HiTZ
/

Text2Text Generation
Transformers
PyTorch
mt5
medical
multilingual
medic
Inference Endpoints
Iker commited on
Commit
c88bdaa
1 Parent(s): 9e69745

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -17
README.md CHANGED
@@ -6,44 +6,48 @@ language:
6
  - fr
7
  - it
8
  widget:
9
- - text: "The best cough medicine is <extra_id_0> because <extra_id_1>"
10
- - text: "El mejor medicamento para la tos es <extra_id_0> porque <extra_id_1>"
11
- - text: "Le meilleur médicament contre la toux est <extra_id_0> car <extra_id_1"
12
- - text: "La migliore medicina per la tosse è la <extra_id_0> perché la <extra_id_1"
13
  library_name: transformers
14
  pipeline_tag: text2text-generation
15
  tags:
16
  - medical
17
  - multilingual
18
  - medic
 
 
 
19
  ---
20
 
21
  <p align="center">
22
  <br>
23
  <img src="http://www.ixa.eus/sites/default/files/anitdote.png" style="height: 250px;">
24
- <h2 align="center">Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain</h2>
 
25
  <br>
26
 
27
 
28
- # Model Card for Medical mT5-large
29
 
30
  <p align="justify">
31
- We present Medical mT5, the first open-source text-to-text multilingual model for the medical domain. Medical mT5 is an encoder-decoder model
32
- developed by continuing the training of publicly available mT5 checkpoints on medical domain data for English, Spanish, French, and Italian.
 
33
  </p>
34
 
35
- - 📖 Paper: [Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain]()
36
  - 🌐 Project Website: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)
37
 
38
 
39
-
40
  <table border="1" cellspacing="0" cellpadding="5">
41
- <caption>Pre-Training settings for Medical MT5.</caption>
42
  <thead>
43
  <tr>
44
  <th></th>
45
  <th>Medical mT5-Large (<a href="https://huggingface.co/HiTZ/Medical-mT5-large">HiTZ/Medical-mT5-large</a>)</th>
46
- <th>Meical mT5-XL (<a href="https://huggingface.co/HiTZ/Medical-mT5-xl">HiTZ/Medical-mT5-xl</a>)</th>
47
  </tr>
48
  </thead>
49
  <tbody>
@@ -128,16 +132,16 @@ tokenizer = AutoTokenizer.from_pretrained("HiTZ/Medical-mT5-xl")
128
  model = AutoModelForSeq2SeqLM.from_pretrained("HiTZ/Medical-mT5-xl")
129
  ```
130
 
131
- The model has been trained using the T5 masked language modeling tasks. You need to finetune the model for your task.
132
 
133
  <p align="center">
134
  <br>
135
  <img src="https://miro.medium.com/v2/0*yeXSc6Qs-SGKDzZP.png" style="height: 250px;">
136
  <br>
137
 
138
- ### Medical mT5 for Sequence Labelling
139
 
140
- If you want to use Medical mT5 for Sequence Labeling, we recommend you use this code: https://github.com/ikergarcia1996/Sequence-Labeling-LLMs
 
141
 
142
  ## Training Data
143
 
@@ -267,10 +271,42 @@ If you want to use Medical mT5 for Sequence Labeling, we recommend you use this
267
  </tbody>
268
  </table>
269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
270
 
271
 
272
 
273
- ## Evaluation
274
 
275
  ### Single-task supervised F1 scores for Sequence Labelling
276
  <p align="center">
@@ -293,11 +329,21 @@ If you want to use Medical mT5 for Sequence Labeling, we recommend you use this
293
 
294
  ## Ethical Statement
295
  <p align="justify">
296
- Our research in developing Medical mT5, a multilingual text-to-text model for the medical domain, has ethical implications that we acknowledge. Firstly, the broader impact of this work lies in its potential to improve medical communication and understanding across languages, which can enhance healthcare access and quality for diverse linguistic communities. However, it also raises ethical considerations related to privacy and data security. To create our multilingual corpus, we have taken measures to anonymize and protect sensitive patient information, adhering to data protection regulations in each language's jurisdiction or deriving our data from sources that explicitly address this issue in line with privacy and safety regulations and guidelines. Furthermore, we are committed to transparency and fairness in our model's development and evaluation. We have worked to ensure that our benchmarks are representative and unbiased, and we will continue to monitor and address any potential biases in the future. Finally, we emphasize our commitment to open source by making our data, code, and models publicly available, with the aim of promoting collaboration within the research community.
 
 
 
 
 
 
 
 
297
  </p>
298
 
299
  ## Citation
300
 
 
 
301
  ```bibtext
302
  @inproceedings{medical-mt5,
303
  title = "{{Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain}}",
 
6
  - fr
7
  - it
8
  widget:
9
+ - text: The best cough medicine is <extra_id_0> because <extra_id_1>
10
+ - text: El mejor medicamento para la tos es <extra_id_0> porque <extra_id_1>
11
+ - text: Le meilleur médicament contre la toux est <extra_id_0> car <extra_id_1
12
+ - text: La migliore medicina per la tosse è la <extra_id_0> perché la <extra_id_1
13
  library_name: transformers
14
  pipeline_tag: text2text-generation
15
  tags:
16
  - medical
17
  - multilingual
18
  - medic
19
+ datasets:
20
+ - HiTZ/Multilingual-Medical-Corpus
21
+ base_model: google/mt5-xl
22
  ---
23
 
24
  <p align="center">
25
  <br>
26
  <img src="http://www.ixa.eus/sites/default/files/anitdote.png" style="height: 250px;">
27
+ <h2 align="center">Medical mT5: An Open-Source Multilingual Text-to-Text LLM
28
+ for the Medical Domain</h2>
29
  <br>
30
 
31
 
32
+ # Model Card for MedMT5-xl
33
 
34
  <p align="justify">
35
+ We present Medical mT5, the first open-source text-to-text multilingual model for the medical domain.
36
+ Medical mT5 is an encoder-decoder model developed by continuing the training of publicly available mT5 checkpoints on
37
+ medical domain data for English, Spanish, French, and Italian.
38
  </p>
39
 
40
+ - 📖 Paper: [Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain]()
41
  - 🌐 Project Website: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)
42
 
43
 
 
44
  <table border="1" cellspacing="0" cellpadding="5">
45
+ <caption>Pre-Training settings for MedMT5.</caption>
46
  <thead>
47
  <tr>
48
  <th></th>
49
  <th>Medical mT5-Large (<a href="https://huggingface.co/HiTZ/Medical-mT5-large">HiTZ/Medical-mT5-large</a>)</th>
50
+ <th>Medical mT5-XL (<a href="https://huggingface.co/HiTZ/Medical-mT5-xl">HiTZ/Medical-mT5-xl</a>)</th>
51
  </tr>
52
  </thead>
53
  <tbody>
 
132
  model = AutoModelForSeq2SeqLM.from_pretrained("HiTZ/Medical-mT5-xl")
133
  ```
134
 
135
+ The model has been trained using the T5 masked language modelling tasks. You need to finetune the model for your task.
136
 
137
  <p align="center">
138
  <br>
139
  <img src="https://miro.medium.com/v2/0*yeXSc6Qs-SGKDzZP.png" style="height: 250px;">
140
  <br>
141
 
 
142
 
143
+
144
+
145
 
146
  ## Training Data
147
 
 
271
  </tbody>
272
  </table>
273
 
274
+ ## Evaluation
275
+
276
+ ### Medical mT5 for Sequence Labelling
277
+
278
+ We have released two Medical mT5 models finetuned for multilingual sequence labelling.
279
+ <table border="1" cellspacing="0" cellpadding="5">
280
+ <thead>
281
+ <tr>
282
+ <th></th>
283
+ <th><a href="https://huggingface.co/HiTZ/Medical-mT5-large">HiTZ/Medical-mT5-large</a></th>
284
+ <th><a href="https://huggingface.co/HiTZ/Medical-mT5-xl">HiTZ/Medical-mT5-xl</a></th>
285
+ <th><a href="https://huggingface.co/HiTZ/Medical-mT5-large-multitask">HiTZ/Medical-mT5-large-multitask</a></th>
286
+ <th><a href="https://huggingface.co/HiTZ/Medical-mT5-xl-multitask">HiTZ/Medical-mT5-xl-multitask</a></th>
287
+ </tr>
288
+ </thead>
289
+ <tbody>
290
+ <tr>
291
+ <td>Param. no.</td>
292
+ <td>738M</td>
293
+ <td>3B</td>
294
+ <td>738M</td>
295
+ <td>3B</td>
296
+ </tr>
297
+ <tr>
298
+ <td>Task</td>
299
+ <td>Language Modeling</td>
300
+ <td>Language Modeling</td>
301
+ <td>Multitask Sequence Labeling</td>
302
+ <td>Multitask Sequence Labeling</td>
303
+ </tr>
304
+ <tr>
305
+ </tbody>
306
+ </table>
307
 
308
 
309
 
 
310
 
311
  ### Single-task supervised F1 scores for Sequence Labelling
312
  <p align="center">
 
329
 
330
  ## Ethical Statement
331
  <p align="justify">
332
+ Our research in developing Medical mT5, a multilingual text-to-text model for the medical domain, has ethical implications that we acknowledge.
333
+ Firstly, the broader impact of this work lies in its potential to improve medical communication and understanding across languages, which
334
+ can enhance healthcare access and quality for diverse linguistic communities. However, it also raises ethical considerations related to privacy and data security.
335
+ To create our multilingual corpus, we have taken measures to anonymize and protect sensitive patient information, adhering to
336
+ data protection regulations in each language's jurisdiction or deriving our data from sources that explicitly address this issue in line with
337
+ privacy and safety regulations and guidelines. Furthermore, we are committed to transparency and fairness in our model's development and evaluation.
338
+ We have worked to ensure that our benchmarks are representative and unbiased, and we will continue to monitor and address any potential biases in the future.
339
+ Finally, we emphasize our commitment to open source by making our data, code, and models publicly available, with the aim of promoting collaboration within
340
+ the research community.
341
  </p>
342
 
343
  ## Citation
344
 
345
+ We will soon release a paper, but, for now, you can use:
346
+
347
  ```bibtext
348
  @inproceedings{medical-mt5,
349
  title = "{{Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain}}",