|
from typing import Dict, List, Any |
|
import torch |
|
from diffusers import DPMSolverMultistepScheduler, StableDiffusionInpaintPipeline, EulerAncestralDiscreteScheduler |
|
from PIL import Image |
|
import base64 |
|
from io import BytesIO |
|
import numpy as np |
|
|
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
if device.type != 'cuda': |
|
raise ValueError("need to run on GPU") |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
self.pipe = StableDiffusionInpaintPipeline.from_pretrained(path, torch_dtype=torch.float16) |
|
|
|
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config) |
|
|
|
|
|
self.pipe.to(device) |
|
self.pipe.enable_xformers_memory_efficient_attention() |
|
|
|
|
|
|
|
|
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
""" |
|
:param data: A dictionary contains `inputs` and optional `image` field. |
|
:return: A dictionary with `image` field contains image in base64. |
|
""" |
|
inputs = data.pop("inputs", data) |
|
encoded_image = data.pop("image", None) |
|
encoded_mask_image = data.pop("mask_image", None) |
|
num_images = data.pop("num_images", None) |
|
print(f"num_image {num_images}") |
|
if num_images > 4 or num_images < 1: |
|
return {"Invalid Request": "Number of generated images must be >= 1 and <=4"} |
|
|
|
|
|
num_inference_steps = data.pop("num_inference_steps", 50) |
|
guidance_scale = data.pop("guidance_scale", 7.5) |
|
negative_prompt = data.pop("negative_prompt", None) |
|
height = data.pop("height", None) |
|
width = data.pop("width", None) |
|
|
|
|
|
if encoded_image is not None and encoded_mask_image is not None: |
|
image = self.decode_base64_image(encoded_image) |
|
mask_image = self.decode_base64_image(encoded_mask_image) |
|
else: |
|
image = None |
|
mask_image = None |
|
|
|
|
|
out = self.pipe(inputs, |
|
image=image, |
|
mask_image=mask_image, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=num_images, |
|
negative_prompt=negative_prompt, |
|
height=height, |
|
width=width |
|
).images |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
json_imgs = {} |
|
for i in range(len(out)): |
|
buffered = BytesIO() |
|
out[i].save(buffered, format="PNG") |
|
img_str = base64.b64encode(buffered.getvalue()) |
|
json_imgs[f"{i}"] = img_str.decode() |
|
return json_imgs |
|
|
|
|
|
def decode_base64_image(self, image_string): |
|
base64_image = base64.b64decode(image_string) |
|
buffer = BytesIO(base64_image) |
|
image = Image.open(buffer) |
|
return image |
|
|