Henrychur commited on
Commit
0ce5e79
1 Parent(s): b47c762

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -1
README.md CHANGED
@@ -1,4 +1,83 @@
1
  ---
2
  license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
3
  ---
4
- Model card is coming soon.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-4.0
3
+ datasets:
4
+ - Henrychur/MMedC
5
+ language:
6
+ - en
7
+ - zh
8
+ - ja
9
+ - fr
10
+ - ru
11
+ - es
12
+ tags:
13
+ - medical
14
  ---
15
+ # MMedLM
16
+ [💻Github Repo](https://github.com/MAGIC-AI4Med/MMedLM) [🖨️arXiv Paper](https://arxiv.org/abs/2402.13963)
17
+
18
+ The official model weights for "Towards Building Multilingual Language Model for Medicine".
19
+
20
+
21
+ ## Introduction
22
+ This repo contains MMedLM 2, a multilingual medical foundation model with 7 billion parameters. MMedLM 2 builds upon the foundation of InternLM 2 and has been further pretrained on MMedC, a comprehensive multilingual medical corpus. This further pretraining enhances the model's medical-domain knowledge.
23
+
24
+ The model underwent further pretraining on MMedC with the following hyperparameters:
25
+ - Iterations: 15000
26
+ - Global batch size: 512
27
+ - Cutoff length: 2048
28
+ - Learning rate: 2e-5
29
+
30
+ The model can be loaded as follows:
31
+ ```py
32
+ import torch
33
+ from transformers import AutoTokenizer, AutoModelForCausalLM
34
+ tokenizer = AutoTokenizer.from_pretrained("Henrychur/MMedLM2", trust_remote_code=True)
35
+ model = AutoModelForCausalLM.from_pretrained("Henrychur/MMedLM2", torch_dtype=torch.float16, trust_remote_code=True)
36
+ ```
37
+
38
+ - Note that this is a foundation model that has not undergone instruction fine-tuning.
39
+ ## News
40
+ [2024.2.21] Our pre-print paper is released ArXiv. Dive into our findings [here](https://arxiv.org/abs/2402.13963).
41
+
42
+ [2024.2.20] We release [MMedLM](https://huggingface.co/Henrychur/MMedLM) and [MMedLM 2](https://huggingface.co/Henrychur/MMedLM2). With an auto-regressive continues training on MMedC, these models achieves superior performance compared to all other open-source models, even rivaling GPT-4 on MMedBench.
43
+
44
+ [2023.2.20] We release [MMedC](https://huggingface.co/datasets/Henrychur/MMedC), a multilingual medical corpus containing 25.5B tokens.
45
+
46
+ [2023.2.20] We release [MMedBench](https://huggingface.co/datasets/Henrychur/MMedBench), a new multilingual medical multi-choice question-answering
47
+ benchmark with rationale. Check out the leaderboard [here](https://henrychur.github.io/MultilingualMedQA/).
48
+
49
+ ## Evaluation on MMedBench
50
+ The further pretrained MMedLM 2 showcast it's great performance in medical domain across different language.
51
+
52
+ | Method | Size | Year | MMedC | MMedBench | English | Chinese | Japanese | French | Russian | Spanish | Avg. |
53
+ |------------------|------|---------|-----------|-----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
54
+ | GPT-3.5 | - | 2022.12 | ✗ | ✗ | 56.88 | 52.29 | 34.63 | 32.48 | 66.36 | 66.06 | 51.47 |
55
+ | GPT-4 | - | 2023.3 | ✗ | ✗ | 78.00 | 75.07 | 72.91 | 56.59 | 83.62 | 85.67 | 74.27 |
56
+ | Gemini-1.0 pro | - | 2024.1 | ✗ | ✗ | 53.73 | 60.19 | 44.22 | 29.90 | 73.44 | 69.69 | 55.20 |
57
+ | BLOOMZ | 7B | 2023.5 | ✗ | trainset | 43.28 | 58.06 | 32.66 | 26.37 | 62.89 | 47.34 | 45.10 |
58
+ | InternLM | 7B | 2023.7 | ✗ | trainset | 44.07 | 64.62 | 37.19 | 24.92 | 58.20 | 44.97 | 45.67 |
59
+ | Llama\ 2 | 7B | 2023.7 | ✗ | trainset | 43.36 | 50.29 | 25.13 | 20.90 | 66.80 | 47.10 | 42.26 |
60
+ | MedAlpaca | 7B | 2023.3 | ✗ | trainset | 46.74 | 44.80 | 29.64 | 21.06 | 59.38 | 45.00 | 41.11 |
61
+ | ChatDoctor | 7B | 2023.4 | ✗ | trainset | 43.52 | 43.26 | 25.63 | 18.81 | 62.50 | 43.44 | 39.53 |
62
+ | PMC-LLaMA | 7B | 2023.4 | ✗ | trainset | 47.53 | 42.44 | 24.12 | 20.74 | 62.11 | 43.29 | 40.04 |
63
+ | Mistral | 7B | 2023.10 | ✗ | trainset | 61.74 | 71.10 | 44.72 | 48.71 | 74.22 | 63.86 | 60.73 |
64
+ | InternLM\ 2 | 7B | 2024.2 | ✗ | trainset | 57.27 | 77.55 | 47.74 | 41.00 | 68.36 | 59.59 | 58.59 |
65
+ | MMedLM~(Ours) | 7B | - | ✗ | trainset | 49.88 | 70.49 | 46.23 | 36.66 | 72.27 | 54.52 | 55.01 |
66
+ | MMedLM\ 2~(Ours) | 7B | - | ✗ | trainset | 61.74 | 80.01 | 61.81 | 52.09 | 80.47 | 67.65 | 67.30 |
67
+ - GPT and Gemini is evluated under zero-shot setting through API
68
+ - Open-source models first undergo training on the trainset of MMedBench before evaluate.
69
+
70
+ ## Contact
71
+ If you have any question, please feel free to contact qiupengcheng@pjlab.org.cn.
72
+
73
+ ## Citation
74
+ ```
75
+ @misc{qiu2024building,
76
+ title={Towards Building Multilingual Language Model for Medicine},
77
+ author={Pengcheng Qiu and Chaoyi Wu and Xiaoman Zhang and Weixiong Lin and Haicheng Wang and Ya Zhang and Yanfeng Wang and Weidi Xie},
78
+ year={2024},
79
+ eprint={2402.13963},
80
+ archivePrefix={arXiv},
81
+ primaryClass={cs.CL}
82
+ }
83
+ ```