Switched policy network architecture to 512x512x512
Browse files- README.md +1 -1
- a2c-PandaPickAndPlace-v3.zip +2 -2
- a2c-PandaPickAndPlace-v3/data +16 -14
- a2c-PandaPickAndPlace-v3/policy.optimizer.pth +2 -2
- a2c-PandaPickAndPlace-v3/policy.pth +2 -2
- config.json +1 -1
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaPickAndPlace-v3
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaPickAndPlace-v3
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -45.00 +/- 15.00
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaPickAndPlace-v3.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14ef99a96f956f35aa5353822ab5a4a4158ed87f9a034e8d0f55b251fe3b044b
|
3 |
+
size 8680802
|
a2c-PandaPickAndPlace-v3/data
CHANGED
@@ -11,14 +11,16 @@
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
15 |
"net_arch": [
|
16 |
{
|
17 |
"pi": [
|
|
|
18 |
512,
|
19 |
512
|
20 |
],
|
21 |
"vf": [
|
|
|
22 |
512,
|
23 |
512
|
24 |
]
|
@@ -36,15 +38,15 @@
|
|
36 |
"_num_timesteps_at_start": 0,
|
37 |
"seed": null,
|
38 |
"action_noise": null,
|
39 |
-
"start_time":
|
40 |
-
"learning_rate": 0.
|
41 |
"tensorboard_log": null,
|
42 |
"_last_obs": {
|
43 |
":type:": "<class 'collections.OrderedDict'>",
|
44 |
-
":serialized:": "
|
45 |
-
"achieved_goal": "[[
|
46 |
-
"desired_goal": "[[
|
47 |
-
"observation": "[[
|
48 |
},
|
49 |
"_last_episode_starts": {
|
50 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -52,10 +54,10 @@
|
|
52 |
},
|
53 |
"_last_original_obs": {
|
54 |
":type:": "<class 'collections.OrderedDict'>",
|
55 |
-
":serialized:": "
|
56 |
-
"achieved_goal": "[[ 0.
|
57 |
-
"desired_goal": "[[
|
58 |
-
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00
|
59 |
},
|
60 |
"_episode_num": 0,
|
61 |
"use_sde": false,
|
@@ -64,11 +66,11 @@
|
|
64 |
"_stats_window_size": 100,
|
65 |
"ep_info_buffer": {
|
66 |
":type:": "<class 'collections.deque'>",
|
67 |
-
":serialized:": "
|
68 |
},
|
69 |
"ep_success_buffer": {
|
70 |
":type:": "<class 'collections.deque'>",
|
71 |
-
":serialized:": "
|
72 |
},
|
73 |
"_n_updates": 5556,
|
74 |
"observation_space": {
|
@@ -119,6 +121,6 @@
|
|
119 |
"normalize_advantage": false,
|
120 |
"lr_schedule": {
|
121 |
":type:": "<class 'function'>",
|
122 |
-
":serialized:": "gAWVsQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMCDACUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgQBlIwDdmFslIWUKXSUUpRoFU5OaB0pUpSFlHSUUpRoI2g9fZR9lChoGGg0aCaMGWNvbnN0YW50X2ZuLjxsb2NhbHM+
|
123 |
}
|
124 |
}
|
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVtwAAAAAAAAB9lCiMCG5ldF9hcmNolF2UfZQojAJwaZRdlChNAAJNAAJNAAJljAJ2ZpRdlChNAAJNAAJNAAJldWGMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
"net_arch": [
|
16 |
{
|
17 |
"pi": [
|
18 |
+
512,
|
19 |
512,
|
20 |
512
|
21 |
],
|
22 |
"vf": [
|
23 |
+
512,
|
24 |
512,
|
25 |
512
|
26 |
]
|
|
|
38 |
"_num_timesteps_at_start": 0,
|
39 |
"seed": null,
|
40 |
"action_noise": null,
|
41 |
+
"start_time": 1717620001029747119,
|
42 |
+
"learning_rate": 0.001,
|
43 |
"tensorboard_log": null,
|
44 |
"_last_obs": {
|
45 |
":type:": "<class 'collections.OrderedDict'>",
|
46 |
+
":serialized:": "gAWVqwUAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolpAAAAAAAAAAirWFP2W2lj83CAw+ILPDvavWiz43CAw+4H+oPbZGVb/7Cww+Z7HHvSZ6nD86CAw+K3tnv49Dmj9zDAw+sZ4sv/hjh7+tCgw+7tn+vpq4ML83CAw+uMvXPjZSH7/7Cww+00Eev/vmND/7Cww+gywhvn4QPD37Cww+VnU2v6x0O777Cww+K91NP6nmG79zDAw+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksMSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolpAAAAAAAAAAuNkov7nwnT9cWoi/+fmsPvBtYb/OzLY/i2XTv4tjnL4F+LA/3zgWP7cHhD/d54m/zP9BPplJL77d54m/V1h4v9WSgL7qY+2+qjibv8Ap0T+TkwU/tvChPys3dr/d54m/9KAWv0ADvz/CRbU/baJgPvknIb9hiKc/lyzlPgfVDz9ENS2/7fGPvwCPIT4c5JI/lGgOSwxLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAMAAAAAAAASxALA159ZPx4Z/L4JVcE/Sao9v8bPBb8BAUm/irWFP2W2lj83CAw+0eFOvLot0bs16468qMhnPdz2FTvMEH09g61gu04lebzGwoM7h5ZOv2nlFb93xR+/0GyKvzKBwb80gK4+fb2CvyCzw72r1os+NwgMPtHhTry6LdG72a6NvKXIZz3A9hU7zBB9PYOtYLtOJXm8G8ODO5rOFL8+hGc+d+q1PUjFXz2ACCk/uKsXP6cakD/gf6g9tkZVv/sLDD63o1O8e1jQuyUNh7wbL2k9xkYnO8wQfT1CrWC7PyV5vI1ajztL0G8/T54xvthuQT6Ag5c+qCXMP1iUFMAIaYa/Z7HHvSZ6nD86CAw+uOJOvLst0bukKIy8oshnPZztFTtQEH09IXtgu00lebyDw4M7RlZ5P71OZz/9Csg+AvTcPvfzGr/oBqQ/Bq6Cvyt7Z7+PQ5o/cwwMPm2zUbw1/tG7jQSIvPSOZz3LnjM7BVZ8PecKt7vMjYe8bBuIOxFglT/lmeW9fzcHvjN3uz36y3S/PkSCv75zT7+xniy/+GOHv60KDD7AEVO8Es3Lu4yvjrw7gmg9oR8QO8wQfT2ErWC7TiV5vBgohDujGoQ/hM4zP/odOL+YrTw/3a2mvh8ziT/rnGQ/7tn+vpq4ML83CAw+B1lTvFkp4LuFJIm8Q2hoPZ7jCTvMEH09hK1gu08leby804c7vh6CP6RNPz/Hv6I+YyXqPtwV7b7TkeO/HPWFv7jL1z42Uh+/+wsMPnKjU7yhV9C7olB3vA8vaT20RCc7zBB9PUKtYLs/JXm8flePOx1LED+noCU+F0ZWv4iuCL5Gj3o/hMqDvokeSb/TQR6/++Y0P/sLDD7Io1O8pljQu1EaibweL2k98kYnO88QfT0mrGC7MiV5vBpbjzu2e2G+rLrCv8HGVb/KJls+TB1+vsT9UT+FOJQ/gywhvn4QPD37Cww+rKNTvFtY0LsLWYW8GS9pPXdGJzvMEH09Qq1guz8lebwYWo87NdmKP4Qkuz4YW1e/5SARP8YWmr87wlu9UGmGv1Z1Nr+sdDu++wsMPqijU7xNWNC7DKqEvBkvaT1YRic7zBB9PUKtYLs/JXm86VmPO10hyL9bCWE/M0hHvwNczL+MR52/65dwPjMCkD8r3U0/qeYbv3MMDD7kGlO8QLTWu0S2jrxI8Gk9i4YFOwZWfD3M8wa7HIlWvHJ7gzuUaA5LDEsThpRoEnSUUpR1Lg==",
|
47 |
+
"achieved_goal": "[[ 1.0446026 1.1774412 0.13675009]\n [-0.0955565 0.27312216 0.13675009]\n [ 0.08227515 -0.8331102 0.13676445]\n [-0.09750634 1.2224777 0.13675013]\n [-0.90422314 1.2051867 0.13676624]\n [-0.67429644 -1.0577383 0.13675947]\n [-0.49775642 -0.6903168 0.13675009]\n [ 0.42147613 -0.6223482 0.13676445]\n [-0.6181919 0.7066495 0.13676445]\n [-0.15739636 0.04591417 0.13676445]\n [-0.7127279 -0.18306226 0.13676445]\n [ 0.804156 -0.60898834 0.13676624]]",
|
48 |
+
"desired_goal": "[[-0.6595721 1.2339088 -1.0652575 ]\n [ 0.33784464 -0.88058376 1.4281251 ]\n [-1.6515363 -0.30544695 1.382569 ]\n [ 0.5868053 1.0314854 -1.0773884 ]\n [ 0.18945235 -0.17117919 -1.0773884 ]\n [-0.97009796 -0.25112024 -0.4636529 ]\n [-1.2126667 1.6340866 0.52178305]\n [ 1.2651584 -0.9617793 -1.0773884 ]\n [-0.58839345 1.4922867 1.4161913 ]\n [ 0.2193696 -0.6295162 1.3088495 ]\n [ 0.44760582 0.5618443 -0.676594 ]\n [-1.1245705 0.15777206 1.1475863 ]]",
|
49 |
+
"observation": "[[-2.0432172e+00 8.5009521e-01 -4.9237913e-01 1.5104076e+00\n -7.4087960e-01 -5.2270162e-01 -7.8517157e-01 1.0446026e+00\n 1.1774412e+00 1.3675009e-01 -1.2627081e-02 -6.3836249e-03\n -1.7446140e-02 5.6587845e-02 2.2882735e-03 6.1783597e-02\n -3.4283109e-03 -1.5206648e-02 4.0210215e-03]\n [-8.0698436e-01 -5.8553177e-01 -6.2410682e-01 -1.0814457e+00\n -1.5117552e+00 3.4082186e-01 -1.0214077e+00 -9.5556498e-02\n 2.7312216e-01 1.3675009e-01 -1.2627081e-02 -6.3836249e-03\n -1.7295288e-02 5.6587834e-02 2.2882670e-03 6.1783597e-02\n -3.4283109e-03 -1.5206648e-02 4.0210611e-03]\n [-5.8127749e-01 2.2609040e-01 8.8826112e-02 5.4631501e-02\n 6.6028595e-01 5.9246397e-01 1.1258134e+00 8.2275152e-02\n -8.3311021e-01 1.3676445e-01 -1.2917451e-02 -6.3582039e-03\n -1.6485760e-02 5.6929689e-02 2.5524362e-03 6.1783597e-02\n -3.4282957e-03 -1.5206634e-02 4.3748082e-03]\n [ 9.3677205e-01 -1.7345546e-01 1.8889940e-01 2.9592514e-01\n 1.5948992e+00 -2.3215542e+00 -1.0500803e+00 -9.7506337e-02\n 1.2224777e+00 1.3675013e-01 -1.2627296e-02 -6.3836253e-03\n -1.7109223e-02 5.6587823e-02 2.2877222e-03 6.1783135e-02\n -3.4253078e-03 -1.5206647e-02 4.0211095e-03]\n [ 9.7397268e-01 9.0354520e-01 3.9070883e-01 4.3154913e-01\n -6.0528511e-01 1.2814608e+00 -1.0209358e+00 -9.0422314e-01\n 1.2051867e+00 1.3676624e-01 -1.2799126e-02 -6.4084777e-03\n -1.6603732e-02 5.6532815e-02 2.7407880e-03 6.1605472e-02\n -5.5860165e-03 -1.6547106e-02 4.1536596e-03]\n [ 1.1669942e+00 -1.1210994e-01 -1.3204764e-01 9.1535948e-02\n -9.5623744e-01 -1.0177076e+00 -8.1035984e-01 -6.7429644e-01\n -1.0577383e+00 1.3675947e-01 -1.2882650e-02 -6.2195146e-03\n -1.7417692e-02 5.6764822e-02 2.1991509e-03 6.1783597e-02\n -3.4283111e-03 -1.5206648e-02 4.0330999e-03]\n [ 1.0320629e+00 7.0236993e-01 -7.1920741e-01 7.3702383e-01\n -3.2554522e-01 1.0718726e+00 8.9301938e-01 -4.9775642e-01\n -6.9031680e-01 1.3675009e-01 -1.2899644e-02 -6.8408665e-03\n -1.6741047e-02 5.6740057e-02 2.1040211e-03 6.1783597e-02\n -3.4283111e-03 -1.5206649e-02 4.1451138e-03]\n [ 1.0165632e+00 7.4727845e-01 3.1786940e-01 4.5731649e-01\n -4.6305740e-01 -1.7778877e+00 -1.0465426e+00 4.2147613e-01\n -6.2234819e-01 1.3676445e-01 -1.2917386e-02 -6.3581024e-03\n -1.5094908e-02 5.6929644e-02 2.5523128e-03 6.1783597e-02\n -3.4282957e-03 -1.5206634e-02 4.3744436e-03]\n [ 5.6364614e-01 1.6174565e-01 -8.3700699e-01 -1.3347828e-01\n 9.7874868e-01 -2.5740445e-01 -7.8562218e-01 -6.1819190e-01\n 7.0664948e-01 1.3676445e-01 -1.2917466e-02 -6.3582240e-03\n -1.6736181e-02 5.6929700e-02 2.5524464e-03 6.1783608e-02\n -3.4282296e-03 -1.5206622e-02 4.3748738e-03]\n [-2.2019848e-01 -1.5213218e+00 -8.3506399e-01 2.1401516e-01\n -2.4815863e-01 8.2027841e-01 1.1579748e+00 -1.5739636e-01\n 4.5914166e-02 1.3676445e-01 -1.2917440e-02 -6.3581890e-03\n -1.6277811e-02 5.6929681e-02 2.5524178e-03 6.1783597e-02\n -3.4282957e-03 -1.5206634e-02 4.3747537e-03]\n [ 1.0847536e+00 3.6551297e-01 -8.4123373e-01 5.6690818e-01\n -1.2038200e+00 -5.3652029e-02 -1.0500889e+00 -7.1272790e-01\n -1.8306226e-01 1.3676445e-01 -1.2917437e-02 -6.3581825e-03\n -1.6194366e-02 5.6929681e-02 2.5524106e-03 6.1783597e-02\n -3.4282957e-03 -1.5206634e-02 4.3747318e-03]\n [-1.5635182e+00 8.7904900e-01 -7.7844542e-01 -1.5965580e+00\n -1.2287459e+00 2.3495452e-01 1.1250671e+00 8.0415601e-01\n -6.0898834e-01 1.3676624e-01 -1.2884829e-02 -6.5522492e-03\n -1.7420895e-02 5.7113916e-02 2.0374383e-03 6.1605476e-02\n -2.0592092e-03 -1.3094213e-02 4.0125186e-03]]"
|
50 |
},
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
54 |
},
|
55 |
"_last_original_obs": {
|
56 |
":type:": "<class 'collections.OrderedDict'>",
|
57 |
+
":serialized:": "gAWVqwUAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolpAAAAAAAAAAqxnEPKrb4j0K16M8auehvNePyj0K16M83KtZvfP4/DwK16M8bic7vTHrvjwK16M8HW4Uvp3iLb0K16M83i7KPWm5eb0K16M8DfnKu5Jb9T0K16M8j/jZvDqBCz4K16M8md4WvdMPej0K16M8wtnpvYTvi70K16M8Tp/FPVpTnb0K16M8ejgPPtL+sT0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksMSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolpAAAAAAAAAAhnxqPacEGD4K16M8QnvoO/2pDT4UPD0+0wi7u+gJDLxh1FY+2WcWvlzwmj2nBCA+I6bRPa0NEj4TWgQ9rv0QvtAW3z1OtC0+kyfhvSwuZr2xymA+cS7YvFmEyjwK16M8xDi8PInn5L3nWRo+SYhGvNLFbjwK16M8KN+4PYBm970K16M8FSADPgYEdD3DSqc9lGgOSwxLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAMAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAqxnEPKrb4j0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAGrnobzXj8o9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADcq1m98/j8PArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAbic7vTHrvjwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAB1uFL6d4i29CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADeLso9abl5vQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAADfnKu5Jb9T0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAI/42bw6gQs+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACZ3ha90w96PQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAwtnpvYTvi70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAE6fxT1aU529CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAB6OA8+0v6xPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaA5LDEsThpRoEnSUUpR1Lg==",
|
58 |
+
"achieved_goal": "[[ 0.02393802 0.11077054 0.02 ]\n [-0.01976367 0.09890717 0.02 ]\n [-0.05314241 0.03088043 0.02 ]\n [-0.0456919 0.02330551 0.02 ]\n [-0.1449513 -0.04245244 0.02 ]\n [ 0.0987222 -0.06096784 0.02 ]\n [-0.00619424 0.11980356 0.02 ]\n [-0.02660778 0.13623515 0.02 ]\n [-0.03683338 0.06105025 0.02 ]\n [-0.11418487 -0.06832793 0.02 ]\n [ 0.09649526 -0.07681914 0.02 ]\n [ 0.13986388 0.08691181 0.02 ]]",
|
59 |
+
"desired_goal": "[[ 0.05724766 0.14845525 0.02 ]\n [ 0.00709477 0.13834377 0.18479949]\n [-0.00570784 -0.00854728 0.20979454]\n [-0.14688052 0.07565376 0.15626775]\n [ 0.10236766 0.1426303 0.03231246]\n [-0.14159271 0.10893023 0.16963312]\n [-0.10993876 -0.05619638 0.2195232 ]\n [-0.02638933 0.02472131 0.02 ]\n [ 0.02297629 -0.11176974 0.15073358]\n [-0.01211745 0.01457353 0.02 ]\n [ 0.09026939 -0.12080097 0.02 ]\n [ 0.12805207 0.05957415 0.08168557]]",
|
60 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 2.3938021e-02\n 1.1077054e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.9763667e-02\n 9.8907165e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -5.3142413e-02\n 3.0880427e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -4.5691900e-02\n 2.3305507e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.4495130e-01\n -4.2452443e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 9.8722205e-02\n -6.0967837e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -6.1942399e-03\n 1.1980356e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -2.6607780e-02\n 1.3623515e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -3.6833379e-02\n 6.1050247e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.1418487e-01\n -6.8327934e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 9.6495256e-02\n -7.6819137e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3986388e-01\n 8.6911812e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
|
61 |
},
|
62 |
"_episode_num": 0,
|
63 |
"use_sde": false,
|
|
|
66 |
"_stats_window_size": 100,
|
67 |
"ep_info_buffer": {
|
68 |
":type:": "<class 'collections.deque'>",
|
69 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHAAAAAAAAAACMAWyUSwGMAXSUR0CzPIMAmzBzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPIVa4c3mdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPGAssg+ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPPoEW69TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPLvD+BH1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPQ7Hp8nedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPUeNPxhEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPLNEgGKRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPNKY/mkndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPPHE/B3zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPYqR+z+ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPU5YgaFVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPbmw7kn1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPbd9hJAddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPZJFkQPJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPjPzz3AVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPfDrmhdudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPkYBV+7UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPoAQ6IWQdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CzPogSWZ7YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPe4DLbHqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPgygK4QSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPioPCl7/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPscKgIyCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPn3974SIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPujj/+85dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPvaMvRJFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPtFR51NhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzP3Brvb48dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPy/NzKcNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzP4LY5DJEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzP8HJYDDCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPyEqpcX4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzP0Ai7kGSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzP2aDbrTqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzP/7nX/YKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzP7UwrUb2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQCBy4nWrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQCnc1wYMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQAToIOYqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQKEcCHRDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQGnjp9qldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQLhiTdLydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQPd6Tnq3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQGOGfwqidX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CzQGkGFBY3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQIBtLteEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQJ+Vkc0cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQTlUADJVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQPlC5VfedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQWUjgQ6IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQX5+lTFVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQVlZkkKNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQf2l/H5rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQbi3PRiPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQgvhESdwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQkwfZElWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQbYIBzV+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQc615Sm7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQe7vXsgMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQo9NnGsFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQlBk7OmjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQr0Uj9n9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQsaU3XI2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQqGd7OVxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQzvBJqZddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQvdhJAdGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQ01rylN2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQ4ypNsWPdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CzQ5SKm8/VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQvlEd/8VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQxAV9F4LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQzPQ4S6EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQ8zynUDudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQ4Z5Rjz7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQ/Nqk/KRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQ/kjxCpndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQ9QIhQnAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRG/FzdULdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRDD101ZUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRIH8GcFydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRMSauwHJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRC3TRYzSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzREU4zabndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRGPaURnOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRPiT6i0wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRLjakAPvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRSGza9K3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRSSSeRPodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRP+TJQtSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRZ/vfCQ+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRVuO801qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRbB7E5yVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRfKs+3YudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRVbiMo+fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRW6gElmfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRYt8qnWKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRih6v7m/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzReMVHnU2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRk+IqLCOdWUu"
|
70 |
},
|
71 |
"ep_success_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiJiYmJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYiJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYiJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYllLg=="
|
74 |
},
|
75 |
"_n_updates": 5556,
|
76 |
"observation_space": {
|
|
|
121 |
"normalize_advantage": false,
|
122 |
"lr_schedule": {
|
123 |
":type:": "<class 'function'>",
|
124 |
+
":serialized:": "gAWVsQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMCDACUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgQBlIwDdmFslIWUKXSUUpRoFU5OaB0pUpSFlHSUUpRoI2g9fZR9lChoGGg0aCaMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCh9lGgqTmgrTmgsaBloLU5oLmgwRz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRV2UaEd9lHWGlIZSMC4="
|
125 |
}
|
126 |
}
|
a2c-PandaPickAndPlace-v3/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3461daf9245e841ca17e82eb4b587640ad9f26cecaacf44833df06bd8cedc31b
|
3 |
+
size 4324579
|
a2c-PandaPickAndPlace-v3/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:469583a0d43f32fb124b5e7f5536df535b6e40bd091570b24be3976266a3adfd
|
3 |
+
size 4326051
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f675b1e8dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f675b1ec240>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVsQAAAAAAAAB9lCiMCG5ldF9hcmNolF2UfZQojAJwaZRdlChNAAJNAAJljAJ2ZpRdlChNAAJNAAJldWGMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "net_arch": [{"pi": [512, 512], "vf": [512, 512]}], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000080, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717617186968720582, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVqwUAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolpAAAAAAAAAAy/Zfv4Y42j4l4B4+Qao1v+dfGz1z4B4+EEizvpgsiz5M4R4+VBXEPksSkT+p4h4+Z9Zdv79jqb743R4+7I67Pijriz8l4B4+NzkEvvFXJb5M4R4+qEBSP+ujcT964h4+NDFewC7yJz+F4R4+i8GIv4hn1D4l4B4+P42SPWeAj78l4B4+XgADvDDraj/l4R4+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksMSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolpAAAAAAAAAAUhjzPZlCJ7/wI4m/i5mdP/Fgmb+Vk+u9frDXv17cCD87JKw+0Z91vx2Alz9UeJU/tQ1hv2k4Bj/wI4m/XIlkv3hbyj8uDMw/JAnOv2QWGL/wI4m/Y5YDPuqGVr/wI4m/BZqlP+M/lj7wI4m/LynTvwskvb8djKK84Lihv/XWvT7FsBw/hHAAP+kNJD8EN3c/lGgOSwxLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAMAAAAAAACBo1E/pg78vptCLj4dAMI+DJAKP1GdKD/24HW/y/Zfv4Y42j4l4B4+eJujvHBgyrzFrse8JNbuO5ENfbs6/o499pXNuthv57zndlU7KNEwPwWsUb8X/Um/HHesv6Ru5r/JCty+O81oP0GqNb/nXxs9c+AePpdkpLwElsm8TbWsvCrK4jtXSHC7Ov6OPbSWzbrMb+e8sSR6Owx/TD4jYGM+MQMMv3M92j9YUY0/JuWzve+CkT8QSLO+mCyLPkzhHj74F6S8az7IvIoXwLzEnPU76FR1uzr+jj19lc260W/nvKLibTtjCbg+qvibP9tVcb/V1wi//f+eP+xoST7LGpU/VBXEPksSkT+p4h4+c7GjvJbQyLzv08O8ow3vOxeUgbtdAo89SJvUuk1t57y9CVk7QmlVP7q8Ar8wl8m+y0jJPk5ic79wCk8/ENdCv2fWXb+/Y6m++N0ePvL6obymbMi89FbIvIZ06Ds5mIK7Ov6OPfWVzbrYb+e8q5lUO9ZlOj+NAZA/X5cJvkBPtj+7vsK/OnWgPkwHfr/sjrs+KOuLPyXgHj54m6O8cGDKvNZtx7wi1u47jA19uzr+jj32lc262G/nvPx2VTtHfsM+vztXPIZv174ILca/oSLMPuyIp7+fF3A/NzkEvvFXJb5M4R4+mV+jvF9sybxLMce8mmPnO2oXiLs6/o49XJXNus9v57xkLkQ7Mvi5PmgZAD/qy16/WDI5QAncar8q+ac/igx9v6hAUj/ro3E/euIePo64o7y9rMi8BkAyv8al7jtFuoG7lQmPPTx807q6DOi84n1ZO0OVMD7lf0Q+xldPPpYsCD/Wgc4/WeIFwEgbhz80MV7ALvInP4XhHj5qQ6O8JxTJvPOXQr9Jees7nOmEu+n+jj10wsq6r1DnvFonaztWs1M/egA9voq2Hz6TaLI+XRPOP3PFw7/Qx1s/i8GIv4hn1D4l4B4+eJujvG9gyrw7Sca8G9buO3MNfbs6/o499pXNuthv57xXd1U7+LsRv3QTx7776vy+JXO2P/CoV79WWoa/25WVPz+Nkj1ngI+/JeAePiDXo7w4Qse8pBfGvFVE7zsdRYW7Ov6OPfeVzbrYb+e8Z3dVO/pIXD+y/iY/kTRDv44ujD4fDJI/pkKSPl0Oe79eAAO8MOtqP+XhHj4YUKS8xSLJvB99v7wg++g7si5yu8JQjz20MWe7403xvPIPZDuUaA5LDEsThpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.8748595 0.4262125 0.15515192]\n [-0.7096291 0.03793326 0.15515308]\n [-0.35015917 0.2718246 0.15515631]\n [ 0.38297522 1.1333708 0.15516151]\n [-0.86655277 -0.33083913 0.15514362]\n [ 0.36632478 1.0931139 0.15515192]\n [-0.1291245 -0.16146828 0.15515631]\n [ 0.8212991 0.94390744 0.15516081]\n [-3.4717531 0.6560391 0.15515716]\n [-1.0684065 0.41485238 0.15515192]\n [ 0.07155847 -1.121106 0.15515192]\n [-0.00799569 0.9176512 0.1551586 ]]", "desired_goal": "[[ 0.11869873 -0.65335995 -1.0714092 ]\n [ 1.2312483 -1.1982709 -0.11502758]\n [-1.6850736 0.53461254 0.33621392]\n [-0.95946985 1.1835972 1.1677346 ]\n [-0.8791154 0.52429825 -1.0714092 ]\n [-0.89272094 1.5809164 1.5941217 ]\n [-1.609654 -0.59409165 -1.0714092 ]\n [ 0.12850337 -0.8379961 -1.0714092 ]\n [ 1.2937628 0.29345617 -1.0714092 ]\n [-1.6496943 -1.4776624 -0.0198422 ]\n [-1.2634544 0.37078062 0.6120723 ]\n [ 0.50171685 0.64083725 0.9656832 ]]", "observation": "[[ 8.1890112e-01 -4.9229926e-01 1.7017595e-01 3.7890711e-01\n 5.4126048e-01 6.5865046e-01 -9.6046388e-01 -8.7485951e-01\n 4.2621249e-01 1.5515192e-01 -1.9971594e-02 -2.4704188e-02\n -2.4375329e-02 7.2887111e-03 -3.8612823e-03 6.9820836e-02\n -1.5684951e-03 -2.8251573e-02 3.2572092e-03]\n [ 6.9069147e-01 -8.1903106e-01 -7.8901809e-01 -1.3473849e+00\n -1.8002515e+00 -4.2976978e-01 9.0938157e-01 -7.0962912e-01\n 3.7933256e-02 1.5515308e-01 -2.0067496e-02 -2.4607666e-02\n -2.1082545e-02 6.9210725e-03 -3.6664212e-03 6.9820836e-02\n -1.5685172e-03 -2.8251551e-02 3.8168842e-03]\n [ 1.9970340e-01 2.2204642e-01 -5.4692370e-01 1.7050003e+00\n 1.1040449e+00 -8.7839410e-02 1.1368083e+00 -3.5015917e-01\n 2.7182460e-01 1.5515631e-01 -2.0030960e-02 -2.4443826e-02\n -2.3448724e-02 7.4954946e-03 -3.7434641e-03 6.9820836e-02\n -1.5684810e-03 -2.8251560e-02 3.6298414e-03]\n [ 3.5944661e-01 1.2185261e+00 -9.4271630e-01 -5.3454334e-01\n 1.2421871e+00 1.9668931e-01 1.1648802e+00 3.8297522e-01\n 1.1333708e+00 1.5516151e-01 -1.9982075e-02 -2.4513524e-02\n -2.3904769e-02 7.2953268e-03 -3.9544213e-03 6.9828726e-02\n -1.6220594e-03 -2.8250361e-02 3.3117377e-03]\n [ 8.3363736e-01 -5.1069224e-01 -3.9373159e-01 3.9313349e-01\n -9.5071876e-01 8.0875301e-01 -7.6109409e-01 -8.6655277e-01\n -3.3083913e-01 1.5514362e-01 -1.9772980e-02 -2.4465870e-02\n -2.4455525e-02 7.0939688e-03 -3.9854315e-03 6.9820836e-02\n -1.5684949e-03 -2.8251573e-02 3.2440226e-03]\n [ 7.2811639e-01 1.1250473e+00 -1.3436650e-01 1.4242935e+00\n -1.5214456e+00 3.1339437e-01 -9.9229884e-01 3.6632478e-01\n 1.0931139e+00 1.5515192e-01 -1.9971594e-02 -2.4704188e-02\n -2.4344366e-02 7.2887102e-03 -3.8612811e-03 6.9820836e-02\n -1.5684951e-03 -2.8251573e-02 3.2572141e-03]\n [ 3.8182279e-01 1.3136803e-02 -4.2077273e-01 -1.5482492e+00\n 3.9870170e-01 -1.3088660e+00 9.3786043e-01 -1.2912451e-01\n -1.6146828e-01 1.5515631e-01 -1.9943045e-02 -2.4587808e-02\n -2.4315497e-02 7.0614340e-03 -4.1531818e-03 6.9820836e-02\n -1.5684771e-03 -2.8251557e-02 2.9934878e-03]\n [ 3.6322170e-01 5.0038767e-01 -8.7029898e-01 2.8936977e+00\n -9.1741997e-01 1.3122914e+00 -9.8847258e-01 8.2129908e-01\n 9.4390744e-01 1.5516081e-01 -1.9985463e-02 -2.4496431e-02\n -6.9628942e-01 7.2829453e-03 -3.9589726e-03 6.9842495e-02\n -1.6135047e-03 -2.8326381e-02 3.3186604e-03]\n [ 1.7244439e-01 1.9189413e-01 2.0248327e-01 5.3193033e-01\n 1.6133373e+00 -2.0919402e+00 1.0555201e+00 -3.4717531e+00\n 6.5603912e-01 1.5515716e-01 -1.9929606e-02 -2.4545742e-02\n -7.6013106e-01 7.1860892e-03 -4.0561687e-03 6.9822140e-02\n -1.5469329e-03 -2.8236715e-02 3.5881610e-03]\n [ 8.2695520e-01 -1.8457213e-01 1.5596977e-01 3.4845409e-01\n 1.6099659e+00 -1.5294632e+00 8.5851765e-01 -1.0684065e+00\n 4.1485238e-01 1.5515192e-01 -1.9971594e-02 -2.4704186e-02\n -2.4204841e-02 7.2887070e-03 -3.8612753e-03 6.9820836e-02\n -1.5684951e-03 -2.8251573e-02 3.2572353e-03]\n [-5.6927443e-01 -3.8882029e-01 -4.9398026e-01 1.4253889e+00\n -8.4242153e-01 -1.0496318e+00 1.1686357e+00 7.1558468e-02\n -1.1211060e+00 1.5515192e-01 -2.0000041e-02 -2.4323568e-02\n -2.4181195e-02 7.3018470e-03 -4.0670768e-03 6.9820836e-02\n -1.5684952e-03 -2.8251573e-02 3.2572390e-03]\n [ 8.6048853e-01 6.5232384e-01 -7.6252085e-01 2.7379268e-01\n 1.1409949e+00 2.8566474e-01 -9.8068792e-01 -7.9956930e-03\n 9.1765118e-01 1.5515859e-01 -2.0057723e-02 -2.4552712e-02\n -2.3375092e-02 7.1100146e-03 -3.6954102e-03 6.9978252e-02\n -3.5277428e-03 -2.9456085e-02 3.4799543e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLDIWUjAFDlHSUUpQu"}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVqwUAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolpAAAAAAAAAA9z40PVZjbL0K16M8OyRhvc3sk70K16M8V7dBvTN3jzwK16M8kix8PZWRBL4K16M8bcQtPVnyRDwK16M8qzY2PVKgCj0K16M8E6oFvrpWvr0K16M8CTOUPW6Hkr0K16M8YVVQPP/h270K16M8Tjv7PYvcAj4K16M8RYSNO7QzBb0K16M8PGEEvr5DoT0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksMSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolpAAAAAAAAAAF+DvvGk5LDue0R4+/SI7PWDfFb6rzFM+oXxAvdmbxL1Tngs+QE8GvY3x3TxoSrU8dQhdPagrHrudOiQ+DLg5PT1JVL0K16M89iG4vFpY8D0K16M8ijvEPZnOlT0K16M8R08GPgRY1L0msWo9H+RovdEGZb0K16M8hbCnvQSCgT2ASFY92VxTPVylNT0RHdo9lGgOSwxLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAMAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA9z40PVZjbL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAADskYb3N7JO9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABXt0G9M3ePPArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAkix8PZWRBL4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAG3ELT1Z8kQ8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACrNjY9UqAKPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAE6oFvrpWvr0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAAkzlD1uh5K9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABhVVA8/+HbvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAATjv7PYvcAj4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAEWEjTu0MwW9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAA8YQS+vkOhPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaA5LDEsThpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.04400536 -0.05771192 0.02 ]\n [-0.05496619 -0.07222901 0.02 ]\n [-0.04729399 0.01751289 0.02 ]\n [ 0.06156594 -0.1294616 0.02 ]\n [ 0.04242365 0.01202067 0.02 ]\n [ 0.04448573 0.0338443 0.02 ]\n [-0.1305316 -0.09293886 0.02 ]\n [ 0.07236297 -0.07154737 0.02 ]\n [ 0.01271567 -0.10736465 0.02 ]\n [ 0.12267171 0.12779443 0.02 ]\n [ 0.00431875 -0.03252001 0.02 ]\n [-0.12927717 0.07874249 0.02 ]]", "desired_goal": "[[-0.02928166 0.00262793 0.1550965 ]\n [ 0.04568766 -0.14635992 0.20683543]\n [-0.04699386 -0.09600038 0.13634615]\n [-0.03279042 0.02709272 0.02213021]\n [ 0.05396314 -0.00241349 0.16037984]\n [ 0.04534154 -0.05182766 0.02 ]\n [-0.02247713 0.11735602 0.02 ]\n [ 0.09581669 0.07314796 0.02 ]\n [ 0.1311618 -0.1036835 0.05729785]\n [-0.05685818 -0.0559147 0.02 ]\n [-0.08187965 0.06323627 0.05231524]\n [ 0.05160222 0.04434715 0.10650075]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.4005360e-02\n -5.7711922e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -5.4966193e-02\n -7.2229005e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -4.7293987e-02\n 1.7512893e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 6.1565943e-02\n -1.2946160e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.2423654e-02\n 1.2020671e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.4485729e-02\n 3.3844300e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.3053159e-01\n -9.2938855e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 7.2362967e-02\n -7.1547374e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.2715668e-02\n -1.0736465e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.2267171e-01\n 1.2779443e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.3187463e-03\n -3.2520011e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.2927717e-01\n 7.8742489e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -8.000000000008001e-05, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHAAAAAAAAAACMAWyUSwGMAXSUR0Cgn7iS7oStdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoDb0nPVvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoH2SU1Q7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgn2OmBOHndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgnx384xUOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoBkcCHRDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoSAZ0jkddX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CgoCposZpBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoB3OGCZndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoLHzH0btdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgobo86mwadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoXiN83MqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoeZGz8gqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgoik4//vOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgoqla0QbudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgowJFCswMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgoed43WFwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgoaKMWGh3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgo65NO/L1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgorfjsD4hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgopyAYpDvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgoyy6MBIXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpE11W8yvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgo/91uBMBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpGVcdHUddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpLJiZv1ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpTT0QK8ddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpXmzjWCmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpF+XiR4hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpBj3dsSCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgphvCuU2UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpSZCv5gxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpQ5SeiBYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpZY9X9zfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgprb70nPWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgpmjZUT+OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgpub7bcoIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgpy13t8eCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgp6t9H+ZPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgp/BUrCm/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgptbmlqJudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgpo3GGVRldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqJjbrTpgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgp6Ma86FNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgp5loUSIydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqCl7tzCDdX2UKGgGR8AkAAAAAAAAaAdLC2gIR0CgqTXYlIEsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqUwlByCGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqQtdqtYCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqXOVX3g2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqbVX3g1ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgqjd7v5P/dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CgqkcPnSv1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqpCjL0SRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqXWK2rn1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqSvsJIDpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqjVZkkKNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqiAOJ+DwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgqrdDYywfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgq9xoAXEZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgq/QRPGhmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgq6Ymb9ZSdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cgq7R//echdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrBHkLhJidX2UKGgGR8BGAAAAAAAAaAdLLWgIR0CgrPAaNuLrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrGaWgOBldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrPez2OABdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrBxnvlU7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgq9JTVDrrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrOAGSpzcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrMe3pfQbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrVOkLx7RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrmY//vORdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgrn9dmg8KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrkThYNiIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrrpTER8MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgr4ImPYFrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgrvk3sHB2dX2UKGgGR8AQAAAAAAAAaAdLBWgIR0CgrvWGh24edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgr4nxz7uVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgrqrzf779dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgrlbLU1AJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgr19bPhQ4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgr1XaBZp0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgr+68pTdddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsPZf+jubdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsQsFMZgpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsNg7o0Q9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsgP6j323dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsXqGlANYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsW1uzhP1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsgJS75EddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsTP+wTufdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsPCILw4LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgshN/nW8RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsftLUTcqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgsoYFaB7NdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgs5BpQDV6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgs5YISlFddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cgs07mMfihdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmIiYmJiYmIiYmJiYmJiYmJiImIiYmJiYmJiYmJiYmJiYiJiYmJiYmJiYmJiYmJiYmJiYmJiYllLg=="}, "_n_updates": 5556, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 12, "n_steps": 15, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "rollout_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwRRGljdFJvbGxvdXRCdWZmZXKUk5Qu", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray]}", "__doc__": "\n Dict Rollout buffer used in on-policy algorithms like A2C/PPO.\n Extends the RolloutBuffer to use dictionary observations\n\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to Monte-Carlo advantage estimate when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ", "__init__": "<function DictRolloutBuffer.__init__ at 0x7f6794b1ae60>", "reset": "<function DictRolloutBuffer.reset at 0x7f6794b1aef0>", "add": "<function DictRolloutBuffer.add at 0x7f6794b1af80>", "get": "<function DictRolloutBuffer.get at 0x7f6794b1b010>", "_get_samples": "<function DictRolloutBuffer._get_samples at 0x7f6794b1b0a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6794b22fc0>"}, "rollout_buffer_kwargs": {}, "normalize_advantage": false, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVsQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMCDACUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgQBlIwDdmFslIWUKXSUUpRoFU5OaB0pUpSFlHSUUpRoI2g9fZR9lChoGGg0aCaMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCh9lGgqTmgrTmgsaBloLU5oLmgwRz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRV2UaEd9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Jan 11 04:09:03 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.3.2", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f675b1e8dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f675b1ec240>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVtwAAAAAAAAB9lCiMCG5ldF9hcmNolF2UfZQojAJwaZRdlChNAAJNAAJNAAJljAJ2ZpRdlChNAAJNAAJNAAJldWGMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "net_arch": [{"pi": [512, 512, 512], "vf": [512, 512, 512]}], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000080, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717620001029747119, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVqwUAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolpAAAAAAAAAAirWFP2W2lj83CAw+ILPDvavWiz43CAw+4H+oPbZGVb/7Cww+Z7HHvSZ6nD86CAw+K3tnv49Dmj9zDAw+sZ4sv/hjh7+tCgw+7tn+vpq4ML83CAw+uMvXPjZSH7/7Cww+00Eev/vmND/7Cww+gywhvn4QPD37Cww+VnU2v6x0O777Cww+K91NP6nmG79zDAw+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksMSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolpAAAAAAAAAAuNkov7nwnT9cWoi/+fmsPvBtYb/OzLY/i2XTv4tjnL4F+LA/3zgWP7cHhD/d54m/zP9BPplJL77d54m/V1h4v9WSgL7qY+2+qjibv8Ap0T+TkwU/tvChPys3dr/d54m/9KAWv0ADvz/CRbU/baJgPvknIb9hiKc/lyzlPgfVDz9ENS2/7fGPvwCPIT4c5JI/lGgOSwxLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAMAAAAAAAASxALA159ZPx4Z/L4JVcE/Sao9v8bPBb8BAUm/irWFP2W2lj83CAw+0eFOvLot0bs16468qMhnPdz2FTvMEH09g61gu04lebzGwoM7h5ZOv2nlFb93xR+/0GyKvzKBwb80gK4+fb2CvyCzw72r1os+NwgMPtHhTry6LdG72a6NvKXIZz3A9hU7zBB9PYOtYLtOJXm8G8ODO5rOFL8+hGc+d+q1PUjFXz2ACCk/uKsXP6cakD/gf6g9tkZVv/sLDD63o1O8e1jQuyUNh7wbL2k9xkYnO8wQfT1CrWC7PyV5vI1ajztL0G8/T54xvthuQT6Ag5c+qCXMP1iUFMAIaYa/Z7HHvSZ6nD86CAw+uOJOvLst0bukKIy8oshnPZztFTtQEH09IXtgu00lebyDw4M7RlZ5P71OZz/9Csg+AvTcPvfzGr/oBqQ/Bq6Cvyt7Z7+PQ5o/cwwMPm2zUbw1/tG7jQSIvPSOZz3LnjM7BVZ8PecKt7vMjYe8bBuIOxFglT/lmeW9fzcHvjN3uz36y3S/PkSCv75zT7+xniy/+GOHv60KDD7AEVO8Es3Lu4yvjrw7gmg9oR8QO8wQfT2ErWC7TiV5vBgohDujGoQ/hM4zP/odOL+YrTw/3a2mvh8ziT/rnGQ/7tn+vpq4ML83CAw+B1lTvFkp4LuFJIm8Q2hoPZ7jCTvMEH09hK1gu08leby804c7vh6CP6RNPz/Hv6I+YyXqPtwV7b7TkeO/HPWFv7jL1z42Uh+/+wsMPnKjU7yhV9C7olB3vA8vaT20RCc7zBB9PUKtYLs/JXm8flePOx1LED+noCU+F0ZWv4iuCL5Gj3o/hMqDvokeSb/TQR6/++Y0P/sLDD7Io1O8pljQu1EaibweL2k98kYnO88QfT0mrGC7MiV5vBpbjzu2e2G+rLrCv8HGVb/KJls+TB1+vsT9UT+FOJQ/gywhvn4QPD37Cww+rKNTvFtY0LsLWYW8GS9pPXdGJzvMEH09Qq1guz8lebwYWo87NdmKP4Qkuz4YW1e/5SARP8YWmr87wlu9UGmGv1Z1Nr+sdDu++wsMPqijU7xNWNC7DKqEvBkvaT1YRic7zBB9PUKtYLs/JXm86VmPO10hyL9bCWE/M0hHvwNczL+MR52/65dwPjMCkD8r3U0/qeYbv3MMDD7kGlO8QLTWu0S2jrxI8Gk9i4YFOwZWfD3M8wa7HIlWvHJ7gzuUaA5LDEsThpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.0446026 1.1774412 0.13675009]\n [-0.0955565 0.27312216 0.13675009]\n [ 0.08227515 -0.8331102 0.13676445]\n [-0.09750634 1.2224777 0.13675013]\n [-0.90422314 1.2051867 0.13676624]\n [-0.67429644 -1.0577383 0.13675947]\n [-0.49775642 -0.6903168 0.13675009]\n [ 0.42147613 -0.6223482 0.13676445]\n [-0.6181919 0.7066495 0.13676445]\n [-0.15739636 0.04591417 0.13676445]\n [-0.7127279 -0.18306226 0.13676445]\n [ 0.804156 -0.60898834 0.13676624]]", "desired_goal": "[[-0.6595721 1.2339088 -1.0652575 ]\n [ 0.33784464 -0.88058376 1.4281251 ]\n [-1.6515363 -0.30544695 1.382569 ]\n [ 0.5868053 1.0314854 -1.0773884 ]\n [ 0.18945235 -0.17117919 -1.0773884 ]\n [-0.97009796 -0.25112024 -0.4636529 ]\n [-1.2126667 1.6340866 0.52178305]\n [ 1.2651584 -0.9617793 -1.0773884 ]\n [-0.58839345 1.4922867 1.4161913 ]\n [ 0.2193696 -0.6295162 1.3088495 ]\n [ 0.44760582 0.5618443 -0.676594 ]\n [-1.1245705 0.15777206 1.1475863 ]]", "observation": "[[-2.0432172e+00 8.5009521e-01 -4.9237913e-01 1.5104076e+00\n -7.4087960e-01 -5.2270162e-01 -7.8517157e-01 1.0446026e+00\n 1.1774412e+00 1.3675009e-01 -1.2627081e-02 -6.3836249e-03\n -1.7446140e-02 5.6587845e-02 2.2882735e-03 6.1783597e-02\n -3.4283109e-03 -1.5206648e-02 4.0210215e-03]\n [-8.0698436e-01 -5.8553177e-01 -6.2410682e-01 -1.0814457e+00\n -1.5117552e+00 3.4082186e-01 -1.0214077e+00 -9.5556498e-02\n 2.7312216e-01 1.3675009e-01 -1.2627081e-02 -6.3836249e-03\n -1.7295288e-02 5.6587834e-02 2.2882670e-03 6.1783597e-02\n -3.4283109e-03 -1.5206648e-02 4.0210611e-03]\n [-5.8127749e-01 2.2609040e-01 8.8826112e-02 5.4631501e-02\n 6.6028595e-01 5.9246397e-01 1.1258134e+00 8.2275152e-02\n -8.3311021e-01 1.3676445e-01 -1.2917451e-02 -6.3582039e-03\n -1.6485760e-02 5.6929689e-02 2.5524362e-03 6.1783597e-02\n -3.4282957e-03 -1.5206634e-02 4.3748082e-03]\n [ 9.3677205e-01 -1.7345546e-01 1.8889940e-01 2.9592514e-01\n 1.5948992e+00 -2.3215542e+00 -1.0500803e+00 -9.7506337e-02\n 1.2224777e+00 1.3675013e-01 -1.2627296e-02 -6.3836253e-03\n -1.7109223e-02 5.6587823e-02 2.2877222e-03 6.1783135e-02\n -3.4253078e-03 -1.5206647e-02 4.0211095e-03]\n [ 9.7397268e-01 9.0354520e-01 3.9070883e-01 4.3154913e-01\n -6.0528511e-01 1.2814608e+00 -1.0209358e+00 -9.0422314e-01\n 1.2051867e+00 1.3676624e-01 -1.2799126e-02 -6.4084777e-03\n -1.6603732e-02 5.6532815e-02 2.7407880e-03 6.1605472e-02\n -5.5860165e-03 -1.6547106e-02 4.1536596e-03]\n [ 1.1669942e+00 -1.1210994e-01 -1.3204764e-01 9.1535948e-02\n -9.5623744e-01 -1.0177076e+00 -8.1035984e-01 -6.7429644e-01\n -1.0577383e+00 1.3675947e-01 -1.2882650e-02 -6.2195146e-03\n -1.7417692e-02 5.6764822e-02 2.1991509e-03 6.1783597e-02\n -3.4283111e-03 -1.5206648e-02 4.0330999e-03]\n [ 1.0320629e+00 7.0236993e-01 -7.1920741e-01 7.3702383e-01\n -3.2554522e-01 1.0718726e+00 8.9301938e-01 -4.9775642e-01\n -6.9031680e-01 1.3675009e-01 -1.2899644e-02 -6.8408665e-03\n -1.6741047e-02 5.6740057e-02 2.1040211e-03 6.1783597e-02\n -3.4283111e-03 -1.5206649e-02 4.1451138e-03]\n [ 1.0165632e+00 7.4727845e-01 3.1786940e-01 4.5731649e-01\n -4.6305740e-01 -1.7778877e+00 -1.0465426e+00 4.2147613e-01\n -6.2234819e-01 1.3676445e-01 -1.2917386e-02 -6.3581024e-03\n -1.5094908e-02 5.6929644e-02 2.5523128e-03 6.1783597e-02\n -3.4282957e-03 -1.5206634e-02 4.3744436e-03]\n [ 5.6364614e-01 1.6174565e-01 -8.3700699e-01 -1.3347828e-01\n 9.7874868e-01 -2.5740445e-01 -7.8562218e-01 -6.1819190e-01\n 7.0664948e-01 1.3676445e-01 -1.2917466e-02 -6.3582240e-03\n -1.6736181e-02 5.6929700e-02 2.5524464e-03 6.1783608e-02\n -3.4282296e-03 -1.5206622e-02 4.3748738e-03]\n [-2.2019848e-01 -1.5213218e+00 -8.3506399e-01 2.1401516e-01\n -2.4815863e-01 8.2027841e-01 1.1579748e+00 -1.5739636e-01\n 4.5914166e-02 1.3676445e-01 -1.2917440e-02 -6.3581890e-03\n -1.6277811e-02 5.6929681e-02 2.5524178e-03 6.1783597e-02\n -3.4282957e-03 -1.5206634e-02 4.3747537e-03]\n [ 1.0847536e+00 3.6551297e-01 -8.4123373e-01 5.6690818e-01\n -1.2038200e+00 -5.3652029e-02 -1.0500889e+00 -7.1272790e-01\n -1.8306226e-01 1.3676445e-01 -1.2917437e-02 -6.3581825e-03\n -1.6194366e-02 5.6929681e-02 2.5524106e-03 6.1783597e-02\n -3.4282957e-03 -1.5206634e-02 4.3747318e-03]\n [-1.5635182e+00 8.7904900e-01 -7.7844542e-01 -1.5965580e+00\n -1.2287459e+00 2.3495452e-01 1.1250671e+00 8.0415601e-01\n -6.0898834e-01 1.3676624e-01 -1.2884829e-02 -6.5522492e-03\n -1.7420895e-02 5.7113916e-02 2.0374383e-03 6.1605476e-02\n -2.0592092e-03 -1.3094213e-02 4.0125186e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLDIWUjAFDlHSUUpQu"}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVqwUAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolpAAAAAAAAAAqxnEPKrb4j0K16M8auehvNePyj0K16M83KtZvfP4/DwK16M8bic7vTHrvjwK16M8HW4Uvp3iLb0K16M83i7KPWm5eb0K16M8DfnKu5Jb9T0K16M8j/jZvDqBCz4K16M8md4WvdMPej0K16M8wtnpvYTvi70K16M8Tp/FPVpTnb0K16M8ejgPPtL+sT0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksMSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolpAAAAAAAAAAhnxqPacEGD4K16M8QnvoO/2pDT4UPD0+0wi7u+gJDLxh1FY+2WcWvlzwmj2nBCA+I6bRPa0NEj4TWgQ9rv0QvtAW3z1OtC0+kyfhvSwuZr2xymA+cS7YvFmEyjwK16M8xDi8PInn5L3nWRo+SYhGvNLFbjwK16M8KN+4PYBm970K16M8FSADPgYEdD3DSqc9lGgOSwxLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAMAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAqxnEPKrb4j0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAGrnobzXj8o9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADcq1m98/j8PArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAbic7vTHrvjwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAB1uFL6d4i29CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADeLso9abl5vQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAADfnKu5Jb9T0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAI/42bw6gQs+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACZ3ha90w96PQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAwtnpvYTvi70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAE6fxT1aU529CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAB6OA8+0v6xPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaA5LDEsThpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.02393802 0.11077054 0.02 ]\n [-0.01976367 0.09890717 0.02 ]\n [-0.05314241 0.03088043 0.02 ]\n [-0.0456919 0.02330551 0.02 ]\n [-0.1449513 -0.04245244 0.02 ]\n [ 0.0987222 -0.06096784 0.02 ]\n [-0.00619424 0.11980356 0.02 ]\n [-0.02660778 0.13623515 0.02 ]\n [-0.03683338 0.06105025 0.02 ]\n [-0.11418487 -0.06832793 0.02 ]\n [ 0.09649526 -0.07681914 0.02 ]\n [ 0.13986388 0.08691181 0.02 ]]", "desired_goal": "[[ 0.05724766 0.14845525 0.02 ]\n [ 0.00709477 0.13834377 0.18479949]\n [-0.00570784 -0.00854728 0.20979454]\n [-0.14688052 0.07565376 0.15626775]\n [ 0.10236766 0.1426303 0.03231246]\n [-0.14159271 0.10893023 0.16963312]\n [-0.10993876 -0.05619638 0.2195232 ]\n [-0.02638933 0.02472131 0.02 ]\n [ 0.02297629 -0.11176974 0.15073358]\n [-0.01211745 0.01457353 0.02 ]\n [ 0.09026939 -0.12080097 0.02 ]\n [ 0.12805207 0.05957415 0.08168557]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 2.3938021e-02\n 1.1077054e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.9763667e-02\n 9.8907165e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -5.3142413e-02\n 3.0880427e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -4.5691900e-02\n 2.3305507e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.4495130e-01\n -4.2452443e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 9.8722205e-02\n -6.0967837e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -6.1942399e-03\n 1.1980356e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -2.6607780e-02\n 1.3623515e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -3.6833379e-02\n 6.1050247e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.1418487e-01\n -6.8327934e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 9.6495256e-02\n -7.6819137e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3986388e-01\n 8.6911812e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -8.000000000008001e-05, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHAAAAAAAAAACMAWyUSwGMAXSUR0CzPIMAmzBzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPIVa4c3mdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPGAssg+ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPPoEW69TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPLvD+BH1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPQ7Hp8nedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPUeNPxhEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPLNEgGKRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPNKY/mkndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPPHE/B3zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPYqR+z+ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPU5YgaFVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPbmw7kn1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPbd9hJAddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPZJFkQPJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPjPzz3AVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPfDrmhdudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPkYBV+7UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPoAQ6IWQdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CzPogSWZ7YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPe4DLbHqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPgygK4QSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPioPCl7/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPscKgIyCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPn3974SIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPujj/+85dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPvaMvRJFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPtFR51NhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzP3Brvb48dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPy/NzKcNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzP4LY5DJEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzP8HJYDDCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPyEqpcX4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzP0Ai7kGSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzP2aDbrTqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzP/7nX/YKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzP7UwrUb2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQCBy4nWrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQCnc1wYMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQAToIOYqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQKEcCHRDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQGnjp9qldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQLhiTdLydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQPd6Tnq3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQGOGfwqidX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CzQGkGFBY3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQIBtLteEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQJ+Vkc0cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQTlUADJVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQPlC5VfedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQWUjgQ6IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQX5+lTFVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQVlZkkKNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQf2l/H5rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQbi3PRiPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQgvhESdwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQkwfZElWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQbYIBzV+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQc615Sm7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQe7vXsgMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQo9NnGsFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQlBk7OmjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQr0Uj9n9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQsaU3XI2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQqGd7OVxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQzvBJqZddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQvdhJAdGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQ01rylN2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQ4ypNsWPdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CzQ5SKm8/VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQvlEd/8VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQxAV9F4LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQzPQ4S6EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQ8zynUDudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQ4Z5Rjz7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQ/Nqk/KRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQ/kjxCpndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQ9QIhQnAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRG/FzdULdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRDD101ZUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRIH8GcFydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRMSauwHJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRC3TRYzSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzREU4zabndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRGPaURnOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRPiT6i0wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRLjakAPvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRSGza9K3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRSSSeRPodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRP+TJQtSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRZ/vfCQ+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRVuO801qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRbB7E5yVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRfKs+3YudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRVbiMo+fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRW6gElmfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRYt8qnWKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRih6v7m/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzReMVHnU2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRk+IqLCOdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiJiYmJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYiJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYiJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYllLg=="}, "_n_updates": 5556, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 12, "n_steps": 15, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "rollout_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwRRGljdFJvbGxvdXRCdWZmZXKUk5Qu", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray]}", "__doc__": "\n Dict Rollout buffer used in on-policy algorithms like A2C/PPO.\n Extends the RolloutBuffer to use dictionary observations\n\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to Monte-Carlo advantage estimate when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ", "__init__": "<function DictRolloutBuffer.__init__ at 0x7f6794b1ae60>", "reset": "<function DictRolloutBuffer.reset at 0x7f6794b1aef0>", "add": "<function DictRolloutBuffer.add at 0x7f6794b1af80>", "get": "<function DictRolloutBuffer.get at 0x7f6794b1b010>", "_get_samples": "<function DictRolloutBuffer._get_samples at 0x7f6794b1b0a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6794b22fc0>"}, "rollout_buffer_kwargs": {}, "normalize_advantage": false, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVsQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMCDACUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgQBlIwDdmFslIWUKXSUUpRoFU5OaB0pUpSFlHSUUpRoI2g9fZR9lChoGGg0aCaMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCh9lGgqTmgrTmgsaBloLU5oLmgwRz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRV2UaEd9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Jan 11 04:09:03 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.3.2", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -45.0, "std_reward": 15.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-05T23:15:23.239295"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3092
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0af637504a47c9196f63f76a874d04fa1fc56d915ad369d062ff0241144e5e33
|
3 |
size 3092
|