Hgkang00 commited on
Commit
bf5ec6c
1 Parent(s): a146b14

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,445 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - dataset_size:10K<n<100K
9
+ - loss:TripletLoss
10
+ base_model: sentence-transformers/all-MiniLM-L6-v2
11
+ metrics:
12
+ - cosine_accuracy
13
+ - dot_accuracy
14
+ - manhattan_accuracy
15
+ - euclidean_accuracy
16
+ - max_accuracy
17
+ widget:
18
+ - source_sentence: The agoraphobic situations almost always provoke fear or anxiety.
19
+ sentences:
20
+ - Attending crowded events or public gatherings fills me with anxiety because of
21
+ the fear of a potential threat in the crowd.
22
+ - The struggle to focus during the day is often due to feeling exhausted even after
23
+ a full night's sleep.
24
+ - It's not uncommon for me to engage in risky behaviors like reckless driving or
25
+ reckless sexual encounters.
26
+ - source_sentence: Due to my insomnia, I have frequent headaches and muscle soreness.
27
+ sentences:
28
+ - My insomnia results in frequent headaches and muscle soreness for me.
29
+ - My fear of heights prevents me from going on roller coasters or visiting scenic
30
+ overlooks on mountains.
31
+ - Focusing on tasks becomes challenging due to my constant worry about when the
32
+ next panic attack will strike.
33
+ - source_sentence: Commuting to work, even when it's a short distance, feels draining.
34
+ sentences:
35
+ - Even a short distance can make driving or commuting to work feel draining.
36
+ - My fear of heights prevents me from going on roller coasters or visiting scenic
37
+ overlooks on mountains.
38
+ - The impact on my ability to focus on tasks is due to my constant worry about when
39
+ the next panic attack will strike.
40
+ - source_sentence: Frequent headaches and muscle soreness are a result of my insomnia.
41
+ sentences:
42
+ - My frequent headaches and muscle soreness are a direct result of my insomnia.
43
+ - My fear of heights prevents me from going on roller coasters or visiting scenic
44
+ overlooks on mountains.
45
+ - Focusing on tasks becomes challenging due to my constant worry about when the
46
+ next panic attack will strike.
47
+ - source_sentence: Experience frequent headaches and muscle soreness due to my insomnia.
48
+ sentences:
49
+ - I experience frequent headaches and muscle soreness because of my insomnia.
50
+ - The struggle to focus during the day is often due to feeling exhausted even after
51
+ a full night's sleep.
52
+ - Focusing on tasks becomes challenging due to my constant worry about when the
53
+ next panic attack will strike.
54
+ pipeline_tag: sentence-similarity
55
+ model-index:
56
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
57
+ results:
58
+ - task:
59
+ type: triplet
60
+ name: Triplet
61
+ dataset:
62
+ name: FT triple
63
+ type: FT-triple
64
+ metrics:
65
+ - type: cosine_accuracy
66
+ value: 0.8093060785368478
67
+ name: Cosine Accuracy
68
+ - type: dot_accuracy
69
+ value: 0.19069392146315223
70
+ name: Dot Accuracy
71
+ - type: manhattan_accuracy
72
+ value: 0.8103819257665411
73
+ name: Manhattan Accuracy
74
+ - type: euclidean_accuracy
75
+ value: 0.8093060785368478
76
+ name: Euclidean Accuracy
77
+ - type: max_accuracy
78
+ value: 0.8103819257665411
79
+ name: Max Accuracy
80
+ ---
81
+
82
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
83
+
84
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
85
+
86
+ ## Model Details
87
+
88
+ ### Model Description
89
+ - **Model Type:** Sentence Transformer
90
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
91
+ - **Maximum Sequence Length:** 256 tokens
92
+ - **Output Dimensionality:** 384 tokens
93
+ - **Similarity Function:** Cosine Similarity
94
+ <!-- - **Training Dataset:** Unknown -->
95
+ <!-- - **Language:** Unknown -->
96
+ <!-- - **License:** Unknown -->
97
+
98
+ ### Model Sources
99
+
100
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
101
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
102
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
103
+
104
+ ### Full Model Architecture
105
+
106
+ ```
107
+ SentenceTransformer(
108
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
109
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
110
+ (2): Normalize()
111
+ )
112
+ ```
113
+
114
+ ## Usage
115
+
116
+ ### Direct Usage (Sentence Transformers)
117
+
118
+ First install the Sentence Transformers library:
119
+
120
+ ```bash
121
+ pip install -U sentence-transformers
122
+ ```
123
+
124
+ Then you can load this model and run inference.
125
+ ```python
126
+ from sentence_transformers import SentenceTransformer
127
+
128
+ # Download from the 🤗 Hub
129
+ model = SentenceTransformer("Hgkang00/FT-triple-2")
130
+ # Run inference
131
+ sentences = [
132
+ 'Experience frequent headaches and muscle soreness due to my insomnia.',
133
+ 'I experience frequent headaches and muscle soreness because of my insomnia.',
134
+ "The struggle to focus during the day is often due to feeling exhausted even after a full night's sleep.",
135
+ ]
136
+ embeddings = model.encode(sentences)
137
+ print(embeddings.shape)
138
+ # [3, 384]
139
+
140
+ # Get the similarity scores for the embeddings
141
+ similarities = model.similarity(embeddings, embeddings)
142
+ print(similarities.shape)
143
+ # [3, 3]
144
+ ```
145
+
146
+ <!--
147
+ ### Direct Usage (Transformers)
148
+
149
+ <details><summary>Click to see the direct usage in Transformers</summary>
150
+
151
+ </details>
152
+ -->
153
+
154
+ <!--
155
+ ### Downstream Usage (Sentence Transformers)
156
+
157
+ You can finetune this model on your own dataset.
158
+
159
+ <details><summary>Click to expand</summary>
160
+
161
+ </details>
162
+ -->
163
+
164
+ <!--
165
+ ### Out-of-Scope Use
166
+
167
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
168
+ -->
169
+
170
+ ## Evaluation
171
+
172
+ ### Metrics
173
+
174
+ #### Triplet
175
+ * Dataset: `FT-triple`
176
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
177
+
178
+ | Metric | Value |
179
+ |:-------------------|:-----------|
180
+ | cosine_accuracy | 0.8093 |
181
+ | dot_accuracy | 0.1907 |
182
+ | manhattan_accuracy | 0.8104 |
183
+ | euclidean_accuracy | 0.8093 |
184
+ | **max_accuracy** | **0.8104** |
185
+
186
+ <!--
187
+ ## Bias, Risks and Limitations
188
+
189
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
190
+ -->
191
+
192
+ <!--
193
+ ### Recommendations
194
+
195
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
196
+ -->
197
+
198
+ ## Training Details
199
+
200
+ ### Training Dataset
201
+
202
+ #### Unnamed Dataset
203
+
204
+
205
+ * Size: 52,000 training samples
206
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
207
+ * Approximate statistics based on the first 1000 samples:
208
+ | | anchor | positive | negative |
209
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
210
+ | type | string | string | string |
211
+ | details | <ul><li>min: 29 tokens</li><li>mean: 29.0 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 23.16 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 24.81 tokens</li><li>max: 42 tokens</li></ul> |
212
+ * Samples:
213
+ | anchor | positive | negative |
214
+ |:-------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------|
215
+ | <code>Presence of delusions, hallucinations or disorganized speech, for a significant portion of time within a 1-month period</code> | <code>Even in the privacy of my room, I hear voices that tell me things that are not real frequently.</code> | <code>My lack of pleasure in things I once enjoyed has caused me to lose interest in hobbies or activities that used to bring me joy.</code> |
216
+ | <code>Presence of delusions, hallucinations or disorganized speech, for a significant portion of time within a 1-month period</code> | <code>It's common for me to hear things that are not real, even when I'm in my room by myself.</code> | <code>Starting multiple projects simultaneously during these episodes makes me feel like I can accomplish everything at once.</code> |
217
+ | <code>Presence of delusions, hallucinations or disorganized speech, for a significant portion of time within a 1-month period</code> | <code>Even in the privacy of my room, I hear voices that tell me things that are not real frequently.</code> | <code>Even after a full night's sleep, I struggle to get out of bed in the morning, feeling tired.</code> |
218
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
219
+ ```json
220
+ {
221
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
222
+ "triplet_margin": 5
223
+ }
224
+ ```
225
+
226
+ ### Evaluation Dataset
227
+
228
+ #### Unnamed Dataset
229
+
230
+
231
+ * Size: 3,718 evaluation samples
232
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
233
+ * Approximate statistics based on the first 1000 samples:
234
+ | | anchor | positive | negative |
235
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
236
+ | type | string | string | string |
237
+ | details | <ul><li>min: 18 tokens</li><li>mean: 32.73 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 22.72 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 24.7 tokens</li><li>max: 47 tokens</li></ul> |
238
+ * Samples:
239
+ | anchor | positive | negative |
240
+ |:-------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------|
241
+ | <code>Presence of delusions, hallucinations or disorganized speech, for a significant portion of time within a 1-month period</code> | <code>Observers in my vicinity have noted the escalation of my erratic and unpredictable behavior.</code> | <code>It's a challenge for me to seek assistance in public places, even when I clearly need help.</code> |
242
+ | <code>Presence of delusions, hallucinations or disorganized speech, for a significant portion of time within a 1-month period</code> | <code>There has been a growing awareness among those around me about my increasingly erratic and unpredictable behavior.</code> | <code>The difficulty of connecting with others on a deeper level stems from feeling like I've lost a part of myself due to the traumatic event.</code> |
243
+ | <code>Presence of delusions, hallucinations or disorganized speech, for a significant portion of time within a 1-month period</code> | <code>It has come to the attention of those around me that my behavior is becoming more erratic and unpredictable.</code> | <code>My thoughts exhibited a chaotic and disconnected pattern in that manic episode.</code> |
244
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
245
+ ```json
246
+ {
247
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
248
+ "triplet_margin": 5
249
+ }
250
+ ```
251
+
252
+ ### Training Hyperparameters
253
+ #### Non-Default Hyperparameters
254
+
255
+ - `eval_strategy`: epoch
256
+ - `per_device_train_batch_size`: 128
257
+ - `per_device_eval_batch_size`: 64
258
+ - `num_train_epochs`: 2
259
+ - `warmup_ratio`: 0.1
260
+
261
+ #### All Hyperparameters
262
+ <details><summary>Click to expand</summary>
263
+
264
+ - `overwrite_output_dir`: False
265
+ - `do_predict`: False
266
+ - `eval_strategy`: epoch
267
+ - `prediction_loss_only`: True
268
+ - `per_device_train_batch_size`: 128
269
+ - `per_device_eval_batch_size`: 64
270
+ - `per_gpu_train_batch_size`: None
271
+ - `per_gpu_eval_batch_size`: None
272
+ - `gradient_accumulation_steps`: 1
273
+ - `eval_accumulation_steps`: None
274
+ - `learning_rate`: 5e-05
275
+ - `weight_decay`: 0.0
276
+ - `adam_beta1`: 0.9
277
+ - `adam_beta2`: 0.999
278
+ - `adam_epsilon`: 1e-08
279
+ - `max_grad_norm`: 1.0
280
+ - `num_train_epochs`: 2
281
+ - `max_steps`: -1
282
+ - `lr_scheduler_type`: linear
283
+ - `lr_scheduler_kwargs`: {}
284
+ - `warmup_ratio`: 0.1
285
+ - `warmup_steps`: 0
286
+ - `log_level`: passive
287
+ - `log_level_replica`: warning
288
+ - `log_on_each_node`: True
289
+ - `logging_nan_inf_filter`: True
290
+ - `save_safetensors`: True
291
+ - `save_on_each_node`: False
292
+ - `save_only_model`: False
293
+ - `restore_callback_states_from_checkpoint`: False
294
+ - `no_cuda`: False
295
+ - `use_cpu`: False
296
+ - `use_mps_device`: False
297
+ - `seed`: 42
298
+ - `data_seed`: None
299
+ - `jit_mode_eval`: False
300
+ - `use_ipex`: False
301
+ - `bf16`: False
302
+ - `fp16`: False
303
+ - `fp16_opt_level`: O1
304
+ - `half_precision_backend`: auto
305
+ - `bf16_full_eval`: False
306
+ - `fp16_full_eval`: False
307
+ - `tf32`: None
308
+ - `local_rank`: 0
309
+ - `ddp_backend`: None
310
+ - `tpu_num_cores`: None
311
+ - `tpu_metrics_debug`: False
312
+ - `debug`: []
313
+ - `dataloader_drop_last`: False
314
+ - `dataloader_num_workers`: 0
315
+ - `dataloader_prefetch_factor`: None
316
+ - `past_index`: -1
317
+ - `disable_tqdm`: False
318
+ - `remove_unused_columns`: True
319
+ - `label_names`: None
320
+ - `load_best_model_at_end`: False
321
+ - `ignore_data_skip`: False
322
+ - `fsdp`: []
323
+ - `fsdp_min_num_params`: 0
324
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
325
+ - `fsdp_transformer_layer_cls_to_wrap`: None
326
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
327
+ - `deepspeed`: None
328
+ - `label_smoothing_factor`: 0.0
329
+ - `optim`: adamw_torch
330
+ - `optim_args`: None
331
+ - `adafactor`: False
332
+ - `group_by_length`: False
333
+ - `length_column_name`: length
334
+ - `ddp_find_unused_parameters`: None
335
+ - `ddp_bucket_cap_mb`: None
336
+ - `ddp_broadcast_buffers`: False
337
+ - `dataloader_pin_memory`: True
338
+ - `dataloader_persistent_workers`: False
339
+ - `skip_memory_metrics`: True
340
+ - `use_legacy_prediction_loop`: False
341
+ - `push_to_hub`: False
342
+ - `resume_from_checkpoint`: None
343
+ - `hub_model_id`: None
344
+ - `hub_strategy`: every_save
345
+ - `hub_private_repo`: False
346
+ - `hub_always_push`: False
347
+ - `gradient_checkpointing`: False
348
+ - `gradient_checkpointing_kwargs`: None
349
+ - `include_inputs_for_metrics`: False
350
+ - `eval_do_concat_batches`: True
351
+ - `fp16_backend`: auto
352
+ - `push_to_hub_model_id`: None
353
+ - `push_to_hub_organization`: None
354
+ - `mp_parameters`:
355
+ - `auto_find_batch_size`: False
356
+ - `full_determinism`: False
357
+ - `torchdynamo`: None
358
+ - `ray_scope`: last
359
+ - `ddp_timeout`: 1800
360
+ - `torch_compile`: False
361
+ - `torch_compile_backend`: None
362
+ - `torch_compile_mode`: None
363
+ - `dispatch_batches`: None
364
+ - `split_batches`: None
365
+ - `include_tokens_per_second`: False
366
+ - `include_num_input_tokens_seen`: False
367
+ - `neftune_noise_alpha`: None
368
+ - `optim_target_modules`: None
369
+ - `batch_eval_metrics`: False
370
+ - `batch_sampler`: batch_sampler
371
+ - `multi_dataset_batch_sampler`: proportional
372
+
373
+ </details>
374
+
375
+ ### Training Logs
376
+ | Epoch | Step | Training Loss | loss | FT-triple_max_accuracy |
377
+ |:------:|:----:|:-------------:|:------:|:----------------------:|
378
+ | 0.2015 | 82 | 4.5671 | - | - |
379
+ | 0.4029 | 164 | 4.0669 | - | - |
380
+ | 0.6044 | 246 | 3.9861 | - | - |
381
+ | 0.8059 | 328 | 3.9519 | - | - |
382
+ | 1.0 | 407 | - | 4.0778 | 0.8244 |
383
+ | 1.0074 | 410 | 3.9194 | - | - |
384
+ | 1.2088 | 492 | 3.8925 | - | - |
385
+ | 1.4103 | 574 | 3.8823 | - | - |
386
+ | 1.6118 | 656 | 3.8871 | - | - |
387
+ | 1.8133 | 738 | 3.8603 | - | - |
388
+ | 2.0 | 814 | - | 4.0806 | 0.8104 |
389
+
390
+
391
+ ### Framework Versions
392
+ - Python: 3.10.12
393
+ - Sentence Transformers: 3.0.0
394
+ - Transformers: 4.41.1
395
+ - PyTorch: 2.3.0+cu121
396
+ - Accelerate: 0.30.1
397
+ - Datasets: 2.19.1
398
+ - Tokenizers: 0.19.1
399
+
400
+ ## Citation
401
+
402
+ ### BibTeX
403
+
404
+ #### Sentence Transformers
405
+ ```bibtex
406
+ @inproceedings{reimers-2019-sentence-bert,
407
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
408
+ author = "Reimers, Nils and Gurevych, Iryna",
409
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
410
+ month = "11",
411
+ year = "2019",
412
+ publisher = "Association for Computational Linguistics",
413
+ url = "https://arxiv.org/abs/1908.10084",
414
+ }
415
+ ```
416
+
417
+ #### TripletLoss
418
+ ```bibtex
419
+ @misc{hermans2017defense,
420
+ title={In Defense of the Triplet Loss for Person Re-Identification},
421
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
422
+ year={2017},
423
+ eprint={1703.07737},
424
+ archivePrefix={arXiv},
425
+ primaryClass={cs.CV}
426
+ }
427
+ ```
428
+
429
+ <!--
430
+ ## Glossary
431
+
432
+ *Clearly define terms in order to be accessible across audiences.*
433
+ -->
434
+
435
+ <!--
436
+ ## Model Card Authors
437
+
438
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
439
+ -->
440
+
441
+ <!--
442
+ ## Model Card Contact
443
+
444
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
445
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22f71475374fecd1c092882bfd525889083353d58ee8f908ea0a8e969e079844
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff