tiedeman commited on
Commit
881e02b
1 Parent(s): e92ec98

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.spm filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ language:
4
+ - chm
5
+ - de
6
+ - en
7
+ - et
8
+ - fi
9
+ - fkv
10
+ - hu
11
+ - izh
12
+ - krl
13
+ - kv
14
+ - liv
15
+ - mdf
16
+ - mrj
17
+ - myv
18
+ - nl
19
+ - se
20
+ - sma
21
+ - smn
22
+ - udm
23
+ - vot
24
+
25
+ tags:
26
+ - translation
27
+ - opus-mt-tc-bible
28
+
29
+ license: apache-2.0
30
+ model-index:
31
+ - name: opus-mt-tc-bible-big-urj-deu_eng_nld
32
+ results:
33
+ - task:
34
+ name: Translation multi-multi
35
+ type: translation
36
+ args: multi-multi
37
+ dataset:
38
+ name: tatoeba-test-v2020-07-28-v2023-09-26
39
+ type: tatoeba_mt
40
+ args: multi-multi
41
+ metrics:
42
+ - name: BLEU
43
+ type: bleu
44
+ value: 46.1
45
+ - name: chr-F
46
+ type: chrf
47
+ value: 0.65088
48
+ ---
49
+ # opus-mt-tc-bible-big-urj-deu_eng_nld
50
+
51
+ ## Table of Contents
52
+ - [Model Details](#model-details)
53
+ - [Uses](#uses)
54
+ - [Risks, Limitations and Biases](#risks-limitations-and-biases)
55
+ - [How to Get Started With the Model](#how-to-get-started-with-the-model)
56
+ - [Training](#training)
57
+ - [Evaluation](#evaluation)
58
+ - [Citation Information](#citation-information)
59
+ - [Acknowledgements](#acknowledgements)
60
+
61
+ ## Model Details
62
+
63
+ Neural machine translation model for translating from Uralic languages (urj) to unknown (deu+eng+nld).
64
+
65
+ This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
66
+ **Model Description:**
67
+ - **Developed by:** Language Technology Research Group at the University of Helsinki
68
+ - **Model Type:** Translation (transformer-big)
69
+ - **Release**: 2024-08-18
70
+ - **License:** Apache-2.0
71
+ - **Language(s):**
72
+ - Source Language(s): chm est fin fkv hun izh koi kom kpv krl liv mdf mrj myv sma sme smn udm vot vro
73
+ - Target Language(s): deu eng nld
74
+ - Valid Target Language Labels: >>deu<< >>eng<< >>nld<< >>xxx<<
75
+ - **Original Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/urj-deu+eng+nld/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.zip)
76
+ - **Resources for more information:**
77
+ - [OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/urj-deu%2Beng%2Bnld/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-08-18)
78
+ - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
79
+ - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian)
80
+ - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/)
81
+ - [HPLT bilingual data v1 (as part of the Tatoeba Translation Challenge dataset)](https://hplt-project.org/datasets/v1)
82
+ - [A massively parallel Bible corpus](https://aclanthology.org/L14-1215/)
83
+
84
+ This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>deu<<`
85
+
86
+ ## Uses
87
+
88
+ This model can be used for translation and text-to-text generation.
89
+
90
+ ## Risks, Limitations and Biases
91
+
92
+ **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.**
93
+
94
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
95
+
96
+ ## How to Get Started With the Model
97
+
98
+ A short example code:
99
+
100
+ ```python
101
+ from transformers import MarianMTModel, MarianTokenizer
102
+
103
+ src_text = [
104
+ ">>deu<< Jobb meghalni, mint úgy élni.",
105
+ ">>eng<< Az algák miatt ilyen színű a tó."
106
+ ]
107
+
108
+ model_name = "pytorch-models/opus-mt-tc-bible-big-urj-deu_eng_nld"
109
+ tokenizer = MarianTokenizer.from_pretrained(model_name)
110
+ model = MarianMTModel.from_pretrained(model_name)
111
+ translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
112
+
113
+ for t in translated:
114
+ print( tokenizer.decode(t, skip_special_tokens=True) )
115
+
116
+ # expected output:
117
+ # Es ist besser zu sterben, als so zu leben.
118
+ # Because of the algae, the lake is such a color.
119
+ ```
120
+
121
+ You can also use OPUS-MT models with the transformers pipelines, for example:
122
+
123
+ ```python
124
+ from transformers import pipeline
125
+ pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-bible-big-urj-deu_eng_nld")
126
+ print(pipe(">>deu<< Jobb meghalni, mint úgy élni."))
127
+
128
+ # expected output: Es ist besser zu sterben, als so zu leben.
129
+ ```
130
+
131
+ ## Training
132
+
133
+ - **Data**: opusTCv20230926max50+bt+jhubc ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
134
+ - **Pre-processing**: SentencePiece (spm32k,spm32k)
135
+ - **Model Type:** transformer-big
136
+ - **Original MarianNMT Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/urj-deu+eng+nld/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.zip)
137
+ - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
138
+
139
+ ## Evaluation
140
+
141
+ * [Model scores at the OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/urj-deu%2Beng%2Bnld/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-08-18)
142
+ * test set translations: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/urj-deu+eng+nld/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.test.txt)
143
+ * test set scores: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/urj-deu+eng+nld/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.eval.txt)
144
+ * benchmark results: [benchmark_results.txt](benchmark_results.txt)
145
+ * benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
146
+
147
+ | langpair | testset | chr-F | BLEU | #sent | #words |
148
+ |----------|---------|-------|-------|-------|--------|
149
+ | multi-multi | tatoeba-test-v2020-07-28-v2023-09-26 | 0.65088 | 46.1 | 10000 | 78967 |
150
+
151
+ ## Citation Information
152
+
153
+ * Publications: [Democratizing neural machine translation with OPUS-MT](https://doi.org/10.1007/s10579-023-09704-w) and [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
154
+
155
+ ```bibtex
156
+ @article{tiedemann2023democratizing,
157
+ title={Democratizing neural machine translation with {OPUS-MT}},
158
+ author={Tiedemann, J{\"o}rg and Aulamo, Mikko and Bakshandaeva, Daria and Boggia, Michele and Gr{\"o}nroos, Stig-Arne and Nieminen, Tommi and Raganato, Alessandro and Scherrer, Yves and Vazquez, Raul and Virpioja, Sami},
159
+ journal={Language Resources and Evaluation},
160
+ number={58},
161
+ pages={713--755},
162
+ year={2023},
163
+ publisher={Springer Nature},
164
+ issn={1574-0218},
165
+ doi={10.1007/s10579-023-09704-w}
166
+ }
167
+
168
+ @inproceedings{tiedemann-thottingal-2020-opus,
169
+ title = "{OPUS}-{MT} {--} Building open translation services for the World",
170
+ author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
171
+ booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
172
+ month = nov,
173
+ year = "2020",
174
+ address = "Lisboa, Portugal",
175
+ publisher = "European Association for Machine Translation",
176
+ url = "https://aclanthology.org/2020.eamt-1.61",
177
+ pages = "479--480",
178
+ }
179
+
180
+ @inproceedings{tiedemann-2020-tatoeba,
181
+ title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
182
+ author = {Tiedemann, J{\"o}rg},
183
+ booktitle = "Proceedings of the Fifth Conference on Machine Translation",
184
+ month = nov,
185
+ year = "2020",
186
+ address = "Online",
187
+ publisher = "Association for Computational Linguistics",
188
+ url = "https://aclanthology.org/2020.wmt-1.139",
189
+ pages = "1174--1182",
190
+ }
191
+ ```
192
+
193
+ ## Acknowledgements
194
+
195
+ The work is supported by the [HPLT project](https://hplt-project.org/), funded by the European Union’s Horizon Europe research and innovation programme under grant agreement No 101070350. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland, and the [EuroHPC supercomputer LUMI](https://www.lumi-supercomputer.eu/).
196
+
197
+ ## Model conversion info
198
+
199
+ * transformers version: 4.45.1
200
+ * OPUS-MT git hash: 0882077
201
+ * port time: Wed Oct 9 00:49:52 EEST 2024
202
+ * port machine: LM0-400-22516.local
benchmark_results.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ multi-multi tatoeba-test-v2020-07-28-v2023-09-26 0.65088 46.1 10000 78967
benchmark_translations.zip ADDED
File without changes
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "pytorch-models/opus-mt-tc-bible-big-urj-deu_eng_nld",
3
+ "activation_dropout": 0.0,
4
+ "activation_function": "relu",
5
+ "architectures": [
6
+ "MarianMTModel"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "bos_token_id": 0,
10
+ "classifier_dropout": 0.0,
11
+ "d_model": 1024,
12
+ "decoder_attention_heads": 16,
13
+ "decoder_ffn_dim": 4096,
14
+ "decoder_layerdrop": 0.0,
15
+ "decoder_layers": 6,
16
+ "decoder_start_token_id": 59182,
17
+ "decoder_vocab_size": 59183,
18
+ "dropout": 0.1,
19
+ "encoder_attention_heads": 16,
20
+ "encoder_ffn_dim": 4096,
21
+ "encoder_layerdrop": 0.0,
22
+ "encoder_layers": 6,
23
+ "eos_token_id": 738,
24
+ "forced_eos_token_id": null,
25
+ "init_std": 0.02,
26
+ "is_encoder_decoder": true,
27
+ "max_length": null,
28
+ "max_position_embeddings": 1024,
29
+ "model_type": "marian",
30
+ "normalize_embedding": false,
31
+ "num_beams": null,
32
+ "num_hidden_layers": 6,
33
+ "pad_token_id": 59182,
34
+ "scale_embedding": true,
35
+ "share_encoder_decoder_embeddings": true,
36
+ "static_position_embeddings": true,
37
+ "torch_dtype": "float32",
38
+ "transformers_version": "4.45.1",
39
+ "use_cache": true,
40
+ "vocab_size": 59183
41
+ }
generation_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bad_words_ids": [
4
+ [
5
+ 59182
6
+ ]
7
+ ],
8
+ "bos_token_id": 0,
9
+ "decoder_start_token_id": 59182,
10
+ "eos_token_id": 738,
11
+ "forced_eos_token_id": 738,
12
+ "max_length": 512,
13
+ "num_beams": 4,
14
+ "pad_token_id": 59182,
15
+ "transformers_version": "4.45.1"
16
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbb27becfc40195a8585984457289869fc9f75b469bf7cbdd7eef3a3ea3aaf89
3
+ size 948109420
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c61f58381d07a807c253da718b21997892f59d877fcda244afd0a5a4e2dcf87
3
+ size 948160645
source.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b487fc934565383e6c5aadc35e0f8c8946b51cc5cedc270f8b012d7d4f3bbec5
3
+ size 821787
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
target.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75d48bad24b7c6db0c92a9637736810edc66493aea98165af113b7d6f08b1c9e
3
+ size 811927
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"source_lang": "urj", "target_lang": "deu+eng+nld", "unk_token": "<unk>", "eos_token": "</s>", "pad_token": "<pad>", "model_max_length": 512, "sp_model_kwargs": {}, "separate_vocabs": false, "special_tokens_map_file": null, "name_or_path": "marian-models/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18/urj-deu+eng+nld", "tokenizer_class": "MarianTokenizer"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff