tiedeman commited on
Commit
bfaecff
1 Parent(s): 911ac4c

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.spm filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ language:
4
+ - en
5
+ - zh
6
+
7
+ tags:
8
+ - translation
9
+ - opus-mt-tc-bible
10
+
11
+ license: apache-2.0
12
+ model-index:
13
+ - name: opus-mt-tc-bible-big-zhx-en
14
+ results:
15
+ - task:
16
+ name: Translation multi-eng
17
+ type: translation
18
+ args: multi-eng
19
+ dataset:
20
+ name: tatoeba-test-v2020-07-28-v2023-09-26
21
+ type: tatoeba_mt
22
+ args: multi-eng
23
+ metrics:
24
+ - name: BLEU
25
+ type: bleu
26
+ value: 34.7
27
+ - name: chr-F
28
+ type: chrf
29
+ value: 0.53317
30
+ ---
31
+ # opus-mt-tc-bible-big-zhx-en
32
+
33
+ ## Table of Contents
34
+ - [Model Details](#model-details)
35
+ - [Uses](#uses)
36
+ - [Risks, Limitations and Biases](#risks-limitations-and-biases)
37
+ - [How to Get Started With the Model](#how-to-get-started-with-the-model)
38
+ - [Training](#training)
39
+ - [Evaluation](#evaluation)
40
+ - [Citation Information](#citation-information)
41
+ - [Acknowledgements](#acknowledgements)
42
+
43
+ ## Model Details
44
+
45
+ Neural machine translation model for translating from Chinese (family) (zhx) to English (en).
46
+
47
+ This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
48
+ **Model Description:**
49
+ - **Developed by:** Language Technology Research Group at the University of Helsinki
50
+ - **Model Type:** Translation (transformer-big)
51
+ - **Release**: 2024-08-17
52
+ - **License:** Apache-2.0
53
+ - **Language(s):**
54
+ - Source Language(s): cjy cmn hsn wuu yue
55
+ - Target Language(s): eng
56
+ - **Original Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zhx-eng/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.zip)
57
+ - **Resources for more information:**
58
+ - [OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/zhx-eng/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-08-17)
59
+ - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
60
+ - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian)
61
+ - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/)
62
+ - [HPLT bilingual data v1 (as part of the Tatoeba Translation Challenge dataset)](https://hplt-project.org/datasets/v1)
63
+ - [A massively parallel Bible corpus](https://aclanthology.org/L14-1215/)
64
+
65
+ ## Uses
66
+
67
+ This model can be used for translation and text-to-text generation.
68
+
69
+ ## Risks, Limitations and Biases
70
+
71
+ **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.**
72
+
73
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
74
+
75
+ ## How to Get Started With the Model
76
+
77
+ A short example code:
78
+
79
+ ```python
80
+ from transformers import MarianMTModel, MarianTokenizer
81
+
82
+ src_text = [
83
+ "上海人普通话说得怎么样?",
84
+ "我感謝你的關心。"
85
+ ]
86
+
87
+ model_name = "pytorch-models/opus-mt-tc-bible-big-zhx-en"
88
+ tokenizer = MarianTokenizer.from_pretrained(model_name)
89
+ model = MarianMTModel.from_pretrained(model_name)
90
+ translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
91
+
92
+ for t in translated:
93
+ print( tokenizer.decode(t, skip_special_tokens=True) )
94
+
95
+ # expected output:
96
+ # How do Shanghainese people usually speak?
97
+ # I appreciate your concern.
98
+ ```
99
+
100
+ You can also use OPUS-MT models with the transformers pipelines, for example:
101
+
102
+ ```python
103
+ from transformers import pipeline
104
+ pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-bible-big-zhx-en")
105
+ print(pipe("上海人普通话说得怎么样?"))
106
+
107
+ # expected output: How do Shanghainese people usually speak?
108
+ ```
109
+
110
+ ## Training
111
+
112
+ - **Data**: opusTCv20230926max50+bt+jhubc ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
113
+ - **Pre-processing**: SentencePiece (spm32k,spm32k)
114
+ - **Model Type:** transformer-big
115
+ - **Original MarianNMT Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zhx-eng/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.zip)
116
+ - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
117
+
118
+ ## Evaluation
119
+
120
+ * [Model scores at the OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/zhx-eng/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-08-17)
121
+ * test set translations: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zhx-eng/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.test.txt)
122
+ * test set scores: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zhx-eng/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.eval.txt)
123
+ * benchmark results: [benchmark_results.txt](benchmark_results.txt)
124
+ * benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
125
+
126
+ | langpair | testset | chr-F | BLEU | #sent | #words |
127
+ |----------|---------|-------|-------|-------|--------|
128
+ | multi-eng | tatoeba-test-v2020-07-28-v2023-09-26 | 0.53317 | 34.7 | 10000 | 83075 |
129
+
130
+ ## Citation Information
131
+
132
+ * Publications: [Democratizing neural machine translation with OPUS-MT](https://doi.org/10.1007/s10579-023-09704-w) and [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
133
+
134
+ ```bibtex
135
+ @article{tiedemann2023democratizing,
136
+ title={Democratizing neural machine translation with {OPUS-MT}},
137
+ author={Tiedemann, J{\"o}rg and Aulamo, Mikko and Bakshandaeva, Daria and Boggia, Michele and Gr{\"o}nroos, Stig-Arne and Nieminen, Tommi and Raganato, Alessandro and Scherrer, Yves and Vazquez, Raul and Virpioja, Sami},
138
+ journal={Language Resources and Evaluation},
139
+ number={58},
140
+ pages={713--755},
141
+ year={2023},
142
+ publisher={Springer Nature},
143
+ issn={1574-0218},
144
+ doi={10.1007/s10579-023-09704-w}
145
+ }
146
+
147
+ @inproceedings{tiedemann-thottingal-2020-opus,
148
+ title = "{OPUS}-{MT} {--} Building open translation services for the World",
149
+ author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
150
+ booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
151
+ month = nov,
152
+ year = "2020",
153
+ address = "Lisboa, Portugal",
154
+ publisher = "European Association for Machine Translation",
155
+ url = "https://aclanthology.org/2020.eamt-1.61",
156
+ pages = "479--480",
157
+ }
158
+
159
+ @inproceedings{tiedemann-2020-tatoeba,
160
+ title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
161
+ author = {Tiedemann, J{\"o}rg},
162
+ booktitle = "Proceedings of the Fifth Conference on Machine Translation",
163
+ month = nov,
164
+ year = "2020",
165
+ address = "Online",
166
+ publisher = "Association for Computational Linguistics",
167
+ url = "https://aclanthology.org/2020.wmt-1.139",
168
+ pages = "1174--1182",
169
+ }
170
+ ```
171
+
172
+ ## Acknowledgements
173
+
174
+ The work is supported by the [HPLT project](https://hplt-project.org/), funded by the European Union’s Horizon Europe research and innovation programme under grant agreement No 101070350. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland, and the [EuroHPC supercomputer LUMI](https://www.lumi-supercomputer.eu/).
175
+
176
+ ## Model conversion info
177
+
178
+ * transformers version: 4.45.1
179
+ * OPUS-MT git hash: 0882077
180
+ * port time: Wed Oct 9 03:00:06 EEST 2024
181
+ * port machine: LM0-400-22516.local
benchmark_results.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ multi-eng tatoeba-test-v2020-07-28-v2023-09-26 0.53317 34.7 10000 83075
benchmark_translations.zip ADDED
File without changes
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "pytorch-models/opus-mt-tc-bible-big-zhx-en",
3
+ "activation_dropout": 0.0,
4
+ "activation_function": "relu",
5
+ "architectures": [
6
+ "MarianMTModel"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "bos_token_id": 0,
10
+ "classifier_dropout": 0.0,
11
+ "d_model": 1024,
12
+ "decoder_attention_heads": 16,
13
+ "decoder_ffn_dim": 4096,
14
+ "decoder_layerdrop": 0.0,
15
+ "decoder_layers": 6,
16
+ "decoder_start_token_id": 58591,
17
+ "decoder_vocab_size": 58592,
18
+ "dropout": 0.1,
19
+ "encoder_attention_heads": 16,
20
+ "encoder_ffn_dim": 4096,
21
+ "encoder_layerdrop": 0.0,
22
+ "encoder_layers": 6,
23
+ "eos_token_id": 1979,
24
+ "forced_eos_token_id": null,
25
+ "init_std": 0.02,
26
+ "is_encoder_decoder": true,
27
+ "max_length": null,
28
+ "max_position_embeddings": 1024,
29
+ "model_type": "marian",
30
+ "normalize_embedding": false,
31
+ "num_beams": null,
32
+ "num_hidden_layers": 6,
33
+ "pad_token_id": 58591,
34
+ "scale_embedding": true,
35
+ "share_encoder_decoder_embeddings": true,
36
+ "static_position_embeddings": true,
37
+ "torch_dtype": "float32",
38
+ "transformers_version": "4.45.1",
39
+ "use_cache": true,
40
+ "vocab_size": 58592
41
+ }
generation_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bad_words_ids": [
4
+ [
5
+ 58591
6
+ ]
7
+ ],
8
+ "bos_token_id": 0,
9
+ "decoder_start_token_id": 58591,
10
+ "eos_token_id": 1979,
11
+ "forced_eos_token_id": 1979,
12
+ "max_length": 512,
13
+ "num_beams": 4,
14
+ "pad_token_id": 58591,
15
+ "transformers_version": "4.45.1"
16
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:116725bd540a838ac67e73315dc11d8bfedfefd126be7ba4f6cb980958741cdd
3
+ size 945686320
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20b797aaf640c9d4e21fbb191453e5c0ac26b282a5d0c9254c5e38f536177286
3
+ size 945737541
source.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:313c9902436e4f7670536d9b21513165aae91f458d2acdf6394eb8fd051cb68a
3
+ size 722514
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
target.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:083dcaab8b4fb7f3df49c660dc886427530e3b2f608e8f543396bbb83526a0dd
3
+ size 781739
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"source_lang": "zhx", "target_lang": "en", "unk_token": "<unk>", "eos_token": "</s>", "pad_token": "<pad>", "model_max_length": 512, "sp_model_kwargs": {}, "separate_vocabs": false, "special_tokens_map_file": null, "name_or_path": "marian-models/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17/zhx-en", "tokenizer_class": "MarianTokenizer"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff