |
+
[2023-07-04 14:59:27,575][13487] Environment var CUDA_VISIBLE_DEVICES is 0
|
581 |
+
|
582 |
+
[2023-07-04 14:59:32,208][13487] Starting experiment with the following configuration:
|
583 |
+
help=False
|
584 |
+
algo=APPO
|
585 |
+
env=doom_health_gathering_supreme
|
586 |
+
experiment=default_experiment
|
587 |
+
train_dir=/content/train_dir
|
588 |
+
restart_behavior=resume
|
589 |
+
device=gpu
|
590 |
+
seed=None
|
591 |
+
num_policies=1
|
592 |
+
async_rl=True
|
593 |
+
serial_mode=False
|
594 |
+
batched_sampling=False
|
595 |
+
num_batches_to_accumulate=2
|
596 |
+
worker_num_splits=2
|
597 |
+
policy_workers_per_policy=1
|
598 |
+
max_policy_lag=1000
|
599 |
+
num_workers=8
|
600 |
+
num_envs_per_worker=4
|
601 |
+
batch_size=1024
|
602 |
+
num_batches_per_epoch=1
|
603 |
+
num_epochs=1
|
604 |
+
rollout=32
|
605 |
+
recurrence=32
|
606 |
+
shuffle_minibatches=False
|
607 |
+
gamma=0.99
|
608 |
+
reward_scale=1.0
|
609 |
+
reward_clip=1000.0
|
610 |
+
value_bootstrap=False
|
611 |
+
normalize_returns=True
|
612 |
+
exploration_loss_coeff=0.001
|
613 |
+
value_loss_coeff=0.5
|
614 |
+
kl_loss_coeff=0.0
|
615 |
+
exploration_loss=symmetric_kl
|
616 |
+
gae_lambda=0.95
|
617 |
+
ppo_clip_ratio=0.1
|
618 |
+
ppo_clip_value=0.2
|
619 |
+
with_vtrace=False
|
620 |
+
vtrace_rho=1.0
|
621 |
+
vtrace_c=1.0
|
622 |
+
optimizer=adam
|
623 |
+
adam_eps=1e-06
|
624 |
+
adam_beta1=0.9
|
625 |
+
adam_beta2=0.999
|
626 |
+
max_grad_norm=4.0
|
627 |
+
learning_rate=0.0001
|
628 |
+
lr_schedule=constant
|
629 |
+
lr_schedule_kl_threshold=0.008
|
630 |
+
obs_subtract_mean=0.0
|
631 |
+
obs_scale=255.0
|
632 |
+
normalize_input=True
|
633 |
+
normalize_input_keys=None
|
634 |
+
decorrelate_experience_max_seconds=0
|
635 |
+
decorrelate_envs_on_one_worker=True
|
636 |
+
actor_worker_gpus=[]
|
637 |
+
set_workers_cpu_affinity=True
|
638 |
+
force_envs_single_thread=False
|
639 |
+
default_niceness=0
|
640 |
+
log_to_file=True
|
641 |
+
experiment_summaries_interval=10
|
642 |
+
flush_summaries_interval=30
|
643 |
+
stats_avg=100
|
644 |
+
summaries_use_frameskip=True
|
645 |
+
heartbeat_interval=20
|
646 |
+
heartbeat_reporting_interval=600
|
647 |
+
train_for_env_steps=25000
|
648 |
+
train_for_seconds=10000000000
|
649 |
+
save_every_sec=120
|
650 |
+
keep_checkpoints=2
|
651 |
+
load_checkpoint_kind=latest
|
652 |
+
save_milestones_sec=-1
|
653 |
+
save_best_every_sec=5
|
654 |
+
save_best_metric=reward
|
655 |
+
save_best_after=100000
|
656 |
+
benchmark=False
|
657 |
+
encoder_mlp_layers=[512, 512]
|
658 |
+
encoder_conv_architecture=convnet_simple
|
659 |
+
encoder_conv_mlp_layers=[512]
|
660 |
+
use_rnn=True
|
661 |
+
rnn_size=512
|
662 |
+
rnn_type=gru
|
663 |
+
rnn_num_layers=1
|
664 |
+
decoder_mlp_layers=[]
|
665 |
+
nonlinearity=elu
|
666 |
+
policy_initialization=orthogonal
|
667 |
+
policy_init_gain=1.0
|
668 |
+
actor_critic_share_weights=True
|
669 |
+
adaptive_stddev=True
|
670 |
+
continuous_tanh_scale=0.0
|
671 |
+
initial_stddev=1.0
|
672 |
+
use_env_info_cache=False
|
673 |
+
env_gpu_actions=False
|
674 |
+
env_gpu_observations=True
|
675 |
+
env_frameskip=4
|
676 |
+
env_framestack=1
|
677 |
+
pixel_format=CHW
|
678 |
+
use_record_episode_statistics=False
|
679 |
+
with_wandb=False
|
680 |
+
wandb_user=None
|
681 |
+
wandb_project=sample_factory
|
682 |
+
wandb_group=None
|
683 |
+
wandb_job_type=SF
|
684 |
+
wandb_tags=[]
|
685 |
+
with_pbt=False
|
686 |
+
pbt_mix_policies_in_one_env=True
|
687 |
+
pbt_period_env_steps=5000000
|
688 |
+
pbt_start_mutation=20000000
|
689 |
+
pbt_replace_fraction=0.3
|
690 |
+
pbt_mutation_rate=0.15
|
691 |
+
pbt_replace_reward_gap=0.1
|
692 |
+
pbt_replace_reward_gap_absolute=1e-06
|
693 |
+
pbt_optimize_gamma=False
|
694 |
+
pbt_target_objective=true_objective
|
695 |
+
pbt_perturb_min=1.1
|
696 |
+
pbt_perturb_max=1.5
|
697 |
+
num_agents=-1
|
698 |
+
num_humans=0
|
699 |
+
num_bots=-1
|
700 |
+
start_bot_difficulty=None
|
701 |
+
timelimit=None
|
702 |
+
res_w=128
|
703 |
+
res_h=72
|
704 |
+
wide_aspect_ratio=False
|
705 |
+
eval_env_frameskip=1
|
706 |
+
fps=35
|
707 |
+
command_line=--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000
|
708 |
+
cli_args={'env': 'doom_health_gathering_supreme', 'num_workers': 8, 'num_envs_per_worker': 4, 'train_for_env_steps': 4000000}
|
709 |
+
git_hash=unknown
|
710 |
+
git_repo_name=not a git repository
|
711 |
+
train_script=.usr.local.lib.python3.10.dist-packages.ipykernel_launcher
|
712 |
+
[2023-07-04 14:59:32,213][13487] Saving configuration to /content/train_dir/default_experiment/cfg.json...
|
713 |
+
[2023-07-04 14:59:32,216][13487] Rollout worker 0 uses device cpu
|
714 |
+
[2023-07-04 14:59:32,219][13487] Rollout worker 1 uses device cpu
|
715 |
+
[2023-07-04 14:59:32,222][13487] Rollout worker 2 uses device cpu
|
716 |
+
[2023-07-04 14:59:32,224][13487] Rollout worker 3 uses device cpu
|
717 |
+
[2023-07-04 14:59:32,225][13487] Rollout worker 4 uses device cpu
|
718 |
+
[2023-07-04 14:59:32,227][13487] Rollout worker 5 uses device cpu
|
719 |
+
[2023-07-04 14:59:32,229][13487] Rollout worker 6 uses device cpu
|
720 |
+
[2023-07-04 14:59:32,236][13487] Rollout worker 7 uses device cpu
|
721 |
+
[2023-07-04 14:59:32,377][13487] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
722 |
+
[2023-07-04 14:59:32,379][13487] InferenceWorker_p0-w0: min num requests: 2
|
723 |
+
[2023-07-04 14:59:32,419][13487] Starting all processes...
|
724 |
+
[2023-07-04 14:59:32,421][13487] Starting process learner_proc0
|
725 |
+
[2023-07-04 14:59:32,479][13487] Starting all processes...
|
726 |
+
[2023-07-04 14:59:32,488][13487] Starting process inference_proc0-0
|
727 |
+
[2023-07-04 14:59:32,488][13487] Starting process rollout_proc0
|
728 |
+
[2023-07-04 14:59:32,489][13487] Starting process rollout_proc1
|
729 |
+
[2023-07-04 14:59:32,489][13487] Starting process rollout_proc2
|
730 |
+
[2023-07-04 14:59:32,489][13487] Starting process rollout_proc3
|
731 |
+
[2023-07-04 14:59:32,489][13487] Starting process rollout_proc4
|
732 |
+
[2023-07-04 14:59:32,489][13487] Starting process rollout_proc5
|
733 |
+
[2023-07-04 14:59:32,489][13487] Starting process rollout_proc6
|
734 |
+
[2023-07-04 14:59:32,489][13487] Starting process rollout_proc7
|
735 |
+
[2023-07-04 14:59:44,353][19035] Worker 6 uses CPU cores [0]
|
736 |
+
[2023-07-04 14:59:44,366][19017] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
737 |
+
[2023-07-04 14:59:44,371][19017] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
|
738 |
+
[2023-07-04 14:59:44,475][19017] Num visible devices: 1
|
739 |
+
[2023-07-04 14:59:44,533][19017] Starting seed is not provided
|
740 |
+
[2023-07-04 14:59:44,534][19017] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
741 |
+
[2023-07-04 14:59:44,535][19017] Initializing actor-critic model on device cuda:0
|
742 |
+
[2023-07-04 14:59:44,538][19017] RunningMeanStd input shape: (3, 72, 128)
|
743 |
+
[2023-07-04 14:59:44,539][19017] RunningMeanStd input shape: (1,)
|
744 |
+
[2023-07-04 14:59:44,575][19038] Worker 7 uses CPU cores [1]
|
745 |
+
[2023-07-04 14:59:44,606][19034] Worker 3 uses CPU cores [1]
|
746 |
+
[2023-07-04 14:59:44,636][19030] Worker 0 uses CPU cores [0]
|
747 |
+
[2023-07-04 14:59:44,687][19017] ConvEncoder: input_channels=3
|
748 |
+
[2023-07-04 14:59:44,717][19032] Worker 1 uses CPU cores [1]
|
749 |
+
[2023-07-04 14:59:44,738][19033] Worker 2 uses CPU cores [0]
|
750 |
+
[2023-07-04 14:59:44,748][19037] Worker 5 uses CPU cores [1]
|
751 |
+
[2023-07-04 14:59:44,792][19036] Worker 4 uses CPU cores [0]
|
752 |
+
[2023-07-04 14:59:44,916][19031] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
753 |
+
[2023-07-04 14:59:44,917][19031] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
|
754 |
+
[2023-07-04 14:59:44,942][19031] Num visible devices: 1
|
755 |
+
[2023-07-04 14:59:45,039][19017] Conv encoder output size: 512
|
756 |
+
[2023-07-04 14:59:45,040][19017] Policy head output size: 512
|
757 |
+
[2023-07-04 14:59:45,066][19017] Created Actor Critic model with architecture:
|
758 |
+
[2023-07-04 14:59:45,067][19017] ActorCriticSharedWeights(
|
759 |
+
(obs_normalizer): ObservationNormalizer(
|
760 |
+
(running_mean_std): RunningMeanStdDictInPlace(
|
761 |
+
(running_mean_std): ModuleDict(
|
762 |
+
(obs): RunningMeanStdInPlace()
|
763 |
+
)
|
764 |
+
)
|
765 |
+
)
|
766 |
+
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
|
767 |
+
(encoder): VizdoomEncoder(
|
768 |
+
(basic_encoder): ConvEncoder(
|
769 |
+
(enc): RecursiveScriptModule(
|
770 |
+
original_name=ConvEncoderImpl
|
771 |
+
(conv_head): RecursiveScriptModule(
|
772 |
+
original_name=Sequential
|
773 |
+
(0): RecursiveScriptModule(original_name=Conv2d)
|
774 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
775 |
+
(2): RecursiveScriptModule(original_name=Conv2d)
|
776 |
+
(3): RecursiveScriptModule(original_name=ELU)
|
777 |
+
(4): RecursiveScriptModule(original_name=Conv2d)
|
778 |
+
(5): RecursiveScriptModule(original_name=ELU)
|
779 |
+
)
|
780 |
+
(mlp_layers): RecursiveScriptModule(
|
781 |
+
original_name=Sequential
|
782 |
+
(0): RecursiveScriptModule(original_name=Linear)
|
783 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
784 |
+
)
|
785 |
+
)
|
786 |
+
)
|
787 |
+
)
|
788 |
+
(core): ModelCoreRNN(
|
789 |
+
(core): GRU(512, 512)
|
790 |
+
)
|
791 |
+
(decoder): MlpDecoder(
|
792 |
+
(mlp): Identity()
|
793 |
+
)
|
794 |
+
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
|
795 |
+
(action_parameterization): ActionParameterizationDefault(
|
796 |
+
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
|
797 |
+
)
|
798 |
+
)
|
799 |
+
[2023-07-04 14:59:48,353][19017] Using optimizer <class 'torch.optim.adam.Adam'>
|
800 |
+
[2023-07-04 14:59:48,354][19017] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000112_458752.pth...
|
801 |
+
[2023-07-04 14:59:48,388][19017] Loading model from checkpoint
|
802 |
+
[2023-07-04 14:59:48,392][19017] Loaded experiment state at self.train_step=112, self.env_steps=458752
|
803 |
+
[2023-07-04 14:59:48,393][19017] Initialized policy 0 weights for model version 112
|
804 |
+
[2023-07-04 14:59:48,397][19017] LearnerWorker_p0 finished initialization!
|
805 |
+
[2023-07-04 14:59:48,398][19017] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
806 |
+
[2023-07-04 14:59:48,601][19031] RunningMeanStd input shape: (3, 72, 128)
|
807 |
+
[2023-07-04 14:59:48,603][19031] RunningMeanStd input shape: (1,)
|
808 |
+
[2023-07-04 14:59:48,615][19031] ConvEncoder: input_channels=3
|
809 |
+
[2023-07-04 14:59:48,721][19031] Conv encoder output size: 512
|
810 |
+
[2023-07-04 14:59:48,721][19031] Policy head output size: 512
|
811 |
+
[2023-07-04 14:59:49,975][13487] Inference worker 0-0 is ready!
|
812 |
+
[2023-07-04 14:59:49,979][13487] All inference workers are ready! Signal rollout workers to start!
|
813 |
+
[2023-07-04 14:59:50,078][19035] Doom resolution: 160x120, resize resolution: (128, 72)
|
814 |
+
[2023-07-04 14:59:50,080][19033] Doom resolution: 160x120, resize resolution: (128, 72)
|
815 |
+
[2023-07-04 14:59:50,081][19030] Doom resolution: 160x120, resize resolution: (128, 72)
|
816 |
+
[2023-07-04 14:59:50,076][19036] Doom resolution: 160x120, resize resolution: (128, 72)
|
817 |
+
[2023-07-04 14:59:50,086][19034] Doom resolution: 160x120, resize resolution: (128, 72)
|
818 |
+
[2023-07-04 14:59:50,080][19038] Doom resolution: 160x120, resize resolution: (128, 72)
|
819 |
+
[2023-07-04 14:59:50,083][19037] Doom resolution: 160x120, resize resolution: (128, 72)
|
820 |
+
[2023-07-04 14:59:50,085][19032] Doom resolution: 160x120, resize resolution: (128, 72)
|
821 |
+
[2023-07-04 14:59:51,479][19033] Decorrelating experience for 0 frames...
|
822 |
+
[2023-07-04 14:59:51,483][19036] Decorrelating experience for 0 frames...
|
823 |
+
[2023-07-04 14:59:51,484][19035] Decorrelating experience for 0 frames...
|
824 |
+
[2023-07-04 14:59:51,907][19032] Decorrelating experience for 0 frames...
|
825 |
+
[2023-07-04 14:59:51,911][19034] Decorrelating experience for 0 frames...
|
826 |
+
[2023-07-04 14:59:51,913][19037] Decorrelating experience for 0 frames...
|
827 |
+
[2023-07-04 14:59:51,916][19038] Decorrelating experience for 0 frames...
|
828 |
+
[2023-07-04 14:59:52,369][13487] Heartbeat connected on Batcher_0
|
829 |
+
[2023-07-04 14:59:52,376][13487] Heartbeat connected on LearnerWorker_p0
|
830 |
+
[2023-07-04 14:59:52,429][13487] Heartbeat connected on InferenceWorker_p0-w0
|
831 |
+
[2023-07-04 14:59:52,575][13487] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 458752. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
832 |
+
[2023-07-04 14:59:52,797][19035] Decorrelating experience for 32 frames...
|
833 |
+
[2023-07-04 14:59:52,800][19036] Decorrelating experience for 32 frames...
|
834 |
+
[2023-07-04 14:59:52,889][19030] Decorrelating experience for 0 frames...
|
835 |
+
[2023-07-04 14:59:53,212][19037] Decorrelating experience for 32 frames...
|
836 |
+
[2023-07-04 14:59:53,221][19034] Decorrelating experience for 32 frames...
|
837 |
+
[2023-07-04 14:59:53,242][19038] Decorrelating experience for 32 frames...
|
838 |
+
[2023-07-04 14:59:54,084][19036] Decorrelating experience for 64 frames...
|
839 |
+
[2023-07-04 14:59:54,093][19035] Decorrelating experience for 64 frames...
|
840 |
+
[2023-07-04 14:59:54,305][19032] Decorrelating experience for 32 frames...
|
841 |
+
[2023-07-04 14:59:54,508][19034] Decorrelating experience for 64 frames...
|
842 |
+
[2023-07-04 14:59:54,545][19033] Decorrelating experience for 32 frames...
|
843 |
+
[2023-07-04 14:59:55,417][19037] Decorrelating experience for 64 frames...
|
844 |
+
[2023-07-04 14:59:55,562][19036] Decorrelating experience for 96 frames...
|
845 |
+
[2023-07-04 14:59:55,672][19035] Decorrelating experience for 96 frames...
|
846 |
+
[2023-07-04 14:59:55,815][13487] Heartbeat connected on RolloutWorker_w4
|
847 |
+
[2023-07-04 14:59:55,996][13487] Heartbeat connected on RolloutWorker_w6
|
848 |
+
[2023-07-04 14:59:56,018][19032] Decorrelating experience for 64 frames...
|
849 |
+
[2023-07-04 14:59:56,031][19030] Decorrelating experience for 32 frames...
|
850 |
+
[2023-07-04 14:59:56,215][19034] Decorrelating experience for 96 frames...
|
851 |
+
[2023-07-04 14:59:56,483][13487] Heartbeat connected on RolloutWorker_w3
|
852 |
+
[2023-07-04 14:59:57,431][19030] Decorrelating experience for 64 frames...
|
853 |
+
[2023-07-04 14:59:57,575][13487] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 458752. Throughput: 0: 3.2. Samples: 16. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
854 |
+
[2023-07-04 14:59:57,581][13487] Avg episode reward: [(0, '2.010')]
|
855 |
+
[2023-07-04 14:59:57,876][19038] Decorrelating experience for 64 frames...
|
856 |
+
[2023-07-04 14:59:58,089][19037] Decorrelating experience for 96 frames...
|
857 |
+
[2023-07-04 14:59:58,653][13487] Heartbeat connected on RolloutWorker_w5
|
858 |
+
[2023-07-04 15:00:02,577][13487] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 458752. Throughput: 0: 177.0. Samples: 1770. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
859 |
+
[2023-07-04 15:00:02,580][13487] Avg episode reward: [(0, '3.143')]
|
860 |
+
[2023-07-04 15:00:03,425][19017] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000113_462848.pth...
|
861 |
+
[2023-07-04 15:00:03,437][13487] Component Batcher_0 stopped!
|
862 |
+
[2023-07-04 15:00:03,425][19017] Stopping Batcher_0...
|
863 |
+
[2023-07-04 15:00:03,445][19017] Loop batcher_evt_loop terminating...
|
864 |
+
[2023-07-04 15:00:03,506][19031] Weights refcount: 2 0
|
865 |
+
[2023-07-04 15:00:03,540][19031] Stopping InferenceWorker_p0-w0...
|
866 |
+
[2023-07-04 15:00:03,541][19031] Loop inference_proc0-0_evt_loop terminating...
|
867 |
+
[2023-07-04 15:00:03,542][13487] Component InferenceWorker_p0-w0 stopped!
|
868 |
+
[2023-07-04 15:00:03,574][19034] Stopping RolloutWorker_w3...
|
869 |
+
[2023-07-04 15:00:03,575][19034] Loop rollout_proc3_evt_loop terminating...
|
870 |
+
[2023-07-04 15:00:03,574][13487] Component RolloutWorker_w3 stopped!
|
871 |
+
[2023-07-04 15:00:03,591][13487] Component RolloutWorker_w6 stopped!
|
872 |
+
[2023-07-04 15:00:03,597][19035] Stopping RolloutWorker_w6...
|
873 |
+
[2023-07-04 15:00:03,598][19035] Loop rollout_proc6_evt_loop terminating...
|
874 |
+
[2023-07-04 15:00:03,601][19037] Stopping RolloutWorker_w5...
|
875 |
+
[2023-07-04 15:00:03,602][19037] Loop rollout_proc5_evt_loop terminating...
|
876 |
+
[2023-07-04 15:00:03,602][13487] Component RolloutWorker_w5 stopped!
|
877 |
+
[2023-07-04 15:00:03,564][19032] Decorrelating experience for 96 frames...
|
878 |
+
[2023-07-04 15:00:03,633][13487] Component RolloutWorker_w4 stopped!
|
879 |
+
[2023-07-04 15:00:03,636][19036] Stopping RolloutWorker_w4...
|
880 |
+
[2023-07-04 15:00:03,630][19017] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000051_208896.pth
|
881 |
+
[2023-07-04 15:00:03,637][19036] Loop rollout_proc4_evt_loop terminating...
|
882 |
+
[2023-07-04 15:00:03,665][19017] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000113_462848.pth...
|
883 |
+
[2023-07-04 15:00:03,868][13487] Component LearnerWorker_p0 stopped!
|
884 |
+
[2023-07-04 15:00:03,871][19017] Stopping LearnerWorker_p0...
|
885 |
+
[2023-07-04 15:00:03,874][19017] Loop learner_proc0_evt_loop terminating...
|
886 |
+
[2023-07-04 15:00:03,941][19030] Decorrelating experience for 96 frames...
|
887 |
+
[2023-07-04 15:00:04,551][19033] Decorrelating experience for 64 frames...
|
888 |
+
[2023-07-04 15:00:04,784][13487] Component RolloutWorker_w1 stopped!
|
889 |
+
[2023-07-04 15:00:04,785][19032] Stopping RolloutWorker_w1...
|
890 |
+
[2023-07-04 15:00:04,798][19032] Loop rollout_proc1_evt_loop terminating...
|
891 |
+
[2023-07-04 15:00:05,354][13487] Component RolloutWorker_w0 stopped!
|
892 |
+
[2023-07-04 15:00:05,360][19030] Stopping RolloutWorker_w0...
|
893 |
+
[2023-07-04 15:00:05,372][19030] Loop rollout_proc0_evt_loop terminating...
|
894 |
+
[2023-07-04 15:00:07,815][19038] Decorrelating experience for 96 frames...
|
895 |
+
[2023-07-04 15:00:08,061][19038] Stopping RolloutWorker_w7...
|
896 |
+
[2023-07-04 15:00:08,062][19038] Loop rollout_proc7_evt_loop terminating...
|
897 |
+
[2023-07-04 15:00:08,061][13487] Component RolloutWorker_w7 stopped!
|
898 |
+
[2023-07-04 15:00:08,310][19033] Decorrelating experience for 96 frames...
|
899 |
+
[2023-07-04 15:00:08,535][13487] Component RolloutWorker_w2 stopped!
|
900 |
+
[2023-07-04 15:00:08,542][13487] Waiting for process learner_proc0 to stop...
|
901 |
+
[2023-07-04 15:00:08,535][19033] Stopping RolloutWorker_w2...
|
902 |
+
[2023-07-04 15:00:08,546][19033] Loop rollout_proc2_evt_loop terminating...
|
903 |
+
[2023-07-04 15:00:08,545][13487] Waiting for process inference_proc0-0 to join...
|
904 |
+
[2023-07-04 15:00:08,551][13487] Waiting for process rollout_proc0 to join...
|
905 |
+
[2023-07-04 15:00:08,606][13487] Waiting for process rollout_proc1 to join...
|
906 |
+
[2023-07-04 15:00:08,612][13487] Waiting for process rollout_proc2 to join...
|
907 |
+
[2023-07-04 15:00:09,048][13487] Waiting for process rollout_proc3 to join...
|
908 |
+
[2023-07-04 15:00:09,053][13487] Waiting for process rollout_proc4 to join...
|
909 |
+
[2023-07-04 15:00:09,056][13487] Waiting for process rollout_proc5 to join...
|
910 |
+
[2023-07-04 15:00:09,060][13487] Waiting for process rollout_proc6 to join...
|
911 |
+
[2023-07-04 15:00:09,063][13487] Waiting for process rollout_proc7 to join...
|
912 |
+
[2023-07-04 15:00:09,065][13487] Batcher 0 profile tree view:
|
913 |
+
batching: 0.0380, releasing_batches: 0.0000
|
914 |
+
[2023-07-04 15:00:09,068][13487] InferenceWorker_p0-w0 profile tree view:
|
915 |
+
wait_policy: 0.0015
|
916 |
+
wait_policy_total: 10.3235
|
917 |
+
update_model: 0.0217
|
918 |
+
weight_update: 0.0012
|
919 |
+
one_step: 0.0061
|
920 |
+
handle_policy_step: 2.8497
|
921 |
+
deserialize: 0.0506, stack: 0.0128, obs_to_device_normalize: 0.4272, forward: 1.8411, send_messages: 0.0826
|
922 |
+
prepare_outputs: 0.3033
|
923 |
+
to_cpu: 0.1717
|
924 |
+
[2023-07-04 15:00:09,070][13487] Learner 0 profile tree view:
|
925 |
+
misc: 0.0000, prepare_batch: 3.6049
|
926 |
+
train: 0.9956
|
927 |
+
epoch_init: 0.0000, minibatch_init: 0.0000, losses_postprocess: 0.0002, kl_divergence: 0.0003, after_optimizer: 0.0048
|
928 |
+
calculate_losses: 0.1297
|
929 |
+
losses_init: 0.0000, forward_head: 0.1186, bptt_initial: 0.0057, tail: 0.0008, advantages_returns: 0.0009, losses: 0.0021
|
930 |
+
bptt: 0.0014
|
931 |
+
bptt_forward_core: 0.0014
|
932 |
+
update: 0.8563
|
933 |
+
clip: 0.0018
|
934 |
+
[2023-07-04 15:00:09,071][13487] RolloutWorker_w0 profile tree view:
|
935 |
+
wait_for_trajectories: 0.0299, enqueue_policy_requests: 0.0007
|
936 |
+
[2023-07-04 15:00:09,074][13487] RolloutWorker_w7 profile tree view:
|
937 |
+
wait_for_trajectories: 0.0003, enqueue_policy_requests: 0.0026
|
938 |
+
[2023-07-04 15:00:09,075][13487] Loop Runner_EvtLoop terminating...
|
939 |
+
[2023-07-04 15:00:09,078][13487] Runner profile tree view:
|
940 |
+
main_loop: 36.6591
|
941 |
+
[2023-07-04 15:00:09,080][13487] Collected {0: 462848}, FPS: 111.7
|
942 |
+
[2023-07-04 15:02:33,856][19799] Saving configuration to /content/train_dir/default_experiment/config.json...
|
943 |
+
[2023-07-04 15:02:33,868][19799] Rollout worker 0 uses device cpu
|
944 |
+
[2023-07-04 15:02:33,872][19799] Rollout worker 1 uses device cpu
|
945 |
+
[2023-07-04 15:02:33,874][19799] Rollout worker 2 uses device cpu
|
946 |
+
[2023-07-04 15:02:33,883][19799] Rollout worker 3 uses device cpu
|
947 |
+
[2023-07-04 15:02:33,889][19799] Rollout worker 4 uses device cpu
|
948 |
+
[2023-07-04 15:02:33,897][19799] Rollout worker 5 uses device cpu
|
949 |
+
[2023-07-04 15:02:33,898][19799] Rollout worker 6 uses device cpu
|
950 |
+
[2023-07-04 15:02:33,899][19799] Rollout worker 7 uses device cpu
|
951 |
+
[2023-07-04 15:02:34,113][19799] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
952 |
+
[2023-07-04 15:02:34,121][19799] InferenceWorker_p0-w0: min num requests: 2
|
953 |
+
[2023-07-04 15:02:34,169][19799] Starting all processes...
|
954 |
+
[2023-07-04 15:02:34,177][19799] Starting process learner_proc0
|
955 |
+
[2023-07-04 15:02:34,188][19799] EvtLoop [Runner_EvtLoop, process=main process 19799] unhandled exception in slot='_on_start' connected to emitter=Emitter(object_id='Runner_EvtLoop', signal_name='start'), args=()
|
956 |
+
Traceback (most recent call last):
|
957 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
958 |
+
slot_callable(*args)
|
959 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/runners/runner_parallel.py", line 49, in _on_start
|
960 |
+
self._start_processes()
|
961 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/runners/runner_parallel.py", line 56, in _start_processes
|
962 |
+
p.start()
|
963 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 515, in start
|
964 |
+
self._process.start()
|
965 |
+
File "/usr/lib/python3.10/multiprocessing/process.py", line 121, in start
|
966 |
+
self._popen = self._Popen(self)
|
967 |
+
File "/usr/lib/python3.10/multiprocessing/context.py", line 288, in _Popen
|
968 |
+
return Popen(process_obj)
|
969 |
+
File "/usr/lib/python3.10/multiprocessing/popen_spawn_posix.py", line 32, in __init__
|
970 |
+
super().__init__(process_obj)
|
971 |
+
File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 19, in __init__
|
972 |
+
self._launch(process_obj)
|
973 |
+
File "/usr/lib/python3.10/multiprocessing/popen_spawn_posix.py", line 47, in _launch
|
974 |
+
reduction.dump(process_obj, fp)
|
975 |
+
File "/usr/lib/python3.10/multiprocessing/reduction.py", line 60, in dump
|
976 |
+
ForkingPickler(file, protocol).dump(obj)
|
977 |
+
TypeError: cannot pickle 'TLSBuffer' object
|
978 |
+
[2023-07-04 15:02:34,196][19799] Unhandled exception cannot pickle 'TLSBuffer' object in evt loop Runner_EvtLoop
|
979 |
+
[2023-07-04 15:02:34,203][19799] Uncaught exception in Runner evt loop
|
980 |
+
Traceback (most recent call last):
|
981 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/runners/runner.py", line 770, in run
|
982 |
+
evt_loop_status = self.event_loop.exec()
|
983 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 403, in exec
|
984 |
+
raise exc
|
985 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 399, in exec
|
986 |
+
while self._loop_iteration():
|
987 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 383, in _loop_iteration
|
988 |
+
self._process_signal(s)
|
989 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 358, in _process_signal
|
990 |
+
raise exc
|
991 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
992 |
+
slot_callable(*args)
|
993 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/runners/runner_parallel.py", line 49, in _on_start
|
994 |
+
self._start_processes()
|
995 |
+
File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/runners/runner_parallel.py", line 56, in _start_processes
|
996 |
+
p.start()
|
997 |
+
File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 515, in start
|
998 |
+
self._process.start()
|
999 |
+
File "/usr/lib/python3.10/multiprocessing/process.py", line 121, in start
|
1000 |
+
self._popen = self._Popen(self)
|
1001 |
+
File "/usr/lib/python3.10/multiprocessing/context.py", line 288, in _Popen
|
1002 |
+
return Popen(process_obj)
|
1003 |
+
File "/usr/lib/python3.10/multiprocessing/popen_spawn_posix.py", line 32, in __init__
|
1004 |
+
super().__init__(process_obj)
|
1005 |
+
File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 19, in __init__
|
1006 |
+
self._launch(process_obj)
|
1007 |
+
File "/usr/lib/python3.10/multiprocessing/popen_spawn_posix.py", line 47, in _launch
|
1008 |
+
reduction.dump(process_obj, fp)
|
1009 |
+
File "/usr/lib/python3.10/multiprocessing/reduction.py", line 60, in dump
|
1010 |
+
ForkingPickler(file, protocol).dump(obj)
|
1011 |
+
TypeError: cannot pickle 'TLSBuffer' object
|
1012 |
+
[2023-07-04 15:02:34,210][19799] Runner profile tree view:
|
1013 |
+
main_loop: 0.0419
|
1014 |
+
[2023-07-04 15:02:34,212][19799] Collected {}, FPS: 0.0
|
1015 |
+
[2023-07-04 15:02:34,410][19799] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
|
1016 |
+
[2023-07-04 15:02:34,413][19799] Overriding arg 'num_workers' with value 1 passed from command line
|
1017 |
+
[2023-07-04 15:02:34,423][19799] Adding new argument 'no_render'=True that is not in the saved config file!
|
1018 |
+
[2023-07-04 15:02:34,428][19799] Adding new argument 'save_video'=True that is not in the saved config file!
|
1019 |
+
[2023-07-04 15:02:34,436][19799] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
1020 |
+
[2023-07-04 15:02:34,442][19799] Adding new argument 'video_name'=None that is not in the saved config file!
|
1021 |
+
[2023-07-04 15:02:34,447][19799] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
|
1022 |
+
[2023-07-04 15:02:34,457][19799] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
1023 |
+
[2023-07-04 15:02:34,459][19799] Adding new argument 'push_to_hub'=False that is not in the saved config file!
|
1024 |
+
[2023-07-04 15:02:34,460][19799] Adding new argument 'hf_repository'=None that is not in the saved config file!
|
1025 |
+
[2023-07-04 15:02:34,461][19799] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
1026 |
+
[2023-07-04 15:02:34,462][19799] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
1027 |
+
[2023-07-04 15:02:34,463][19799] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
1028 |
+
[2023-07-04 15:02:34,465][19799] Using frameskip 1 and render_action_repeat=4 for evaluation
|
1029 |
+
[2023-07-04 15:02:34,528][19799] Doom resolution: 160x120, resize resolution: (128, 72)
|
1030 |
+
[2023-07-04 15:02:34,536][19799] RunningMeanStd input shape: (3, 72, 128)
|
1031 |
+
[2023-07-04 15:02:34,539][19799] RunningMeanStd input shape: (1,)
|
1032 |
+
[2023-07-04 15:02:34,576][19799] ConvEncoder: input_channels=3
|
1033 |
+
[2023-07-04 15:02:34,894][19799] Conv encoder output size: 512
|
1034 |
+
[2023-07-04 15:02:34,897][19799] Policy head output size: 512
|
1035 |
+
[2023-07-04 15:02:42,149][19799] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000113_462848.pth...
|
1036 |
+
[2023-07-04 15:02:44,118][19799] Num frames 100...
|
1037 |
+
[2023-07-04 15:02:44,316][19799] Num frames 200...
|
1038 |
+
[2023-07-04 15:02:44,533][19799] Num frames 300...
|
1039 |
+
[2023-07-04 15:02:44,758][19799] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
|
1040 |
+
[2023-07-04 15:02:44,761][19799] Avg episode reward: 3.840, avg true_objective: 3.840
|
1041 |
+
[2023-07-04 15:02:44,802][19799] Num frames 400...
|
1042 |
+
[2023-07-04 15:02:44,936][19799] Num frames 500...
|
1043 |
+
[2023-07-04 15:02:45,089][19799] Num frames 600...
|
1044 |
+
[2023-07-04 15:02:45,228][19799] Num frames 700...
|
1045 |
+
[2023-07-04 15:02:45,372][19799] Num frames 800...
|
1046 |
+
[2023-07-04 15:02:45,425][19799] Avg episode rewards: #0: 4.500, true rewards: #0: 4.000
|
1047 |
+
[2023-07-04 15:02:45,427][19799] Avg episode reward: 4.500, avg true_objective: 4.000
|
1048 |
+
[2023-07-04 15:02:45,569][19799] Num frames 900...
|
1049 |
+
[2023-07-04 15:02:45,711][19799] Num frames 1000...
|
1050 |
+
[2023-07-04 15:02:45,843][19799] Num frames 1100...
|
1051 |
+
[2023-07-04 15:02:45,997][19799] Num frames 1200...
|
1052 |
+
[2023-07-04 15:02:46,175][19799] Avg episode rewards: #0: 5.267, true rewards: #0: 4.267
|
1053 |
+
[2023-07-04 15:02:46,177][19799] Avg episode reward: 5.267, avg true_objective: 4.267
|
1054 |
+
[2023-07-04 15:02:46,213][19799] Num frames 1300...
|
1055 |
+
[2023-07-04 15:02:46,350][19799] Num frames 1400...
|
1056 |
+
[2023-07-04 15:02:46,484][19799] Num frames 1500...
|
1057 |
+
[2023-07-04 15:02:46,631][19799] Num frames 1600...
|
1058 |
+
[2023-07-04 15:02:46,781][19799] Num frames 1700...
|
1059 |
+
[2023-07-04 15:02:46,874][19799] Avg episode rewards: #0: 5.320, true rewards: #0: 4.320
|
1060 |
+
[2023-07-04 15:02:46,876][19799] Avg episode reward: 5.320, avg true_objective: 4.320
|
1061 |
+
[2023-07-04 15:02:46,985][19799] Num frames 1800...
|
1062 |
+
[2023-07-04 15:02:47,125][19799] Num frames 1900...
|
1063 |
+
[2023-07-04 15:02:47,265][19799] Num frames 2000...
|
1064 |
+
[2023-07-04 15:02:47,411][19799] Num frames 2100...
|
1065 |
+
[2023-07-04 15:02:47,566][19799] Avg episode rewards: #0: 5.352, true rewards: #0: 4.352
|
1066 |
+
[2023-07-04 15:02:47,569][19799] Avg episode reward: 5.352, avg true_objective: 4.352
|
1067 |
+
[2023-07-04 15:02:47,610][19799] Num frames 2200...
|
1068 |
+
[2023-07-04 15:02:47,744][19799] Num frames 2300...
|
1069 |
+
[2023-07-04 15:02:47,891][19799] Num frames 2400...
|
1070 |
+
[2023-07-04 15:02:48,040][19799] Num frames 2500...
|
1071 |
+
[2023-07-04 15:02:48,182][19799] Avg episode rewards: #0: 5.100, true rewards: #0: 4.267
|
1072 |
+
[2023-07-04 15:02:48,184][19799] Avg episode reward: 5.100, avg true_objective: 4.267
|
1073 |
+
[2023-07-04 15:02:48,256][19799] Num frames 2600...
|
1074 |
+
[2023-07-04 15:02:48,392][19799] Num frames 2700...
|
1075 |
+
[2023-07-04 15:02:48,531][19799] Num frames 2800...
|
1076 |
+
[2023-07-04 15:02:48,667][19799] Num frames 2900...
|
1077 |
+
[2023-07-04 15:02:48,811][19799] Num frames 3000...
|
1078 |
+
[2023-07-04 15:02:48,881][19799] Avg episode rewards: #0: 5.154, true rewards: #0: 4.297
|
1079 |
+
[2023-07-04 15:02:48,883][19799] Avg episode reward: 5.154, avg true_objective: 4.297
|
1080 |
+
[2023-07-04 15:02:49,008][19799] Num frames 3100...
|
1081 |
+
[2023-07-04 15:02:49,141][19799] Num frames 3200...
|
1082 |
+
[2023-07-04 15:02:49,277][19799] Num frames 3300...
|
1083 |
+
[2023-07-04 15:02:49,472][19799] Avg episode rewards: #0: 4.990, true rewards: #0: 4.240
|
1084 |
+
[2023-07-04 15:02:49,475][19799] Avg episode reward: 4.990, avg true_objective: 4.240
|
1085 |
+
[2023-07-04 15:02:49,493][19799] Num frames 3400...
|
1086 |
+
[2023-07-04 15:02:49,629][19799] Num frames 3500...
|
1087 |
+
[2023-07-04 15:02:49,757][19799] Num frames 3600...
|
1088 |
+
[2023-07-04 15:02:49,890][19799] Num frames 3700...
|
1089 |
+
[2023-07-04 15:02:50,052][19799] Avg episode rewards: #0: 4.862, true rewards: #0: 4.196
|
1090 |
+
[2023-07-04 15:02:50,054][19799] Avg episode reward: 4.862, avg true_objective: 4.196
|
1091 |
+
[2023-07-04 15:02:50,097][19799] Num frames 3800...
|
1092 |
+
[2023-07-04 15:02:50,234][19799] Num frames 3900...
|
1093 |
+
[2023-07-04 15:02:50,385][19799] Num frames 4000...
|
1094 |
+
[2023-07-04 15:02:50,510][19799] Num frames 4100...
|
1095 |
+
[2023-07-04 15:02:50,696][19799] Avg episode rewards: #0: 4.792, true rewards: #0: 4.192
|
1096 |
+
[2023-07-04 15:02:50,698][19799] Avg episode reward: 4.792, avg true_objective: 4.192
|
1097 |
+
[2023-07-04 15:03:17,366][19799] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
|
1098 |
+
[2023-07-04 15:05:23,598][19799] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
|
1099 |
+
[2023-07-04 15:05:23,604][19799] Overriding arg 'num_workers' with value 1 passed from command line
|
1100 |
+
[2023-07-04 15:05:23,611][19799] Adding new argument 'no_render'=True that is not in the saved config file!
|
1101 |
+
[2023-07-04 15:05:23,613][19799] Adding new argument 'save_video'=True that is not in the saved config file!
|
1102 |
+
[2023-07-04 15:05:23,620][19799] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
1103 |
+
[2023-07-04 15:05:23,627][19799] Adding new argument 'video_name'=None that is not in the saved config file!
|
1104 |
+
[2023-07-04 15:05:23,629][19799] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
|
1105 |
+
[2023-07-04 15:05:23,630][19799] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
1106 |
+
[2023-07-04 15:05:23,634][19799] Adding new argument 'push_to_hub'=True that is not in the saved config file!
|
1107 |
+
[2023-07-04 15:05:23,635][19799] Adding new argument 'hf_repository'='HilbertS/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
|
1108 |
+
[2023-07-04 15:05:23,640][19799] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
1109 |
+
[2023-07-04 15:05:23,641][19799] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
1110 |
+
[2023-07-04 15:05:23,643][19799] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
1111 |
+
[2023-07-04 15:05:23,648][19799] Using frameskip 1 and render_action_repeat=4 for evaluation
|
1112 |
+
[2023-07-04 15:05:23,691][19799] RunningMeanStd input shape: (3, 72, 128)
|
1113 |
+
[2023-07-04 15:05:23,697][19799] RunningMeanStd input shape: (1,)
|
1114 |
+
[2023-07-04 15:05:23,728][19799] ConvEncoder: input_channels=3
|
1115 |
+
[2023-07-04 15:05:23,875][19799] Conv encoder output size: 512
|
1116 |
+
[2023-07-04 15:05:23,894][19799] Policy head output size: 512
|
1117 |
+
[2023-07-04 15:05:23,958][19799] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000113_462848.pth...
|
1118 |
+
[2023-07-04 15:05:25,102][19799] Num frames 100...
|
1119 |
+
[2023-07-04 15:05:25,316][19799] Num frames 200...
|
1120 |
+
[2023-07-04 15:05:25,517][19799] Num frames 300...
|
1121 |
+
[2023-07-04 15:05:25,721][19799] Num frames 400...
|
1122 |
+
[2023-07-04 15:05:25,882][19799] Avg episode rewards: #0: 5.480, true rewards: #0: 4.480
|
1123 |
+
[2023-07-04 15:05:25,888][19799] Avg episode reward: 5.480, avg true_objective: 4.480
|
1124 |
+
[2023-07-04 15:05:26,109][19799] Num frames 500...
|
1125 |
+
[2023-07-04 15:05:26,368][19799] Num frames 600...
|
1126 |
+
[2023-07-04 15:05:26,570][19799] Num frames 700...
|
1127 |
+
[2023-07-04 15:05:26,811][19799] Num frames 800...
|
1128 |
+
[2023-07-04 15:05:26,961][19799] Avg episode rewards: #0: 4.660, true rewards: #0: 4.160
|
1129 |
+
[2023-07-04 15:05:26,968][19799] Avg episode reward: 4.660, avg true_objective: 4.160
|
1130 |
+
[2023-07-04 15:05:27,085][19799] Num frames 900...
|
1131 |
+
[2023-07-04 15:05:27,210][19799] Num frames 1000...
|
1132 |
+
[2023-07-04 15:05:27,342][19799] Num frames 1100...
|
1133 |
+
[2023-07-04 15:05:27,468][19799] Num frames 1200...
|
1134 |
+
[2023-07-04 15:05:27,605][19799] Num frames 1300...
|
1135 |
+
[2023-07-04 15:05:27,749][19799] Num frames 1400...
|
1136 |
+
[2023-07-04 15:05:27,836][19799] Avg episode rewards: #0: 6.070, true rewards: #0: 4.737
|
1137 |
+
[2023-07-04 15:05:27,838][19799] Avg episode reward: 6.070, avg true_objective: 4.737
|
1138 |
+
[2023-07-04 15:05:27,940][19799] Num frames 1500...
|
1139 |
+
[2023-07-04 15:05:28,080][19799] Num frames 1600...
|
1140 |
+
[2023-07-04 15:05:28,212][19799] Num frames 1700...
|
1141 |
+
[2023-07-04 15:05:28,354][19799] Num frames 1800...
|
1142 |
+
[2023-07-04 15:05:28,420][19799] Avg episode rewards: #0: 5.513, true rewards: #0: 4.512
|
1143 |
+
[2023-07-04 15:05:28,422][19799] Avg episode reward: 5.513, avg true_objective: 4.512
|
1144 |
+
[2023-07-04 15:05:28,553][19799] Num frames 1900...
|
1145 |
+
[2023-07-04 15:05:28,681][19799] Num frames 2000...
|
1146 |
+
[2023-07-04 15:05:28,815][19799] Num frames 2100...
|
1147 |
+
[2023-07-04 15:05:28,982][19799] Avg episode rewards: #0: 5.178, true rewards: #0: 4.378
|
1148 |
+
[2023-07-04 15:05:28,985][19799] Avg episode reward: 5.178, avg true_objective: 4.378
|
1149 |
+
[2023-07-04 15:05:29,001][19799] Num frames 2200...
|
1150 |
+
[2023-07-04 15:05:29,130][19799] Num frames 2300...
|
1151 |
+
[2023-07-04 15:05:29,274][19799] Num frames 2400...
|
1152 |
+
[2023-07-04 15:05:29,415][19799] Num frames 2500...
|
1153 |
+
[2023-07-04 15:05:29,554][19799] Num frames 2600...
|
1154 |
+
[2023-07-04 15:05:29,694][19799] Num frames 2700...
|
1155 |
+
[2023-07-04 15:05:29,793][19799] Avg episode rewards: #0: 5.555, true rewards: #0: 4.555
|
1156 |
+
[2023-07-04 15:05:29,795][19799] Avg episode reward: 5.555, avg true_objective: 4.555
|
1157 |
+
[2023-07-04 15:05:29,900][19799] Num frames 2800...
|
1158 |
+
[2023-07-04 15:05:30,041][19799] Num frames 2900...
|
1159 |
+
[2023-07-04 15:05:30,169][19799] Num frames 3000...
|
1160 |
+
[2023-07-04 15:05:30,302][19799] Num frames 3100...
|
1161 |
+
[2023-07-04 15:05:30,471][19799] Avg episode rewards: #0: 5.544, true rewards: #0: 4.544
|
1162 |
+
[2023-07-04 15:05:30,473][19799] Avg episode reward: 5.544, avg true_objective: 4.544
|
1163 |
+
[2023-07-04 15:05:30,501][19799] Num frames 3200...
|
1164 |
+
[2023-07-04 15:05:30,636][19799] Num frames 3300...
|
1165 |
+
[2023-07-04 15:05:30,768][19799] Num frames 3400...
|
1166 |
+
[2023-07-04 15:05:30,916][19799] Num frames 3500...
|
1167 |
+
[2023-07-04 15:05:31,058][19799] Num frames 3600...
|
1168 |
+
[2023-07-04 15:05:31,154][19799] Avg episode rewards: #0: 5.536, true rewards: #0: 4.536
|
1169 |
+
[2023-07-04 15:05:31,156][19799] Avg episode reward: 5.536, avg true_objective: 4.536
|
1170 |
+
[2023-07-04 15:05:31,255][19799] Num frames 3700...
|
1171 |
+
[2023-07-04 15:05:31,392][19799] Num frames 3800...
|
1172 |
+
[2023-07-04 15:05:31,527][19799] Num frames 3900...
|
1173 |
+
[2023-07-04 15:05:31,669][19799] Num frames 4000...
|
1174 |
+
[2023-07-04 15:05:31,744][19799] Avg episode rewards: #0: 5.348, true rewards: #0: 4.459
|
1175 |
+
[2023-07-04 15:05:31,746][19799] Avg episode reward: 5.348, avg true_objective: 4.459
|
1176 |
+
[2023-07-04 15:05:31,863][19799] Num frames 4100...
|
1177 |
+
[2023-07-04 15:05:31,996][19799] Num frames 4200...
|
1178 |
+
[2023-07-04 15:05:32,140][19799] Num frames 4300...
|
1179 |
+
[2023-07-04 15:05:32,267][19799] Num frames 4400...
|
1180 |
+
[2023-07-04 15:05:32,403][19799] Num frames 4500...
|
1181 |
+
[2023-07-04 15:05:32,530][19799] Avg episode rewards: #0: 5.557, true rewards: #0: 4.557
|
1182 |
+
[2023-07-04 15:05:32,531][19799] Avg episode reward: 5.557, avg true_objective: 4.557
|
1183 |
+
[2023-07-04 15:06:01,713][19799] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
|