Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,150 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
widget:
|
4 |
+
- text: >-
|
5 |
+
<Disease> Torsade de pointes ventricular tachycardia during low dose
|
6 |
+
intermittent dobutamine treatment in a patient with dilated cardiomyopathy
|
7 |
+
and congestive heart failure .
|
8 |
+
- text: >-
|
9 |
+
<ClinicalEntity> Ecográficamente se observan tres nódulos tumorales
|
10 |
+
independientes y bien delimitados : dos de ellos heterogéneos , sólidos , de
|
11 |
+
20 y 33 mm de diámetros , con áreas quísticas y calcificaciones .
|
12 |
+
- text: >-
|
13 |
+
<ClinicalEntity> On notait une hyperlordose lombaire avec une contracture
|
14 |
+
permanente des muscles paravertébraux , de l abdomen et des deux membres
|
15 |
+
inférieurs .
|
16 |
+
- text: >-
|
17 |
+
<ClinicalEntity> Nell ’ anamnesi patologica era riferita ipertensione
|
18 |
+
arteriosa controllata con terapia medica
|
19 |
+
library_name: transformers
|
20 |
+
pipeline_tag: text2text-generation
|
21 |
+
tags:
|
22 |
+
- medical
|
23 |
+
- multilingual
|
24 |
+
- medic
|
25 |
+
datasets:
|
26 |
+
- HiTZ/Multilingual-Medical-Corpus
|
27 |
+
language:
|
28 |
+
- es
|
29 |
+
- en
|
30 |
+
- fr
|
31 |
+
- it
|
32 |
+
base_model: HiTZ/Medical-mT5-large
|
33 |
---
|
34 |
+
|
35 |
+
<p align="center">
|
36 |
+
<br>
|
37 |
+
<img src="http://www.ixa.eus/sites/default/files/anitdote.png" style="width: 30%;">
|
38 |
+
<h2 align="center">Medical mT5: An Open-Source Multilingual Text-to-Text LLM
|
39 |
+
for the Medical Domain</h2>
|
40 |
+
<be>
|
41 |
+
|
42 |
+
# Model Card for Medical MT5-large-multitask
|
43 |
+
|
44 |
+
|
45 |
+
<p align="justify">
|
46 |
+
|
47 |
+
Medical MT5-large-multitask is a version of Medical MT5 finetuned for sequence labelling. It can correctly label a wide range of Medical labels in unstructured text, such as `Disease`, `Disability`, `ClinicalEntity`, `Chemical`... Medical MT5-large-multitask has been finetuned for English, Spanish, French and Italian, although it may work with a wide range of languages.
|
48 |
+
|
49 |
+
- 📖 Paper: [Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain]()
|
50 |
+
- 🌐 Project Website: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)
|
51 |
+
|
52 |
+
|
53 |
+
<p align="center">
|
54 |
+
<br>
|
55 |
+
<img src="https://raw.githubusercontent.com/ikergarcia1996/Sequence-Labeling-LLMs/main/resources/MedT5-Ner-mtask.png" style="width: 30%;">
|
56 |
+
<be>
|
57 |
+
|
58 |
+
# Open Source Models
|
59 |
+
<table border="1" cellspacing="0" cellpadding="5">
|
60 |
+
<thead>
|
61 |
+
<tr>
|
62 |
+
<th></th>
|
63 |
+
<th>Medical mT5-Large (<a href="https://huggingface.co/HiTZ/Medical-mT5-large">HiTZ/Medical-mT5-large</a>)</th>
|
64 |
+
<th>Medical mT5-XL (<a href="https://huggingface.co/HiTZ/Medical-mT5-xl">HiTZ/Medical-mT5-xl</a>)</th>
|
65 |
+
<th>Medical mT5-Large-multitask (<a href="https://huggingface.co/HiTZ/Medical-mT5-large-multitask">HiTZ/Medical-mT5-large</a>)</th>
|
66 |
+
<th>Medical mT5-XL-multitask (<a href="https://huggingface.co/HiTZ/Medical-mT5-xl-multitask">HiTZ/Medical-mT5-xl</a>)</th>
|
67 |
+
</tr>
|
68 |
+
</thead>
|
69 |
+
<tbody>
|
70 |
+
<tr>
|
71 |
+
<td>Param. no.</td>
|
72 |
+
<td>738M</td>
|
73 |
+
<td>3B</td>
|
74 |
+
<td>738M</td>
|
75 |
+
<td>3B</td>
|
76 |
+
</tr>
|
77 |
+
<tr>
|
78 |
+
<td>Task</td>
|
79 |
+
<td>Language Modeling</td>
|
80 |
+
<td>Language Modeling</td>
|
81 |
+
<td>Multitask Sequence Labeling</td>
|
82 |
+
<td>Multitask Sequence Labeling</td>
|
83 |
+
</tr>
|
84 |
+
<tr>
|
85 |
+
</tbody>
|
86 |
+
</table>
|
87 |
+
|
88 |
+
|
89 |
+
# Usage
|
90 |
+
|
91 |
+
Medical MT5-large-multitask was training using the *Sequence-Labeling-LLMs* library: https://github.com/ikergarcia1996/Sequence-Labeling-LLMs/
|
92 |
+
This library uses constrained decoding to ensure that the output contains the same words as the input and a valid HTML annotation. We recommend using Medical MT5-large-multitask together with this library.
|
93 |
+
Although you can also directly use it with 🤗 huggingface. In order to label a sentence, you need to append the labels you wan to use, for example, if you want to label *dieseases* you should format your input as follows: `<Disease> Torsade de pointes ventricular tachycardia during low dose intermittent dobutamine treatment in a patient with dilated cardiomyopathy and congestive heart failure .`
|
94 |
+
|
95 |
+
```python
|
96 |
+
import torch
|
97 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
98 |
+
|
99 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("Medical-mT5-large-multitask",torch_dtype=torch.bfloat16, device_map="auto")
|
100 |
+
tokenizer = AutoTokenizer.from_pretrained("Medical-mT5-large-multitask")
|
101 |
+
|
102 |
+
input_example = "<Disease> Torsade de pointes ventricular tachycardia during low dose intermittent dobutamine treatment in a patient with dilated cardiomyopathy and congestive heart failure ."
|
103 |
+
|
104 |
+
model_input = tokenizer(input_example, return_tensors="pt")
|
105 |
+
|
106 |
+
output = model.generate(**model_input.to(model.device),max_new_tokens=128,num_beams=1,num_return_sequences=1,do_sample=False)
|
107 |
+
|
108 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
109 |
+
```
|
110 |
+
|
111 |
+
# Performance
|
112 |
+
<img src="https://raw.githubusercontent.com/ikergarcia1996/Sequence-Labeling-LLMs/main/resources/multitask_performance.png" style="width: 40%;">
|
113 |
+
|
114 |
+
# Model Description
|
115 |
+
|
116 |
+
- **Developed by**: Iker García-Ferrero, Rodrigo Agerri, Aitziber Atutxa Salazar, Elena Cabrio, Iker de la Iglesia, Alberto Lavelli, Bernardo Magnini, Benjamin Molinet, Johana Ramirez-Romero, German Rigau, Jose Maria Villa-Gonzalez, Serena Villata and Andrea Zaninello
|
117 |
+
- **Contact**: [Iker García-Ferrero](https://ikergarcia1996.github.io/Iker-Garcia-Ferrero/) and [Rodrigo Agerri](https://ragerri.github.io/)
|
118 |
+
- **Website**: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)
|
119 |
+
- **Funding**: CHIST-ERA XAI 2019 call. Antidote (PCI2020-120717-2) funded by MCIN/AEI /10.13039/501100011033 and by European Union NextGenerationEU/PRTR
|
120 |
+
- **Model type**: text2text-generation
|
121 |
+
- **Language(s) (NLP)**: English, Spanish, French, Italian
|
122 |
+
- **License**: apache-2.0
|
123 |
+
- **Finetuned from model**: HiTZ/Medical-mT5-large
|
124 |
+
|
125 |
+
|
126 |
+
# Ethical Statement
|
127 |
+
<p align="justify">
|
128 |
+
Our research in developing Medical mT5, a multilingual text-to-text model for the medical domain, has ethical implications that we acknowledge.
|
129 |
+
Firstly, the broader impact of this work lies in its potential to improve medical communication and understanding across languages, which
|
130 |
+
can enhance healthcare access and quality for diverse linguistic communities. However, it also raises ethical considerations related to privacy and data security.
|
131 |
+
To create our multilingual corpus, we have taken measures to anonymize and protect sensitive patient information, adhering to
|
132 |
+
data protection regulations in each language's jurisdiction or deriving our data from sources that explicitly address this issue in line with
|
133 |
+
privacy and safety regulations and guidelines. Furthermore, we are committed to transparency and fairness in our model's development and evaluation.
|
134 |
+
We have worked to ensure that our benchmarks are representative and unbiased, and we will continue to monitor and address any potential biases in the future.
|
135 |
+
Finally, we emphasize our commitment to open source by making our data, code, and models publicly available, with the aim of promoting collaboration within
|
136 |
+
the research community.
|
137 |
+
</p>
|
138 |
+
|
139 |
+
# Citation
|
140 |
+
|
141 |
+
We will soon release a paper, but, for now, you can use:
|
142 |
+
|
143 |
+
```bibtext
|
144 |
+
@inproceedings{medical-mt5,
|
145 |
+
title = "{{Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain}}",
|
146 |
+
author = "{Iker García-Ferrero and Rodrigo Agerri and Aitziber Atutxa Salazar and Elena Cabrio and Iker de la Iglesia and Alberto Lavelli and Bernardo Magnini and Benjamin Molinet and Johana Ramirez-Romero and German Rigau and Jose Maria Villa-Gonzalez and Serena Villata and Andrea Zaninello}",
|
147 |
+
publisher = "Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING)",
|
148 |
+
year = 2024 }
|
149 |
+
|
150 |
+
```
|