Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,83 @@
|
|
1 |
---
|
2 |
license: cc-by-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-4.0
|
3 |
+
datasets:
|
4 |
+
- Henrychur/MMedC
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
- zh
|
8 |
+
- ja
|
9 |
+
- fr
|
10 |
+
- ru
|
11 |
+
- es
|
12 |
+
tags:
|
13 |
+
- medical
|
14 |
---
|
15 |
+
# MMedLM
|
16 |
+
[💻Github Repo](https://github.com/MAGIC-AI4Med/MMedLM) [🖨️arXiv Paper](https://arxiv.org/abs/2402.13963)
|
17 |
+
|
18 |
+
The official model weights for "Towards Building Multilingual Language Model for Medicine".
|
19 |
+
|
20 |
+
|
21 |
+
## Introduction
|
22 |
+
This repo contains MMedLM 2, a multilingual medical foundation model with 7 billion parameters. MMedLM 2 builds upon the foundation of InternLM 2 and has been further pretrained on MMedC, a comprehensive multilingual medical corpus. This further pretraining enhances the model's medical-domain knowledge.
|
23 |
+
|
24 |
+
The model underwent further pretraining on MMedC with the following hyperparameters:
|
25 |
+
- Iterations: 15000
|
26 |
+
- Global batch size: 512
|
27 |
+
- Cutoff length: 2048
|
28 |
+
- Learning rate: 2e-5
|
29 |
+
|
30 |
+
The model can be loaded as follows:
|
31 |
+
```py
|
32 |
+
import torch
|
33 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained("Henrychur/MMedLM2", trust_remote_code=True)
|
35 |
+
model = AutoModelForCausalLM.from_pretrained("Henrychur/MMedLM2", torch_dtype=torch.float16, trust_remote_code=True)
|
36 |
+
```
|
37 |
+
|
38 |
+
- Note that this is a foundation model that has not undergone instruction fine-tuning.
|
39 |
+
## News
|
40 |
+
[2024.2.21] Our pre-print paper is released ArXiv. Dive into our findings [here](https://arxiv.org/abs/2402.13963).
|
41 |
+
|
42 |
+
[2024.2.20] We release [MMedLM](https://huggingface.co/Henrychur/MMedLM) and [MMedLM 2](https://huggingface.co/Henrychur/MMedLM2). With an auto-regressive continues training on MMedC, these models achieves superior performance compared to all other open-source models, even rivaling GPT-4 on MMedBench.
|
43 |
+
|
44 |
+
[2023.2.20] We release [MMedC](https://huggingface.co/datasets/Henrychur/MMedC), a multilingual medical corpus containing 25.5B tokens.
|
45 |
+
|
46 |
+
[2023.2.20] We release [MMedBench](https://huggingface.co/datasets/Henrychur/MMedBench), a new multilingual medical multi-choice question-answering
|
47 |
+
benchmark with rationale. Check out the leaderboard [here](https://henrychur.github.io/MultilingualMedQA/).
|
48 |
+
|
49 |
+
## Evaluation on MMedBench
|
50 |
+
The further pretrained MMedLM 2 showcast it's great performance in medical domain across different language.
|
51 |
+
|
52 |
+
| Method | Size | Year | MMedC | MMedBench | English | Chinese | Japanese | French | Russian | Spanish | Avg. |
|
53 |
+
|------------------|------|---------|-----------|-----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|
54 |
+
| GPT-3.5 | - | 2022.12 | ✗ | ✗ | 56.88 | 52.29 | 34.63 | 32.48 | 66.36 | 66.06 | 51.47 |
|
55 |
+
| GPT-4 | - | 2023.3 | ✗ | ✗ | 78.00 | 75.07 | 72.91 | 56.59 | 83.62 | 85.67 | 74.27 |
|
56 |
+
| Gemini-1.0 pro | - | 2024.1 | ✗ | ✗ | 53.73 | 60.19 | 44.22 | 29.90 | 73.44 | 69.69 | 55.20 |
|
57 |
+
| BLOOMZ | 7B | 2023.5 | ✗ | trainset | 43.28 | 58.06 | 32.66 | 26.37 | 62.89 | 47.34 | 45.10 |
|
58 |
+
| InternLM | 7B | 2023.7 | ✗ | trainset | 44.07 | 64.62 | 37.19 | 24.92 | 58.20 | 44.97 | 45.67 |
|
59 |
+
| Llama\ 2 | 7B | 2023.7 | ✗ | trainset | 43.36 | 50.29 | 25.13 | 20.90 | 66.80 | 47.10 | 42.26 |
|
60 |
+
| MedAlpaca | 7B | 2023.3 | ✗ | trainset | 46.74 | 44.80 | 29.64 | 21.06 | 59.38 | 45.00 | 41.11 |
|
61 |
+
| ChatDoctor | 7B | 2023.4 | ✗ | trainset | 43.52 | 43.26 | 25.63 | 18.81 | 62.50 | 43.44 | 39.53 |
|
62 |
+
| PMC-LLaMA | 7B | 2023.4 | ✗ | trainset | 47.53 | 42.44 | 24.12 | 20.74 | 62.11 | 43.29 | 40.04 |
|
63 |
+
| Mistral | 7B | 2023.10 | ✗ | trainset | 61.74 | 71.10 | 44.72 | 48.71 | 74.22 | 63.86 | 60.73 |
|
64 |
+
| InternLM\ 2 | 7B | 2024.2 | ✗ | trainset | 57.27 | 77.55 | 47.74 | 41.00 | 68.36 | 59.59 | 58.59 |
|
65 |
+
| MMedLM~(Ours) | 7B | - | ✗ | trainset | 49.88 | 70.49 | 46.23 | 36.66 | 72.27 | 54.52 | 55.01 |
|
66 |
+
| MMedLM\ 2~(Ours) | 7B | - | ✗ | trainset | 61.74 | 80.01 | 61.81 | 52.09 | 80.47 | 67.65 | 67.30 |
|
67 |
+
- GPT and Gemini is evluated under zero-shot setting through API
|
68 |
+
- Open-source models first undergo training on the trainset of MMedBench before evaluate.
|
69 |
+
|
70 |
+
## Contact
|
71 |
+
If you have any question, please feel free to contact qiupengcheng@pjlab.org.cn.
|
72 |
+
|
73 |
+
## Citation
|
74 |
+
```
|
75 |
+
@misc{qiu2024building,
|
76 |
+
title={Towards Building Multilingual Language Model for Medicine},
|
77 |
+
author={Pengcheng Qiu and Chaoyi Wu and Xiaoman Zhang and Weixiong Lin and Haicheng Wang and Ya Zhang and Yanfeng Wang and Weidi Xie},
|
78 |
+
year={2024},
|
79 |
+
eprint={2402.13963},
|
80 |
+
archivePrefix={arXiv},
|
81 |
+
primaryClass={cs.CL}
|
82 |
+
}
|
83 |
+
```
|