Initial commit
Browse files- .gitattributes +1 -0
- README.md +761 -0
- benchmark_results.txt +52 -0
- benchmark_translations.zip +0 -0
- config.json +41 -0
- generation_config.json +16 -0
- model.safetensors +3 -0
- pytorch_model.bin +3 -0
- source.spm +3 -0
- special_tokens_map.json +1 -0
- target.spm +3 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.spm filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,761 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
language:
|
4 |
+
- br
|
5 |
+
- cy
|
6 |
+
- de
|
7 |
+
- en
|
8 |
+
- es
|
9 |
+
- fr
|
10 |
+
- ga
|
11 |
+
- gd
|
12 |
+
- gv
|
13 |
+
- kw
|
14 |
+
- pt
|
15 |
+
|
16 |
+
tags:
|
17 |
+
- translation
|
18 |
+
- opus-mt-tc-bible
|
19 |
+
|
20 |
+
license: apache-2.0
|
21 |
+
model-index:
|
22 |
+
- name: opus-mt-tc-bible-big-cel-deu_eng_fra_por_spa
|
23 |
+
results:
|
24 |
+
- task:
|
25 |
+
name: Translation cym-deu
|
26 |
+
type: translation
|
27 |
+
args: cym-deu
|
28 |
+
dataset:
|
29 |
+
name: flores200-devtest
|
30 |
+
type: flores200-devtest
|
31 |
+
args: cym-deu
|
32 |
+
metrics:
|
33 |
+
- name: BLEU
|
34 |
+
type: bleu
|
35 |
+
value: 22.6
|
36 |
+
- name: chr-F
|
37 |
+
type: chrf
|
38 |
+
value: 0.52745
|
39 |
+
- task:
|
40 |
+
name: Translation cym-eng
|
41 |
+
type: translation
|
42 |
+
args: cym-eng
|
43 |
+
dataset:
|
44 |
+
name: flores200-devtest
|
45 |
+
type: flores200-devtest
|
46 |
+
args: cym-eng
|
47 |
+
metrics:
|
48 |
+
- name: BLEU
|
49 |
+
type: bleu
|
50 |
+
value: 55.5
|
51 |
+
- name: chr-F
|
52 |
+
type: chrf
|
53 |
+
value: 0.75234
|
54 |
+
- task:
|
55 |
+
name: Translation cym-fra
|
56 |
+
type: translation
|
57 |
+
args: cym-fra
|
58 |
+
dataset:
|
59 |
+
name: flores200-devtest
|
60 |
+
type: flores200-devtest
|
61 |
+
args: cym-fra
|
62 |
+
metrics:
|
63 |
+
- name: BLEU
|
64 |
+
type: bleu
|
65 |
+
value: 31.4
|
66 |
+
- name: chr-F
|
67 |
+
type: chrf
|
68 |
+
value: 0.58339
|
69 |
+
- task:
|
70 |
+
name: Translation cym-por
|
71 |
+
type: translation
|
72 |
+
args: cym-por
|
73 |
+
dataset:
|
74 |
+
name: flores200-devtest
|
75 |
+
type: flores200-devtest
|
76 |
+
args: cym-por
|
77 |
+
metrics:
|
78 |
+
- name: BLEU
|
79 |
+
type: bleu
|
80 |
+
value: 18.3
|
81 |
+
- name: chr-F
|
82 |
+
type: chrf
|
83 |
+
value: 0.47566
|
84 |
+
- task:
|
85 |
+
name: Translation cym-spa
|
86 |
+
type: translation
|
87 |
+
args: cym-spa
|
88 |
+
dataset:
|
89 |
+
name: flores200-devtest
|
90 |
+
type: flores200-devtest
|
91 |
+
args: cym-spa
|
92 |
+
metrics:
|
93 |
+
- name: BLEU
|
94 |
+
type: bleu
|
95 |
+
value: 19.9
|
96 |
+
- name: chr-F
|
97 |
+
type: chrf
|
98 |
+
value: 0.48834
|
99 |
+
- task:
|
100 |
+
name: Translation gla-deu
|
101 |
+
type: translation
|
102 |
+
args: gla-deu
|
103 |
+
dataset:
|
104 |
+
name: flores200-devtest
|
105 |
+
type: flores200-devtest
|
106 |
+
args: gla-deu
|
107 |
+
metrics:
|
108 |
+
- name: BLEU
|
109 |
+
type: bleu
|
110 |
+
value: 13.0
|
111 |
+
- name: chr-F
|
112 |
+
type: chrf
|
113 |
+
value: 0.41962
|
114 |
+
- task:
|
115 |
+
name: Translation gla-eng
|
116 |
+
type: translation
|
117 |
+
args: gla-eng
|
118 |
+
dataset:
|
119 |
+
name: flores200-devtest
|
120 |
+
type: flores200-devtest
|
121 |
+
args: gla-eng
|
122 |
+
metrics:
|
123 |
+
- name: BLEU
|
124 |
+
type: bleu
|
125 |
+
value: 26.4
|
126 |
+
- name: chr-F
|
127 |
+
type: chrf
|
128 |
+
value: 0.53374
|
129 |
+
- task:
|
130 |
+
name: Translation gla-fra
|
131 |
+
type: translation
|
132 |
+
args: gla-fra
|
133 |
+
dataset:
|
134 |
+
name: flores200-devtest
|
135 |
+
type: flores200-devtest
|
136 |
+
args: gla-fra
|
137 |
+
metrics:
|
138 |
+
- name: BLEU
|
139 |
+
type: bleu
|
140 |
+
value: 16.6
|
141 |
+
- name: chr-F
|
142 |
+
type: chrf
|
143 |
+
value: 0.44916
|
144 |
+
- task:
|
145 |
+
name: Translation gla-por
|
146 |
+
type: translation
|
147 |
+
args: gla-por
|
148 |
+
dataset:
|
149 |
+
name: flores200-devtest
|
150 |
+
type: flores200-devtest
|
151 |
+
args: gla-por
|
152 |
+
metrics:
|
153 |
+
- name: BLEU
|
154 |
+
type: bleu
|
155 |
+
value: 12.1
|
156 |
+
- name: chr-F
|
157 |
+
type: chrf
|
158 |
+
value: 0.39790
|
159 |
+
- task:
|
160 |
+
name: Translation gla-spa
|
161 |
+
type: translation
|
162 |
+
args: gla-spa
|
163 |
+
dataset:
|
164 |
+
name: flores200-devtest
|
165 |
+
type: flores200-devtest
|
166 |
+
args: gla-spa
|
167 |
+
metrics:
|
168 |
+
- name: BLEU
|
169 |
+
type: bleu
|
170 |
+
value: 12.9
|
171 |
+
- name: chr-F
|
172 |
+
type: chrf
|
173 |
+
value: 0.40375
|
174 |
+
- task:
|
175 |
+
name: Translation gle-deu
|
176 |
+
type: translation
|
177 |
+
args: gle-deu
|
178 |
+
dataset:
|
179 |
+
name: flores200-devtest
|
180 |
+
type: flores200-devtest
|
181 |
+
args: gle-deu
|
182 |
+
metrics:
|
183 |
+
- name: BLEU
|
184 |
+
type: bleu
|
185 |
+
value: 19.2
|
186 |
+
- name: chr-F
|
187 |
+
type: chrf
|
188 |
+
value: 0.49962
|
189 |
+
- task:
|
190 |
+
name: Translation gle-eng
|
191 |
+
type: translation
|
192 |
+
args: gle-eng
|
193 |
+
dataset:
|
194 |
+
name: flores200-devtest
|
195 |
+
type: flores200-devtest
|
196 |
+
args: gle-eng
|
197 |
+
metrics:
|
198 |
+
- name: BLEU
|
199 |
+
type: bleu
|
200 |
+
value: 38.9
|
201 |
+
- name: chr-F
|
202 |
+
type: chrf
|
203 |
+
value: 0.64866
|
204 |
+
- task:
|
205 |
+
name: Translation gle-fra
|
206 |
+
type: translation
|
207 |
+
args: gle-fra
|
208 |
+
dataset:
|
209 |
+
name: flores200-devtest
|
210 |
+
type: flores200-devtest
|
211 |
+
args: gle-fra
|
212 |
+
metrics:
|
213 |
+
- name: BLEU
|
214 |
+
type: bleu
|
215 |
+
value: 26.7
|
216 |
+
- name: chr-F
|
217 |
+
type: chrf
|
218 |
+
value: 0.54564
|
219 |
+
- task:
|
220 |
+
name: Translation gle-por
|
221 |
+
type: translation
|
222 |
+
args: gle-por
|
223 |
+
dataset:
|
224 |
+
name: flores200-devtest
|
225 |
+
type: flores200-devtest
|
226 |
+
args: gle-por
|
227 |
+
metrics:
|
228 |
+
- name: BLEU
|
229 |
+
type: bleu
|
230 |
+
value: 14.9
|
231 |
+
- name: chr-F
|
232 |
+
type: chrf
|
233 |
+
value: 0.44768
|
234 |
+
- task:
|
235 |
+
name: Translation gle-spa
|
236 |
+
type: translation
|
237 |
+
args: gle-spa
|
238 |
+
dataset:
|
239 |
+
name: flores200-devtest
|
240 |
+
type: flores200-devtest
|
241 |
+
args: gle-spa
|
242 |
+
metrics:
|
243 |
+
- name: BLEU
|
244 |
+
type: bleu
|
245 |
+
value: 18.7
|
246 |
+
- name: chr-F
|
247 |
+
type: chrf
|
248 |
+
value: 0.47347
|
249 |
+
- task:
|
250 |
+
name: Translation cym-deu
|
251 |
+
type: translation
|
252 |
+
args: cym-deu
|
253 |
+
dataset:
|
254 |
+
name: flores101-devtest
|
255 |
+
type: flores_101
|
256 |
+
args: cym deu devtest
|
257 |
+
metrics:
|
258 |
+
- name: BLEU
|
259 |
+
type: bleu
|
260 |
+
value: 22.4
|
261 |
+
- name: chr-F
|
262 |
+
type: chrf
|
263 |
+
value: 0.52672
|
264 |
+
- task:
|
265 |
+
name: Translation cym-fra
|
266 |
+
type: translation
|
267 |
+
args: cym-fra
|
268 |
+
dataset:
|
269 |
+
name: flores101-devtest
|
270 |
+
type: flores_101
|
271 |
+
args: cym fra devtest
|
272 |
+
metrics:
|
273 |
+
- name: BLEU
|
274 |
+
type: bleu
|
275 |
+
value: 31.3
|
276 |
+
- name: chr-F
|
277 |
+
type: chrf
|
278 |
+
value: 0.58299
|
279 |
+
- task:
|
280 |
+
name: Translation cym-por
|
281 |
+
type: translation
|
282 |
+
args: cym-por
|
283 |
+
dataset:
|
284 |
+
name: flores101-devtest
|
285 |
+
type: flores_101
|
286 |
+
args: cym por devtest
|
287 |
+
metrics:
|
288 |
+
- name: BLEU
|
289 |
+
type: bleu
|
290 |
+
value: 18.4
|
291 |
+
- name: chr-F
|
292 |
+
type: chrf
|
293 |
+
value: 0.47733
|
294 |
+
- task:
|
295 |
+
name: Translation gle-eng
|
296 |
+
type: translation
|
297 |
+
args: gle-eng
|
298 |
+
dataset:
|
299 |
+
name: flores101-devtest
|
300 |
+
type: flores_101
|
301 |
+
args: gle eng devtest
|
302 |
+
metrics:
|
303 |
+
- name: BLEU
|
304 |
+
type: bleu
|
305 |
+
value: 38.6
|
306 |
+
- name: chr-F
|
307 |
+
type: chrf
|
308 |
+
value: 0.64773
|
309 |
+
- task:
|
310 |
+
name: Translation gle-fra
|
311 |
+
type: translation
|
312 |
+
args: gle-fra
|
313 |
+
dataset:
|
314 |
+
name: flores101-devtest
|
315 |
+
type: flores_101
|
316 |
+
args: gle fra devtest
|
317 |
+
metrics:
|
318 |
+
- name: BLEU
|
319 |
+
type: bleu
|
320 |
+
value: 26.5
|
321 |
+
- name: chr-F
|
322 |
+
type: chrf
|
323 |
+
value: 0.54559
|
324 |
+
- task:
|
325 |
+
name: Translation cym-deu
|
326 |
+
type: translation
|
327 |
+
args: cym-deu
|
328 |
+
dataset:
|
329 |
+
name: ntrex128
|
330 |
+
type: ntrex128
|
331 |
+
args: cym-deu
|
332 |
+
metrics:
|
333 |
+
- name: BLEU
|
334 |
+
type: bleu
|
335 |
+
value: 16.3
|
336 |
+
- name: chr-F
|
337 |
+
type: chrf
|
338 |
+
value: 0.46627
|
339 |
+
- task:
|
340 |
+
name: Translation cym-eng
|
341 |
+
type: translation
|
342 |
+
args: cym-eng
|
343 |
+
dataset:
|
344 |
+
name: ntrex128
|
345 |
+
type: ntrex128
|
346 |
+
args: cym-eng
|
347 |
+
metrics:
|
348 |
+
- name: BLEU
|
349 |
+
type: bleu
|
350 |
+
value: 40.0
|
351 |
+
- name: chr-F
|
352 |
+
type: chrf
|
353 |
+
value: 0.65343
|
354 |
+
- task:
|
355 |
+
name: Translation cym-fra
|
356 |
+
type: translation
|
357 |
+
args: cym-fra
|
358 |
+
dataset:
|
359 |
+
name: ntrex128
|
360 |
+
type: ntrex128
|
361 |
+
args: cym-fra
|
362 |
+
metrics:
|
363 |
+
- name: BLEU
|
364 |
+
type: bleu
|
365 |
+
value: 23.8
|
366 |
+
- name: chr-F
|
367 |
+
type: chrf
|
368 |
+
value: 0.51183
|
369 |
+
- task:
|
370 |
+
name: Translation cym-por
|
371 |
+
type: translation
|
372 |
+
args: cym-por
|
373 |
+
dataset:
|
374 |
+
name: ntrex128
|
375 |
+
type: ntrex128
|
376 |
+
args: cym-por
|
377 |
+
metrics:
|
378 |
+
- name: BLEU
|
379 |
+
type: bleu
|
380 |
+
value: 14.4
|
381 |
+
- name: chr-F
|
382 |
+
type: chrf
|
383 |
+
value: 0.42857
|
384 |
+
- task:
|
385 |
+
name: Translation cym-spa
|
386 |
+
type: translation
|
387 |
+
args: cym-spa
|
388 |
+
dataset:
|
389 |
+
name: ntrex128
|
390 |
+
type: ntrex128
|
391 |
+
args: cym-spa
|
392 |
+
metrics:
|
393 |
+
- name: BLEU
|
394 |
+
type: bleu
|
395 |
+
value: 25.0
|
396 |
+
- name: chr-F
|
397 |
+
type: chrf
|
398 |
+
value: 0.51542
|
399 |
+
- task:
|
400 |
+
name: Translation gle-deu
|
401 |
+
type: translation
|
402 |
+
args: gle-deu
|
403 |
+
dataset:
|
404 |
+
name: ntrex128
|
405 |
+
type: ntrex128
|
406 |
+
args: gle-deu
|
407 |
+
metrics:
|
408 |
+
- name: BLEU
|
409 |
+
type: bleu
|
410 |
+
value: 15.5
|
411 |
+
- name: chr-F
|
412 |
+
type: chrf
|
413 |
+
value: 0.46495
|
414 |
+
- task:
|
415 |
+
name: Translation gle-eng
|
416 |
+
type: translation
|
417 |
+
args: gle-eng
|
418 |
+
dataset:
|
419 |
+
name: ntrex128
|
420 |
+
type: ntrex128
|
421 |
+
args: gle-eng
|
422 |
+
metrics:
|
423 |
+
- name: BLEU
|
424 |
+
type: bleu
|
425 |
+
value: 33.5
|
426 |
+
- name: chr-F
|
427 |
+
type: chrf
|
428 |
+
value: 0.60913
|
429 |
+
- task:
|
430 |
+
name: Translation gle-fra
|
431 |
+
type: translation
|
432 |
+
args: gle-fra
|
433 |
+
dataset:
|
434 |
+
name: ntrex128
|
435 |
+
type: ntrex128
|
436 |
+
args: gle-fra
|
437 |
+
metrics:
|
438 |
+
- name: BLEU
|
439 |
+
type: bleu
|
440 |
+
value: 20.7
|
441 |
+
- name: chr-F
|
442 |
+
type: chrf
|
443 |
+
value: 0.49513
|
444 |
+
- task:
|
445 |
+
name: Translation gle-por
|
446 |
+
type: translation
|
447 |
+
args: gle-por
|
448 |
+
dataset:
|
449 |
+
name: ntrex128
|
450 |
+
type: ntrex128
|
451 |
+
args: gle-por
|
452 |
+
metrics:
|
453 |
+
- name: BLEU
|
454 |
+
type: bleu
|
455 |
+
value: 13.2
|
456 |
+
- name: chr-F
|
457 |
+
type: chrf
|
458 |
+
value: 0.41767
|
459 |
+
- task:
|
460 |
+
name: Translation gle-spa
|
461 |
+
type: translation
|
462 |
+
args: gle-spa
|
463 |
+
dataset:
|
464 |
+
name: ntrex128
|
465 |
+
type: ntrex128
|
466 |
+
args: gle-spa
|
467 |
+
metrics:
|
468 |
+
- name: BLEU
|
469 |
+
type: bleu
|
470 |
+
value: 23.6
|
471 |
+
- name: chr-F
|
472 |
+
type: chrf
|
473 |
+
value: 0.50755
|
474 |
+
- task:
|
475 |
+
name: Translation bre-eng
|
476 |
+
type: translation
|
477 |
+
args: bre-eng
|
478 |
+
dataset:
|
479 |
+
name: tatoeba-test-v2021-08-07
|
480 |
+
type: tatoeba_mt
|
481 |
+
args: bre-eng
|
482 |
+
metrics:
|
483 |
+
- name: BLEU
|
484 |
+
type: bleu
|
485 |
+
value: 35.0
|
486 |
+
- name: chr-F
|
487 |
+
type: chrf
|
488 |
+
value: 0.53473
|
489 |
+
- task:
|
490 |
+
name: Translation bre-fra
|
491 |
+
type: translation
|
492 |
+
args: bre-fra
|
493 |
+
dataset:
|
494 |
+
name: tatoeba-test-v2021-08-07
|
495 |
+
type: tatoeba_mt
|
496 |
+
args: bre-fra
|
497 |
+
metrics:
|
498 |
+
- name: BLEU
|
499 |
+
type: bleu
|
500 |
+
value: 28.3
|
501 |
+
- name: chr-F
|
502 |
+
type: chrf
|
503 |
+
value: 0.49013
|
504 |
+
- task:
|
505 |
+
name: Translation cym-eng
|
506 |
+
type: translation
|
507 |
+
args: cym-eng
|
508 |
+
dataset:
|
509 |
+
name: tatoeba-test-v2021-08-07
|
510 |
+
type: tatoeba_mt
|
511 |
+
args: cym-eng
|
512 |
+
metrics:
|
513 |
+
- name: BLEU
|
514 |
+
type: bleu
|
515 |
+
value: 52.4
|
516 |
+
- name: chr-F
|
517 |
+
type: chrf
|
518 |
+
value: 0.68892
|
519 |
+
- task:
|
520 |
+
name: Translation gla-eng
|
521 |
+
type: translation
|
522 |
+
args: gla-eng
|
523 |
+
dataset:
|
524 |
+
name: tatoeba-test-v2021-08-07
|
525 |
+
type: tatoeba_mt
|
526 |
+
args: gla-eng
|
527 |
+
metrics:
|
528 |
+
- name: BLEU
|
529 |
+
type: bleu
|
530 |
+
value: 23.2
|
531 |
+
- name: chr-F
|
532 |
+
type: chrf
|
533 |
+
value: 0.39607
|
534 |
+
- task:
|
535 |
+
name: Translation gla-spa
|
536 |
+
type: translation
|
537 |
+
args: gla-spa
|
538 |
+
dataset:
|
539 |
+
name: tatoeba-test-v2021-08-07
|
540 |
+
type: tatoeba_mt
|
541 |
+
args: gla-spa
|
542 |
+
metrics:
|
543 |
+
- name: BLEU
|
544 |
+
type: bleu
|
545 |
+
value: 26.1
|
546 |
+
- name: chr-F
|
547 |
+
type: chrf
|
548 |
+
value: 0.51208
|
549 |
+
- task:
|
550 |
+
name: Translation gle-eng
|
551 |
+
type: translation
|
552 |
+
args: gle-eng
|
553 |
+
dataset:
|
554 |
+
name: tatoeba-test-v2021-08-07
|
555 |
+
type: tatoeba_mt
|
556 |
+
args: gle-eng
|
557 |
+
metrics:
|
558 |
+
- name: BLEU
|
559 |
+
type: bleu
|
560 |
+
value: 50.7
|
561 |
+
- name: chr-F
|
562 |
+
type: chrf
|
563 |
+
value: 0.64268
|
564 |
+
- task:
|
565 |
+
name: Translation multi-multi
|
566 |
+
type: translation
|
567 |
+
args: multi-multi
|
568 |
+
dataset:
|
569 |
+
name: tatoeba-test-v2020-07-28-v2023-09-26
|
570 |
+
type: tatoeba_mt
|
571 |
+
args: multi-multi
|
572 |
+
metrics:
|
573 |
+
- name: BLEU
|
574 |
+
type: bleu
|
575 |
+
value: 24.9
|
576 |
+
- name: chr-F
|
577 |
+
type: chrf
|
578 |
+
value: 0.42670
|
579 |
+
---
|
580 |
+
# opus-mt-tc-bible-big-cel-deu_eng_fra_por_spa
|
581 |
+
|
582 |
+
## Table of Contents
|
583 |
+
- [Model Details](#model-details)
|
584 |
+
- [Uses](#uses)
|
585 |
+
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
|
586 |
+
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
|
587 |
+
- [Training](#training)
|
588 |
+
- [Evaluation](#evaluation)
|
589 |
+
- [Citation Information](#citation-information)
|
590 |
+
- [Acknowledgements](#acknowledgements)
|
591 |
+
|
592 |
+
## Model Details
|
593 |
+
|
594 |
+
Neural machine translation model for translating from Celtic languages (cel) to unknown (deu+eng+fra+por+spa).
|
595 |
+
|
596 |
+
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
|
597 |
+
**Model Description:**
|
598 |
+
- **Developed by:** Language Technology Research Group at the University of Helsinki
|
599 |
+
- **Model Type:** Translation (transformer-big)
|
600 |
+
- **Release**: 2024-05-30
|
601 |
+
- **License:** Apache-2.0
|
602 |
+
- **Language(s):**
|
603 |
+
- Source Language(s): bre cor cym gla gle glv
|
604 |
+
- Target Language(s): deu eng fra por spa
|
605 |
+
- Valid Target Language Labels: >>deu<< >>eng<< >>fra<< >>por<< >>spa<< >>xxx<<
|
606 |
+
- **Original Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/cel-deu+eng+fra+por+spa/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip)
|
607 |
+
- **Resources for more information:**
|
608 |
+
- [OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/cel-deu%2Beng%2Bfra%2Bpor%2Bspa/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-05-30)
|
609 |
+
- [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
|
610 |
+
- [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian)
|
611 |
+
- [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/)
|
612 |
+
- [HPLT bilingual data v1 (as part of the Tatoeba Translation Challenge dataset)](https://hplt-project.org/datasets/v1)
|
613 |
+
- [A massively parallel Bible corpus](https://aclanthology.org/L14-1215/)
|
614 |
+
|
615 |
+
This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>deu<<`
|
616 |
+
|
617 |
+
## Uses
|
618 |
+
|
619 |
+
This model can be used for translation and text-to-text generation.
|
620 |
+
|
621 |
+
## Risks, Limitations and Biases
|
622 |
+
|
623 |
+
**CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.**
|
624 |
+
|
625 |
+
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
|
626 |
+
|
627 |
+
## How to Get Started With the Model
|
628 |
+
|
629 |
+
A short example code:
|
630 |
+
|
631 |
+
```python
|
632 |
+
from transformers import MarianMTModel, MarianTokenizer
|
633 |
+
|
634 |
+
src_text = [
|
635 |
+
">>deu<< Replace this with text in an accepted source language.",
|
636 |
+
">>spa<< This is the second sentence."
|
637 |
+
]
|
638 |
+
|
639 |
+
model_name = "pytorch-models/opus-mt-tc-bible-big-cel-deu_eng_fra_por_spa"
|
640 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
641 |
+
model = MarianMTModel.from_pretrained(model_name)
|
642 |
+
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
|
643 |
+
|
644 |
+
for t in translated:
|
645 |
+
print( tokenizer.decode(t, skip_special_tokens=True) )
|
646 |
+
```
|
647 |
+
|
648 |
+
You can also use OPUS-MT models with the transformers pipelines, for example:
|
649 |
+
|
650 |
+
```python
|
651 |
+
from transformers import pipeline
|
652 |
+
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-bible-big-cel-deu_eng_fra_por_spa")
|
653 |
+
print(pipe(">>deu<< Replace this with text in an accepted source language."))
|
654 |
+
```
|
655 |
+
|
656 |
+
## Training
|
657 |
+
|
658 |
+
- **Data**: opusTCv20230926max50+bt+jhubc ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
|
659 |
+
- **Pre-processing**: SentencePiece (spm32k,spm32k)
|
660 |
+
- **Model Type:** transformer-big
|
661 |
+
- **Original MarianNMT Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/cel-deu+eng+fra+por+spa/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip)
|
662 |
+
- **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
|
663 |
+
|
664 |
+
## Evaluation
|
665 |
+
|
666 |
+
* [Model scores at the OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/cel-deu%2Beng%2Bfra%2Bpor%2Bspa/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-05-30)
|
667 |
+
* test set translations: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cel-deu+eng+fra+por+spa/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.test.txt)
|
668 |
+
* test set scores: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cel-deu+eng+fra+por+spa/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.eval.txt)
|
669 |
+
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
|
670 |
+
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
|
671 |
+
|
672 |
+
| langpair | testset | chr-F | BLEU | #sent | #words |
|
673 |
+
|----------|---------|-------|-------|-------|--------|
|
674 |
+
| bre-eng | tatoeba-test-v2021-08-07 | 0.53473 | 35.0 | 383 | 2065 |
|
675 |
+
| bre-fra | tatoeba-test-v2021-08-07 | 0.49013 | 28.3 | 2494 | 13324 |
|
676 |
+
| cym-eng | tatoeba-test-v2021-08-07 | 0.68892 | 52.4 | 818 | 5563 |
|
677 |
+
| gla-eng | tatoeba-test-v2021-08-07 | 0.39607 | 23.2 | 955 | 6611 |
|
678 |
+
| gla-spa | tatoeba-test-v2021-08-07 | 0.51208 | 26.1 | 289 | 1608 |
|
679 |
+
| gle-eng | tatoeba-test-v2021-08-07 | 0.64268 | 50.7 | 1913 | 11190 |
|
680 |
+
| cym-deu | flores101-devtest | 0.52672 | 22.4 | 1012 | 25094 |
|
681 |
+
| cym-fra | flores101-devtest | 0.58299 | 31.3 | 1012 | 28343 |
|
682 |
+
| cym-por | flores101-devtest | 0.47733 | 18.4 | 1012 | 26519 |
|
683 |
+
| gle-eng | flores101-devtest | 0.64773 | 38.6 | 1012 | 24721 |
|
684 |
+
| gle-fra | flores101-devtest | 0.54559 | 26.5 | 1012 | 28343 |
|
685 |
+
| cym-deu | flores200-devtest | 0.52745 | 22.6 | 1012 | 25094 |
|
686 |
+
| cym-eng | flores200-devtest | 0.75234 | 55.5 | 1012 | 24721 |
|
687 |
+
| cym-fra | flores200-devtest | 0.58339 | 31.4 | 1012 | 28343 |
|
688 |
+
| cym-por | flores200-devtest | 0.47566 | 18.3 | 1012 | 26519 |
|
689 |
+
| cym-spa | flores200-devtest | 0.48834 | 19.9 | 1012 | 29199 |
|
690 |
+
| gla-deu | flores200-devtest | 0.41962 | 13.0 | 1012 | 25094 |
|
691 |
+
| gla-eng | flores200-devtest | 0.53374 | 26.4 | 1012 | 24721 |
|
692 |
+
| gla-fra | flores200-devtest | 0.44916 | 16.6 | 1012 | 28343 |
|
693 |
+
| gla-spa | flores200-devtest | 0.40375 | 12.9 | 1012 | 29199 |
|
694 |
+
| gle-deu | flores200-devtest | 0.49962 | 19.2 | 1012 | 25094 |
|
695 |
+
| gle-eng | flores200-devtest | 0.64866 | 38.9 | 1012 | 24721 |
|
696 |
+
| gle-fra | flores200-devtest | 0.54564 | 26.7 | 1012 | 28343 |
|
697 |
+
| gle-por | flores200-devtest | 0.44768 | 14.9 | 1012 | 26519 |
|
698 |
+
| gle-spa | flores200-devtest | 0.47347 | 18.7 | 1012 | 29199 |
|
699 |
+
| cym-deu | ntrex128 | 0.46627 | 16.3 | 1997 | 48761 |
|
700 |
+
| cym-eng | ntrex128 | 0.65343 | 40.0 | 1997 | 47673 |
|
701 |
+
| cym-fra | ntrex128 | 0.51183 | 23.8 | 1997 | 53481 |
|
702 |
+
| cym-por | ntrex128 | 0.42857 | 14.4 | 1997 | 51631 |
|
703 |
+
| cym-spa | ntrex128 | 0.51542 | 25.0 | 1997 | 54107 |
|
704 |
+
| gle-deu | ntrex128 | 0.46495 | 15.5 | 1997 | 48761 |
|
705 |
+
| gle-eng | ntrex128 | 0.60913 | 33.5 | 1997 | 47673 |
|
706 |
+
| gle-fra | ntrex128 | 0.49513 | 20.7 | 1997 | 53481 |
|
707 |
+
| gle-por | ntrex128 | 0.41767 | 13.2 | 1997 | 51631 |
|
708 |
+
| gle-spa | ntrex128 | 0.50755 | 23.6 | 1997 | 54107 |
|
709 |
+
|
710 |
+
## Citation Information
|
711 |
+
|
712 |
+
* Publications: [Democratizing neural machine translation with OPUS-MT](https://doi.org/10.1007/s10579-023-09704-w) and [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
|
713 |
+
|
714 |
+
```bibtex
|
715 |
+
@article{tiedemann2023democratizing,
|
716 |
+
title={Democratizing neural machine translation with {OPUS-MT}},
|
717 |
+
author={Tiedemann, J{\"o}rg and Aulamo, Mikko and Bakshandaeva, Daria and Boggia, Michele and Gr{\"o}nroos, Stig-Arne and Nieminen, Tommi and Raganato, Alessandro and Scherrer, Yves and Vazquez, Raul and Virpioja, Sami},
|
718 |
+
journal={Language Resources and Evaluation},
|
719 |
+
number={58},
|
720 |
+
pages={713--755},
|
721 |
+
year={2023},
|
722 |
+
publisher={Springer Nature},
|
723 |
+
issn={1574-0218},
|
724 |
+
doi={10.1007/s10579-023-09704-w}
|
725 |
+
}
|
726 |
+
|
727 |
+
@inproceedings{tiedemann-thottingal-2020-opus,
|
728 |
+
title = "{OPUS}-{MT} {--} Building open translation services for the World",
|
729 |
+
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
|
730 |
+
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
|
731 |
+
month = nov,
|
732 |
+
year = "2020",
|
733 |
+
address = "Lisboa, Portugal",
|
734 |
+
publisher = "European Association for Machine Translation",
|
735 |
+
url = "https://aclanthology.org/2020.eamt-1.61",
|
736 |
+
pages = "479--480",
|
737 |
+
}
|
738 |
+
|
739 |
+
@inproceedings{tiedemann-2020-tatoeba,
|
740 |
+
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
|
741 |
+
author = {Tiedemann, J{\"o}rg},
|
742 |
+
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
|
743 |
+
month = nov,
|
744 |
+
year = "2020",
|
745 |
+
address = "Online",
|
746 |
+
publisher = "Association for Computational Linguistics",
|
747 |
+
url = "https://aclanthology.org/2020.wmt-1.139",
|
748 |
+
pages = "1174--1182",
|
749 |
+
}
|
750 |
+
```
|
751 |
+
|
752 |
+
## Acknowledgements
|
753 |
+
|
754 |
+
The work is supported by the [HPLT project](https://hplt-project.org/), funded by the European Union’s Horizon Europe research and innovation programme under grant agreement No 101070350. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland, and the [EuroHPC supercomputer LUMI](https://www.lumi-supercomputer.eu/).
|
755 |
+
|
756 |
+
## Model conversion info
|
757 |
+
|
758 |
+
* transformers version: 4.45.1
|
759 |
+
* OPUS-MT git hash: a0ea3b3
|
760 |
+
* port time: Mon Oct 7 23:09:42 EEST 2024
|
761 |
+
* port machine: LM0-400-22516.local
|
benchmark_results.txt
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
multi-multi tatoeba-test-v2020-07-28-v2023-09-26 0.42670 24.9 10000 57351
|
2 |
+
cym-deu flores101-devtest 0.52672 22.4 1012 25094
|
3 |
+
cym-fra flores101-devtest 0.58299 31.3 1012 28343
|
4 |
+
cym-por flores101-devtest 0.47733 18.4 1012 26519
|
5 |
+
gle-eng flores101-devtest 0.64773 38.6 1012 24721
|
6 |
+
gle-fra flores101-devtest 0.54559 26.5 1012 28343
|
7 |
+
cym-deu flores200-devtest 0.52745 22.6 1012 25094
|
8 |
+
cym-eng flores200-devtest 0.75234 55.5 1012 24721
|
9 |
+
cym-fra flores200-devtest 0.58339 31.4 1012 28343
|
10 |
+
cym-por flores200-devtest 0.47566 18.3 1012 26519
|
11 |
+
cym-spa flores200-devtest 0.48834 19.9 1012 29199
|
12 |
+
gla-deu flores200-devtest 0.41962 13.0 1012 25094
|
13 |
+
gla-eng flores200-devtest 0.53374 26.4 1012 24721
|
14 |
+
gla-fra flores200-devtest 0.44916 16.6 1012 28343
|
15 |
+
gla-por flores200-devtest 0.39790 12.1 1012 26519
|
16 |
+
gla-spa flores200-devtest 0.40375 12.9 1012 29199
|
17 |
+
gle-deu flores200-devtest 0.49962 19.2 1012 25094
|
18 |
+
gle-eng flores200-devtest 0.64866 38.9 1012 24721
|
19 |
+
gle-fra flores200-devtest 0.54564 26.7 1012 28343
|
20 |
+
gle-por flores200-devtest 0.44768 14.9 1012 26519
|
21 |
+
gle-spa flores200-devtest 0.47347 18.7 1012 29199
|
22 |
+
cym-deu ntrex128 0.46627 16.3 1997 48761
|
23 |
+
cym-eng ntrex128 0.65343 40.0 1997 47673
|
24 |
+
cym-fra ntrex128 0.51183 23.8 1997 53481
|
25 |
+
cym-por ntrex128 0.42857 14.4 1997 51631
|
26 |
+
cym-spa ntrex128 0.51542 25.0 1997 54107
|
27 |
+
gle-deu ntrex128 0.46495 15.5 1997 48761
|
28 |
+
gle-eng ntrex128 0.60913 33.5 1997 47673
|
29 |
+
gle-fra ntrex128 0.49513 20.7 1997 53481
|
30 |
+
gle-por ntrex128 0.41767 13.2 1997 51631
|
31 |
+
gle-spa ntrex128 0.50755 23.6 1997 54107
|
32 |
+
cor-fra tatoeba-test-v2020-07-28 0.24652 6.2 567 3136
|
33 |
+
gla-eng tatoeba-test-v2020-07-28 0.40979 25.3 917 6366
|
34 |
+
gle-eng tatoeba-test-v2020-07-28 0.64935 51.8 1924 11247
|
35 |
+
bre-eng tatoeba-test-v2021-03-30 0.53219 34.3 385 2091
|
36 |
+
bre-fra tatoeba-test-v2021-03-30 0.49675 28.8 2500 13343
|
37 |
+
cor-deu tatoeba-test-v2021-03-30 0.24298 6.8 822 4682
|
38 |
+
cor-fra tatoeba-test-v2021-03-30 0.24669 6.2 568 3142
|
39 |
+
cor-spa tatoeba-test-v2021-03-30 0.21930 4.5 207 1085
|
40 |
+
gla-eng tatoeba-test-v2021-03-30 0.41147 25.6 957 6628
|
41 |
+
gla-spa tatoeba-test-v2021-03-30 0.49577 24.6 290 1611
|
42 |
+
gle-eng tatoeba-test-v2021-03-30 0.64935 51.8 1924 11247
|
43 |
+
bre-eng tatoeba-test-v2021-08-07 0.53473 35.0 383 2065
|
44 |
+
bre-fra tatoeba-test-v2021-08-07 0.49013 28.3 2494 13324
|
45 |
+
cor-deu tatoeba-test-v2021-08-07 0.24055 6.5 821 4676
|
46 |
+
cor-eng tatoeba-test-v2021-08-07 0.19002 4.9 3198 16829
|
47 |
+
cor-fra tatoeba-test-v2021-08-07 0.24494 6.4 555 3092
|
48 |
+
cor-spa tatoeba-test-v2021-08-07 0.22170 4.7 206 1080
|
49 |
+
cym-eng tatoeba-test-v2021-08-07 0.68892 52.4 818 5563
|
50 |
+
gla-eng tatoeba-test-v2021-08-07 0.39607 23.2 955 6611
|
51 |
+
gla-spa tatoeba-test-v2021-08-07 0.51208 26.1 289 1608
|
52 |
+
gle-eng tatoeba-test-v2021-08-07 0.64268 50.7 1913 11190
|
benchmark_translations.zip
ADDED
File without changes
|
config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "pytorch-models/opus-mt-tc-bible-big-cel-deu_eng_fra_por_spa",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "relu",
|
5 |
+
"architectures": [
|
6 |
+
"MarianMTModel"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"bos_token_id": 0,
|
10 |
+
"classifier_dropout": 0.0,
|
11 |
+
"d_model": 1024,
|
12 |
+
"decoder_attention_heads": 16,
|
13 |
+
"decoder_ffn_dim": 4096,
|
14 |
+
"decoder_layerdrop": 0.0,
|
15 |
+
"decoder_layers": 6,
|
16 |
+
"decoder_start_token_id": 56598,
|
17 |
+
"decoder_vocab_size": 56599,
|
18 |
+
"dropout": 0.1,
|
19 |
+
"encoder_attention_heads": 16,
|
20 |
+
"encoder_ffn_dim": 4096,
|
21 |
+
"encoder_layerdrop": 0.0,
|
22 |
+
"encoder_layers": 6,
|
23 |
+
"eos_token_id": 574,
|
24 |
+
"forced_eos_token_id": null,
|
25 |
+
"init_std": 0.02,
|
26 |
+
"is_encoder_decoder": true,
|
27 |
+
"max_length": null,
|
28 |
+
"max_position_embeddings": 1024,
|
29 |
+
"model_type": "marian",
|
30 |
+
"normalize_embedding": false,
|
31 |
+
"num_beams": null,
|
32 |
+
"num_hidden_layers": 6,
|
33 |
+
"pad_token_id": 56598,
|
34 |
+
"scale_embedding": true,
|
35 |
+
"share_encoder_decoder_embeddings": true,
|
36 |
+
"static_position_embeddings": true,
|
37 |
+
"torch_dtype": "float32",
|
38 |
+
"transformers_version": "4.45.1",
|
39 |
+
"use_cache": true,
|
40 |
+
"vocab_size": 56599
|
41 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bad_words_ids": [
|
4 |
+
[
|
5 |
+
56598
|
6 |
+
]
|
7 |
+
],
|
8 |
+
"bos_token_id": 0,
|
9 |
+
"decoder_start_token_id": 56598,
|
10 |
+
"eos_token_id": 574,
|
11 |
+
"forced_eos_token_id": 574,
|
12 |
+
"max_length": 512,
|
13 |
+
"num_beams": 4,
|
14 |
+
"pad_token_id": 56598,
|
15 |
+
"transformers_version": "4.45.1"
|
16 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f13b0f3fd4fa985bb0809140b29431083e4178945d8ffa382cd367a3a6c08dd3
|
3 |
+
size 937515020
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12ba5d8557a1cc2b826582f7042c281e64cd05cbeebc21dfa3efb23dcbb2f30f
|
3 |
+
size 937566277
|
source.spm
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3d47a98f51d3b3ef3a0bdb9ab022bbbdcf14f45dde7dec4ab910e2baab534b0
|
3 |
+
size 801982
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
|
target.spm
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70212b4c82db279a975546bac06c313785735f0a78e534aedcb9a297293af9f0
|
3 |
+
size 800773
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"source_lang": "cel", "target_lang": "deu+eng+fra+por+spa", "unk_token": "<unk>", "eos_token": "</s>", "pad_token": "<pad>", "model_max_length": 512, "sp_model_kwargs": {}, "separate_vocabs": false, "special_tokens_map_file": null, "name_or_path": "marian-models/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30/cel-deu+eng+fra+por+spa", "tokenizer_class": "MarianTokenizer"}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|