Hellraiser24
commited on
Commit
•
60b2078
1
Parent(s):
4daf2eb
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- textvqa
|
7 |
+
model-index:
|
8 |
+
- name: git-base-textvqa
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# git-base-textvqa
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/git-base-textvqa](https://huggingface.co/microsoft/git-base-textvqa) on the textvqa dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0472
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 5e-05
|
39 |
+
- train_batch_size: 4
|
40 |
+
- eval_batch_size: 3
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- num_epochs: 3
|
45 |
+
- mixed_precision_training: Native AMP
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
50 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
51 |
+
| 0.9764 | 0.2 | 500 | 0.0499 |
|
52 |
+
| 0.0524 | 0.4 | 1000 | 0.0492 |
|
53 |
+
| 0.0525 | 0.6 | 1500 | 0.0494 |
|
54 |
+
| 0.0531 | 0.8 | 2000 | 0.0480 |
|
55 |
+
| 0.0515 | 1.0 | 2500 | 0.0477 |
|
56 |
+
| 0.0473 | 1.2 | 3000 | 0.0483 |
|
57 |
+
| 0.0479 | 1.4 | 3500 | 0.0477 |
|
58 |
+
| 0.0473 | 1.6 | 4000 | 0.0476 |
|
59 |
+
| 0.0486 | 1.8 | 4500 | 0.0472 |
|
60 |
+
| 0.0471 | 2.0 | 5000 | 0.0473 |
|
61 |
+
| 0.0454 | 2.2 | 5500 | 0.0473 |
|
62 |
+
| 0.0452 | 2.4 | 6000 | 0.0476 |
|
63 |
+
| 0.0438 | 2.6 | 6500 | 0.0475 |
|
64 |
+
| 0.0463 | 2.8 | 7000 | 0.0474 |
|
65 |
+
| 0.0449 | 3.0 | 7500 | 0.0472 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.28.0
|
71 |
+
- Pytorch 2.0.0
|
72 |
+
- Datasets 2.12.0
|
73 |
+
- Tokenizers 0.13.3
|