Upload 2flow folder
Browse files- 2flow/Dockerfile +3 -0
- 2flow/models/.gitattributes +35 -0
- 2flow/models/README.md +20 -0
- 2flow/models/downloads/F5TTS_Base/model_1200000.pt +3 -0
- 2flow/models/downloads/F5TTS_Base/model_1200000.safetensors +3 -0
- 2flow/models/downloads/F5TTS_Base/vocab.txt +2545 -0
- 2flow/models/downloads/F5TTS_Base_bigvgan/model_1250000.pt +3 -0
- 2flow/models/downloads/F5TTS_v1_Base/model_1250000.safetensors +3 -0
- 2flow/models/downloads/F5TTS_v1_Base/vocab.txt +2545 -0
- 2flow/models/downloads/F5TTS_v1_Base_no_zero_init/model_1250000.safetensors +3 -0
- 2flow/patch/__init__.py +196 -0
- 2flow/patch/f5tts/model.py +222 -0
- 2flow/patch/f5tts/modules.py +447 -0
- 2flow/requirements.txt +5 -0
- 2flow/scripts/build.sh +2 -0
- 2flow/scripts/f5/build_engine.sh +5 -0
- 2flow/scripts/f5/fix_lib.py +32 -0
- 2flow/scripts/f5/pre_build_engine.sh +4 -0
- 2flow/scripts/init.sh +6 -0
- 2flow/scripts/vocoder/build_engine.sh +3 -0
- 2flow/scripts/vocoder/export_vocos_trt.sh +43 -0
- 2flow/scripts/vocoder/pre_build_engine.sh +3 -0
- 2flow/services/triton/f5_tts_triton_server/f5_tts/1/f5_tts_trtllm.py +486 -0
- 2flow/services/triton/f5_tts_triton_server/f5_tts/1/model.py +278 -0
- 2flow/services/triton/f5_tts_triton_server/f5_tts/config.pbtxt +81 -0
- 2flow/services/triton/f5_tts_triton_server/vocoder/1/.gitkeep +0 -0
- 2flow/services/triton/f5_tts_triton_server/vocoder/config.pbtxt +32 -0
- 2flow/utils/tts/__pycache__/convert_checkpoint.cpython-310.pyc +0 -0
- 2flow/utils/tts/__pycache__/convert_checkpoint.cpython-312.pyc +0 -0
- 2flow/utils/tts/__pycache__/export_vocoder_to_onnx.cpython-312.pyc +0 -0
- 2flow/utils/tts/convert_checkpoint.py +378 -0
- 2flow/utils/tts/export_vocoder_to_onnx.py +138 -0
2flow/Dockerfile
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM nvcr.io/nvidia/tritonserver:25.04-py3
|
| 2 |
+
WORKDIR /workspace/2flow
|
| 3 |
+
COPY . .
|
2flow/models/.gitattributes
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
2flow/models/README.md
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-nc-4.0
|
| 3 |
+
pipeline_tag: text-to-speech
|
| 4 |
+
library_name: f5-tts
|
| 5 |
+
datasets:
|
| 6 |
+
- amphion/Emilia-Dataset
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
Download [F5-TTS](https://huggingface.co/SWivid/F5-TTS/tree/main/F5TTS_Base) or [E2 TTS](https://huggingface.co/SWivid/E2-TTS/tree/main/E2TTS_Base) and place under ckpts/
|
| 10 |
+
```
|
| 11 |
+
ckpts/
|
| 12 |
+
F5TTS_v1_Base/
|
| 13 |
+
model_1250000.safetensors
|
| 14 |
+
F5TTS_Base/
|
| 15 |
+
model_1200000.safetensors
|
| 16 |
+
E2TTS_Base/
|
| 17 |
+
model_1200000.safetensors
|
| 18 |
+
```
|
| 19 |
+
Github: https://github.com/SWivid/F5-TTS
|
| 20 |
+
Paper: [F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching](https://huggingface.co/papers/2410.06885)
|
2flow/models/downloads/F5TTS_Base/model_1200000.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c2f1bcbe1582a04468920abf227aa75f18faf57d24d5b141195eb4e55f39bc03
|
| 3 |
+
size 1348767810
|
2flow/models/downloads/F5TTS_Base/model_1200000.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4180310f91d592cee4bc14998cd37c781f779cf105e8ca8744d9bd48ca7046ae
|
| 3 |
+
size 1348645281
|
2flow/models/downloads/F5TTS_Base/vocab.txt
ADDED
|
@@ -0,0 +1,2545 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
!
|
| 3 |
+
"
|
| 4 |
+
#
|
| 5 |
+
$
|
| 6 |
+
%
|
| 7 |
+
&
|
| 8 |
+
'
|
| 9 |
+
(
|
| 10 |
+
)
|
| 11 |
+
*
|
| 12 |
+
+
|
| 13 |
+
,
|
| 14 |
+
-
|
| 15 |
+
.
|
| 16 |
+
/
|
| 17 |
+
0
|
| 18 |
+
1
|
| 19 |
+
2
|
| 20 |
+
3
|
| 21 |
+
4
|
| 22 |
+
5
|
| 23 |
+
6
|
| 24 |
+
7
|
| 25 |
+
8
|
| 26 |
+
9
|
| 27 |
+
:
|
| 28 |
+
;
|
| 29 |
+
=
|
| 30 |
+
>
|
| 31 |
+
?
|
| 32 |
+
@
|
| 33 |
+
A
|
| 34 |
+
B
|
| 35 |
+
C
|
| 36 |
+
D
|
| 37 |
+
E
|
| 38 |
+
F
|
| 39 |
+
G
|
| 40 |
+
H
|
| 41 |
+
I
|
| 42 |
+
J
|
| 43 |
+
K
|
| 44 |
+
L
|
| 45 |
+
M
|
| 46 |
+
N
|
| 47 |
+
O
|
| 48 |
+
P
|
| 49 |
+
Q
|
| 50 |
+
R
|
| 51 |
+
S
|
| 52 |
+
T
|
| 53 |
+
U
|
| 54 |
+
V
|
| 55 |
+
W
|
| 56 |
+
X
|
| 57 |
+
Y
|
| 58 |
+
Z
|
| 59 |
+
[
|
| 60 |
+
\
|
| 61 |
+
]
|
| 62 |
+
_
|
| 63 |
+
a
|
| 64 |
+
a1
|
| 65 |
+
ai1
|
| 66 |
+
ai2
|
| 67 |
+
ai3
|
| 68 |
+
ai4
|
| 69 |
+
an1
|
| 70 |
+
an3
|
| 71 |
+
an4
|
| 72 |
+
ang1
|
| 73 |
+
ang2
|
| 74 |
+
ang4
|
| 75 |
+
ao1
|
| 76 |
+
ao2
|
| 77 |
+
ao3
|
| 78 |
+
ao4
|
| 79 |
+
b
|
| 80 |
+
ba
|
| 81 |
+
ba1
|
| 82 |
+
ba2
|
| 83 |
+
ba3
|
| 84 |
+
ba4
|
| 85 |
+
bai1
|
| 86 |
+
bai2
|
| 87 |
+
bai3
|
| 88 |
+
bai4
|
| 89 |
+
ban1
|
| 90 |
+
ban2
|
| 91 |
+
ban3
|
| 92 |
+
ban4
|
| 93 |
+
bang1
|
| 94 |
+
bang2
|
| 95 |
+
bang3
|
| 96 |
+
bang4
|
| 97 |
+
bao1
|
| 98 |
+
bao2
|
| 99 |
+
bao3
|
| 100 |
+
bao4
|
| 101 |
+
bei
|
| 102 |
+
bei1
|
| 103 |
+
bei2
|
| 104 |
+
bei3
|
| 105 |
+
bei4
|
| 106 |
+
ben1
|
| 107 |
+
ben2
|
| 108 |
+
ben3
|
| 109 |
+
ben4
|
| 110 |
+
beng
|
| 111 |
+
beng1
|
| 112 |
+
beng2
|
| 113 |
+
beng3
|
| 114 |
+
beng4
|
| 115 |
+
bi1
|
| 116 |
+
bi2
|
| 117 |
+
bi3
|
| 118 |
+
bi4
|
| 119 |
+
bian1
|
| 120 |
+
bian2
|
| 121 |
+
bian3
|
| 122 |
+
bian4
|
| 123 |
+
biao1
|
| 124 |
+
biao2
|
| 125 |
+
biao3
|
| 126 |
+
bie1
|
| 127 |
+
bie2
|
| 128 |
+
bie3
|
| 129 |
+
bie4
|
| 130 |
+
bin1
|
| 131 |
+
bin4
|
| 132 |
+
bing1
|
| 133 |
+
bing2
|
| 134 |
+
bing3
|
| 135 |
+
bing4
|
| 136 |
+
bo
|
| 137 |
+
bo1
|
| 138 |
+
bo2
|
| 139 |
+
bo3
|
| 140 |
+
bo4
|
| 141 |
+
bu2
|
| 142 |
+
bu3
|
| 143 |
+
bu4
|
| 144 |
+
c
|
| 145 |
+
ca1
|
| 146 |
+
cai1
|
| 147 |
+
cai2
|
| 148 |
+
cai3
|
| 149 |
+
cai4
|
| 150 |
+
can1
|
| 151 |
+
can2
|
| 152 |
+
can3
|
| 153 |
+
can4
|
| 154 |
+
cang1
|
| 155 |
+
cang2
|
| 156 |
+
cao1
|
| 157 |
+
cao2
|
| 158 |
+
cao3
|
| 159 |
+
ce4
|
| 160 |
+
cen1
|
| 161 |
+
cen2
|
| 162 |
+
ceng1
|
| 163 |
+
ceng2
|
| 164 |
+
ceng4
|
| 165 |
+
cha1
|
| 166 |
+
cha2
|
| 167 |
+
cha3
|
| 168 |
+
cha4
|
| 169 |
+
chai1
|
| 170 |
+
chai2
|
| 171 |
+
chan1
|
| 172 |
+
chan2
|
| 173 |
+
chan3
|
| 174 |
+
chan4
|
| 175 |
+
chang1
|
| 176 |
+
chang2
|
| 177 |
+
chang3
|
| 178 |
+
chang4
|
| 179 |
+
chao1
|
| 180 |
+
chao2
|
| 181 |
+
chao3
|
| 182 |
+
che1
|
| 183 |
+
che2
|
| 184 |
+
che3
|
| 185 |
+
che4
|
| 186 |
+
chen1
|
| 187 |
+
chen2
|
| 188 |
+
chen3
|
| 189 |
+
chen4
|
| 190 |
+
cheng1
|
| 191 |
+
cheng2
|
| 192 |
+
cheng3
|
| 193 |
+
cheng4
|
| 194 |
+
chi1
|
| 195 |
+
chi2
|
| 196 |
+
chi3
|
| 197 |
+
chi4
|
| 198 |
+
chong1
|
| 199 |
+
chong2
|
| 200 |
+
chong3
|
| 201 |
+
chong4
|
| 202 |
+
chou1
|
| 203 |
+
chou2
|
| 204 |
+
chou3
|
| 205 |
+
chou4
|
| 206 |
+
chu1
|
| 207 |
+
chu2
|
| 208 |
+
chu3
|
| 209 |
+
chu4
|
| 210 |
+
chua1
|
| 211 |
+
chuai1
|
| 212 |
+
chuai2
|
| 213 |
+
chuai3
|
| 214 |
+
chuai4
|
| 215 |
+
chuan1
|
| 216 |
+
chuan2
|
| 217 |
+
chuan3
|
| 218 |
+
chuan4
|
| 219 |
+
chuang1
|
| 220 |
+
chuang2
|
| 221 |
+
chuang3
|
| 222 |
+
chuang4
|
| 223 |
+
chui1
|
| 224 |
+
chui2
|
| 225 |
+
chun1
|
| 226 |
+
chun2
|
| 227 |
+
chun3
|
| 228 |
+
chuo1
|
| 229 |
+
chuo4
|
| 230 |
+
ci1
|
| 231 |
+
ci2
|
| 232 |
+
ci3
|
| 233 |
+
ci4
|
| 234 |
+
cong1
|
| 235 |
+
cong2
|
| 236 |
+
cou4
|
| 237 |
+
cu1
|
| 238 |
+
cu4
|
| 239 |
+
cuan1
|
| 240 |
+
cuan2
|
| 241 |
+
cuan4
|
| 242 |
+
cui1
|
| 243 |
+
cui3
|
| 244 |
+
cui4
|
| 245 |
+
cun1
|
| 246 |
+
cun2
|
| 247 |
+
cun4
|
| 248 |
+
cuo1
|
| 249 |
+
cuo2
|
| 250 |
+
cuo4
|
| 251 |
+
d
|
| 252 |
+
da
|
| 253 |
+
da1
|
| 254 |
+
da2
|
| 255 |
+
da3
|
| 256 |
+
da4
|
| 257 |
+
dai1
|
| 258 |
+
dai2
|
| 259 |
+
dai3
|
| 260 |
+
dai4
|
| 261 |
+
dan1
|
| 262 |
+
dan2
|
| 263 |
+
dan3
|
| 264 |
+
dan4
|
| 265 |
+
dang1
|
| 266 |
+
dang2
|
| 267 |
+
dang3
|
| 268 |
+
dang4
|
| 269 |
+
dao1
|
| 270 |
+
dao2
|
| 271 |
+
dao3
|
| 272 |
+
dao4
|
| 273 |
+
de
|
| 274 |
+
de1
|
| 275 |
+
de2
|
| 276 |
+
dei3
|
| 277 |
+
den4
|
| 278 |
+
deng1
|
| 279 |
+
deng2
|
| 280 |
+
deng3
|
| 281 |
+
deng4
|
| 282 |
+
di1
|
| 283 |
+
di2
|
| 284 |
+
di3
|
| 285 |
+
di4
|
| 286 |
+
dia3
|
| 287 |
+
dian1
|
| 288 |
+
dian2
|
| 289 |
+
dian3
|
| 290 |
+
dian4
|
| 291 |
+
diao1
|
| 292 |
+
diao3
|
| 293 |
+
diao4
|
| 294 |
+
die1
|
| 295 |
+
die2
|
| 296 |
+
die4
|
| 297 |
+
ding1
|
| 298 |
+
ding2
|
| 299 |
+
ding3
|
| 300 |
+
ding4
|
| 301 |
+
diu1
|
| 302 |
+
dong1
|
| 303 |
+
dong3
|
| 304 |
+
dong4
|
| 305 |
+
dou1
|
| 306 |
+
dou2
|
| 307 |
+
dou3
|
| 308 |
+
dou4
|
| 309 |
+
du1
|
| 310 |
+
du2
|
| 311 |
+
du3
|
| 312 |
+
du4
|
| 313 |
+
duan1
|
| 314 |
+
duan2
|
| 315 |
+
duan3
|
| 316 |
+
duan4
|
| 317 |
+
dui1
|
| 318 |
+
dui4
|
| 319 |
+
dun1
|
| 320 |
+
dun3
|
| 321 |
+
dun4
|
| 322 |
+
duo1
|
| 323 |
+
duo2
|
| 324 |
+
duo3
|
| 325 |
+
duo4
|
| 326 |
+
e
|
| 327 |
+
e1
|
| 328 |
+
e2
|
| 329 |
+
e3
|
| 330 |
+
e4
|
| 331 |
+
ei2
|
| 332 |
+
en1
|
| 333 |
+
en4
|
| 334 |
+
er
|
| 335 |
+
er2
|
| 336 |
+
er3
|
| 337 |
+
er4
|
| 338 |
+
f
|
| 339 |
+
fa1
|
| 340 |
+
fa2
|
| 341 |
+
fa3
|
| 342 |
+
fa4
|
| 343 |
+
fan1
|
| 344 |
+
fan2
|
| 345 |
+
fan3
|
| 346 |
+
fan4
|
| 347 |
+
fang1
|
| 348 |
+
fang2
|
| 349 |
+
fang3
|
| 350 |
+
fang4
|
| 351 |
+
fei1
|
| 352 |
+
fei2
|
| 353 |
+
fei3
|
| 354 |
+
fei4
|
| 355 |
+
fen1
|
| 356 |
+
fen2
|
| 357 |
+
fen3
|
| 358 |
+
fen4
|
| 359 |
+
feng1
|
| 360 |
+
feng2
|
| 361 |
+
feng3
|
| 362 |
+
feng4
|
| 363 |
+
fo2
|
| 364 |
+
fou2
|
| 365 |
+
fou3
|
| 366 |
+
fu1
|
| 367 |
+
fu2
|
| 368 |
+
fu3
|
| 369 |
+
fu4
|
| 370 |
+
g
|
| 371 |
+
ga1
|
| 372 |
+
ga2
|
| 373 |
+
ga3
|
| 374 |
+
ga4
|
| 375 |
+
gai1
|
| 376 |
+
gai2
|
| 377 |
+
gai3
|
| 378 |
+
gai4
|
| 379 |
+
gan1
|
| 380 |
+
gan2
|
| 381 |
+
gan3
|
| 382 |
+
gan4
|
| 383 |
+
gang1
|
| 384 |
+
gang2
|
| 385 |
+
gang3
|
| 386 |
+
gang4
|
| 387 |
+
gao1
|
| 388 |
+
gao2
|
| 389 |
+
gao3
|
| 390 |
+
gao4
|
| 391 |
+
ge1
|
| 392 |
+
ge2
|
| 393 |
+
ge3
|
| 394 |
+
ge4
|
| 395 |
+
gei2
|
| 396 |
+
gei3
|
| 397 |
+
gen1
|
| 398 |
+
gen2
|
| 399 |
+
gen3
|
| 400 |
+
gen4
|
| 401 |
+
geng1
|
| 402 |
+
geng3
|
| 403 |
+
geng4
|
| 404 |
+
gong1
|
| 405 |
+
gong3
|
| 406 |
+
gong4
|
| 407 |
+
gou1
|
| 408 |
+
gou2
|
| 409 |
+
gou3
|
| 410 |
+
gou4
|
| 411 |
+
gu
|
| 412 |
+
gu1
|
| 413 |
+
gu2
|
| 414 |
+
gu3
|
| 415 |
+
gu4
|
| 416 |
+
gua1
|
| 417 |
+
gua2
|
| 418 |
+
gua3
|
| 419 |
+
gua4
|
| 420 |
+
guai1
|
| 421 |
+
guai2
|
| 422 |
+
guai3
|
| 423 |
+
guai4
|
| 424 |
+
guan1
|
| 425 |
+
guan2
|
| 426 |
+
guan3
|
| 427 |
+
guan4
|
| 428 |
+
guang1
|
| 429 |
+
guang2
|
| 430 |
+
guang3
|
| 431 |
+
guang4
|
| 432 |
+
gui1
|
| 433 |
+
gui2
|
| 434 |
+
gui3
|
| 435 |
+
gui4
|
| 436 |
+
gun3
|
| 437 |
+
gun4
|
| 438 |
+
guo1
|
| 439 |
+
guo2
|
| 440 |
+
guo3
|
| 441 |
+
guo4
|
| 442 |
+
h
|
| 443 |
+
ha1
|
| 444 |
+
ha2
|
| 445 |
+
ha3
|
| 446 |
+
hai1
|
| 447 |
+
hai2
|
| 448 |
+
hai3
|
| 449 |
+
hai4
|
| 450 |
+
han1
|
| 451 |
+
han2
|
| 452 |
+
han3
|
| 453 |
+
han4
|
| 454 |
+
hang1
|
| 455 |
+
hang2
|
| 456 |
+
hang4
|
| 457 |
+
hao1
|
| 458 |
+
hao2
|
| 459 |
+
hao3
|
| 460 |
+
hao4
|
| 461 |
+
he1
|
| 462 |
+
he2
|
| 463 |
+
he4
|
| 464 |
+
hei1
|
| 465 |
+
hen2
|
| 466 |
+
hen3
|
| 467 |
+
hen4
|
| 468 |
+
heng1
|
| 469 |
+
heng2
|
| 470 |
+
heng4
|
| 471 |
+
hong1
|
| 472 |
+
hong2
|
| 473 |
+
hong3
|
| 474 |
+
hong4
|
| 475 |
+
hou1
|
| 476 |
+
hou2
|
| 477 |
+
hou3
|
| 478 |
+
hou4
|
| 479 |
+
hu1
|
| 480 |
+
hu2
|
| 481 |
+
hu3
|
| 482 |
+
hu4
|
| 483 |
+
hua1
|
| 484 |
+
hua2
|
| 485 |
+
hua4
|
| 486 |
+
huai2
|
| 487 |
+
huai4
|
| 488 |
+
huan1
|
| 489 |
+
huan2
|
| 490 |
+
huan3
|
| 491 |
+
huan4
|
| 492 |
+
huang1
|
| 493 |
+
huang2
|
| 494 |
+
huang3
|
| 495 |
+
huang4
|
| 496 |
+
hui1
|
| 497 |
+
hui2
|
| 498 |
+
hui3
|
| 499 |
+
hui4
|
| 500 |
+
hun1
|
| 501 |
+
hun2
|
| 502 |
+
hun4
|
| 503 |
+
huo
|
| 504 |
+
huo1
|
| 505 |
+
huo2
|
| 506 |
+
huo3
|
| 507 |
+
huo4
|
| 508 |
+
i
|
| 509 |
+
j
|
| 510 |
+
ji1
|
| 511 |
+
ji2
|
| 512 |
+
ji3
|
| 513 |
+
ji4
|
| 514 |
+
jia
|
| 515 |
+
jia1
|
| 516 |
+
jia2
|
| 517 |
+
jia3
|
| 518 |
+
jia4
|
| 519 |
+
jian1
|
| 520 |
+
jian2
|
| 521 |
+
jian3
|
| 522 |
+
jian4
|
| 523 |
+
jiang1
|
| 524 |
+
jiang2
|
| 525 |
+
jiang3
|
| 526 |
+
jiang4
|
| 527 |
+
jiao1
|
| 528 |
+
jiao2
|
| 529 |
+
jiao3
|
| 530 |
+
jiao4
|
| 531 |
+
jie1
|
| 532 |
+
jie2
|
| 533 |
+
jie3
|
| 534 |
+
jie4
|
| 535 |
+
jin1
|
| 536 |
+
jin2
|
| 537 |
+
jin3
|
| 538 |
+
jin4
|
| 539 |
+
jing1
|
| 540 |
+
jing2
|
| 541 |
+
jing3
|
| 542 |
+
jing4
|
| 543 |
+
jiong3
|
| 544 |
+
jiu1
|
| 545 |
+
jiu2
|
| 546 |
+
jiu3
|
| 547 |
+
jiu4
|
| 548 |
+
ju1
|
| 549 |
+
ju2
|
| 550 |
+
ju3
|
| 551 |
+
ju4
|
| 552 |
+
juan1
|
| 553 |
+
juan2
|
| 554 |
+
juan3
|
| 555 |
+
juan4
|
| 556 |
+
jue1
|
| 557 |
+
jue2
|
| 558 |
+
jue4
|
| 559 |
+
jun1
|
| 560 |
+
jun4
|
| 561 |
+
k
|
| 562 |
+
ka1
|
| 563 |
+
ka2
|
| 564 |
+
ka3
|
| 565 |
+
kai1
|
| 566 |
+
kai2
|
| 567 |
+
kai3
|
| 568 |
+
kai4
|
| 569 |
+
kan1
|
| 570 |
+
kan2
|
| 571 |
+
kan3
|
| 572 |
+
kan4
|
| 573 |
+
kang1
|
| 574 |
+
kang2
|
| 575 |
+
kang4
|
| 576 |
+
kao1
|
| 577 |
+
kao2
|
| 578 |
+
kao3
|
| 579 |
+
kao4
|
| 580 |
+
ke1
|
| 581 |
+
ke2
|
| 582 |
+
ke3
|
| 583 |
+
ke4
|
| 584 |
+
ken3
|
| 585 |
+
keng1
|
| 586 |
+
kong1
|
| 587 |
+
kong3
|
| 588 |
+
kong4
|
| 589 |
+
kou1
|
| 590 |
+
kou2
|
| 591 |
+
kou3
|
| 592 |
+
kou4
|
| 593 |
+
ku1
|
| 594 |
+
ku2
|
| 595 |
+
ku3
|
| 596 |
+
ku4
|
| 597 |
+
kua1
|
| 598 |
+
kua3
|
| 599 |
+
kua4
|
| 600 |
+
kuai3
|
| 601 |
+
kuai4
|
| 602 |
+
kuan1
|
| 603 |
+
kuan2
|
| 604 |
+
kuan3
|
| 605 |
+
kuang1
|
| 606 |
+
kuang2
|
| 607 |
+
kuang4
|
| 608 |
+
kui1
|
| 609 |
+
kui2
|
| 610 |
+
kui3
|
| 611 |
+
kui4
|
| 612 |
+
kun1
|
| 613 |
+
kun3
|
| 614 |
+
kun4
|
| 615 |
+
kuo4
|
| 616 |
+
l
|
| 617 |
+
la
|
| 618 |
+
la1
|
| 619 |
+
la2
|
| 620 |
+
la3
|
| 621 |
+
la4
|
| 622 |
+
lai2
|
| 623 |
+
lai4
|
| 624 |
+
lan2
|
| 625 |
+
lan3
|
| 626 |
+
lan4
|
| 627 |
+
lang1
|
| 628 |
+
lang2
|
| 629 |
+
lang3
|
| 630 |
+
lang4
|
| 631 |
+
lao1
|
| 632 |
+
lao2
|
| 633 |
+
lao3
|
| 634 |
+
lao4
|
| 635 |
+
le
|
| 636 |
+
le1
|
| 637 |
+
le4
|
| 638 |
+
lei
|
| 639 |
+
lei1
|
| 640 |
+
lei2
|
| 641 |
+
lei3
|
| 642 |
+
lei4
|
| 643 |
+
leng1
|
| 644 |
+
leng2
|
| 645 |
+
leng3
|
| 646 |
+
leng4
|
| 647 |
+
li
|
| 648 |
+
li1
|
| 649 |
+
li2
|
| 650 |
+
li3
|
| 651 |
+
li4
|
| 652 |
+
lia3
|
| 653 |
+
lian2
|
| 654 |
+
lian3
|
| 655 |
+
lian4
|
| 656 |
+
liang2
|
| 657 |
+
liang3
|
| 658 |
+
liang4
|
| 659 |
+
liao1
|
| 660 |
+
liao2
|
| 661 |
+
liao3
|
| 662 |
+
liao4
|
| 663 |
+
lie1
|
| 664 |
+
lie2
|
| 665 |
+
lie3
|
| 666 |
+
lie4
|
| 667 |
+
lin1
|
| 668 |
+
lin2
|
| 669 |
+
lin3
|
| 670 |
+
lin4
|
| 671 |
+
ling2
|
| 672 |
+
ling3
|
| 673 |
+
ling4
|
| 674 |
+
liu1
|
| 675 |
+
liu2
|
| 676 |
+
liu3
|
| 677 |
+
liu4
|
| 678 |
+
long1
|
| 679 |
+
long2
|
| 680 |
+
long3
|
| 681 |
+
long4
|
| 682 |
+
lou1
|
| 683 |
+
lou2
|
| 684 |
+
lou3
|
| 685 |
+
lou4
|
| 686 |
+
lu1
|
| 687 |
+
lu2
|
| 688 |
+
lu3
|
| 689 |
+
lu4
|
| 690 |
+
luan2
|
| 691 |
+
luan3
|
| 692 |
+
luan4
|
| 693 |
+
lun1
|
| 694 |
+
lun2
|
| 695 |
+
lun4
|
| 696 |
+
luo1
|
| 697 |
+
luo2
|
| 698 |
+
luo3
|
| 699 |
+
luo4
|
| 700 |
+
lv2
|
| 701 |
+
lv3
|
| 702 |
+
lv4
|
| 703 |
+
lve3
|
| 704 |
+
lve4
|
| 705 |
+
m
|
| 706 |
+
ma
|
| 707 |
+
ma1
|
| 708 |
+
ma2
|
| 709 |
+
ma3
|
| 710 |
+
ma4
|
| 711 |
+
mai2
|
| 712 |
+
mai3
|
| 713 |
+
mai4
|
| 714 |
+
man1
|
| 715 |
+
man2
|
| 716 |
+
man3
|
| 717 |
+
man4
|
| 718 |
+
mang2
|
| 719 |
+
mang3
|
| 720 |
+
mao1
|
| 721 |
+
mao2
|
| 722 |
+
mao3
|
| 723 |
+
mao4
|
| 724 |
+
me
|
| 725 |
+
mei2
|
| 726 |
+
mei3
|
| 727 |
+
mei4
|
| 728 |
+
men
|
| 729 |
+
men1
|
| 730 |
+
men2
|
| 731 |
+
men4
|
| 732 |
+
meng
|
| 733 |
+
meng1
|
| 734 |
+
meng2
|
| 735 |
+
meng3
|
| 736 |
+
meng4
|
| 737 |
+
mi1
|
| 738 |
+
mi2
|
| 739 |
+
mi3
|
| 740 |
+
mi4
|
| 741 |
+
mian2
|
| 742 |
+
mian3
|
| 743 |
+
mian4
|
| 744 |
+
miao1
|
| 745 |
+
miao2
|
| 746 |
+
miao3
|
| 747 |
+
miao4
|
| 748 |
+
mie1
|
| 749 |
+
mie4
|
| 750 |
+
min2
|
| 751 |
+
min3
|
| 752 |
+
ming2
|
| 753 |
+
ming3
|
| 754 |
+
ming4
|
| 755 |
+
miu4
|
| 756 |
+
mo1
|
| 757 |
+
mo2
|
| 758 |
+
mo3
|
| 759 |
+
mo4
|
| 760 |
+
mou1
|
| 761 |
+
mou2
|
| 762 |
+
mou3
|
| 763 |
+
mu2
|
| 764 |
+
mu3
|
| 765 |
+
mu4
|
| 766 |
+
n
|
| 767 |
+
n2
|
| 768 |
+
na1
|
| 769 |
+
na2
|
| 770 |
+
na3
|
| 771 |
+
na4
|
| 772 |
+
nai2
|
| 773 |
+
nai3
|
| 774 |
+
nai4
|
| 775 |
+
nan1
|
| 776 |
+
nan2
|
| 777 |
+
nan3
|
| 778 |
+
nan4
|
| 779 |
+
nang1
|
| 780 |
+
nang2
|
| 781 |
+
nang3
|
| 782 |
+
nao1
|
| 783 |
+
nao2
|
| 784 |
+
nao3
|
| 785 |
+
nao4
|
| 786 |
+
ne
|
| 787 |
+
ne2
|
| 788 |
+
ne4
|
| 789 |
+
nei3
|
| 790 |
+
nei4
|
| 791 |
+
nen4
|
| 792 |
+
neng2
|
| 793 |
+
ni1
|
| 794 |
+
ni2
|
| 795 |
+
ni3
|
| 796 |
+
ni4
|
| 797 |
+
nian1
|
| 798 |
+
nian2
|
| 799 |
+
nian3
|
| 800 |
+
nian4
|
| 801 |
+
niang2
|
| 802 |
+
niang4
|
| 803 |
+
niao2
|
| 804 |
+
niao3
|
| 805 |
+
niao4
|
| 806 |
+
nie1
|
| 807 |
+
nie4
|
| 808 |
+
nin2
|
| 809 |
+
ning2
|
| 810 |
+
ning3
|
| 811 |
+
ning4
|
| 812 |
+
niu1
|
| 813 |
+
niu2
|
| 814 |
+
niu3
|
| 815 |
+
niu4
|
| 816 |
+
nong2
|
| 817 |
+
nong4
|
| 818 |
+
nou4
|
| 819 |
+
nu2
|
| 820 |
+
nu3
|
| 821 |
+
nu4
|
| 822 |
+
nuan3
|
| 823 |
+
nuo2
|
| 824 |
+
nuo4
|
| 825 |
+
nv2
|
| 826 |
+
nv3
|
| 827 |
+
nve4
|
| 828 |
+
o
|
| 829 |
+
o1
|
| 830 |
+
o2
|
| 831 |
+
ou1
|
| 832 |
+
ou2
|
| 833 |
+
ou3
|
| 834 |
+
ou4
|
| 835 |
+
p
|
| 836 |
+
pa1
|
| 837 |
+
pa2
|
| 838 |
+
pa4
|
| 839 |
+
pai1
|
| 840 |
+
pai2
|
| 841 |
+
pai3
|
| 842 |
+
pai4
|
| 843 |
+
pan1
|
| 844 |
+
pan2
|
| 845 |
+
pan4
|
| 846 |
+
pang1
|
| 847 |
+
pang2
|
| 848 |
+
pang4
|
| 849 |
+
pao1
|
| 850 |
+
pao2
|
| 851 |
+
pao3
|
| 852 |
+
pao4
|
| 853 |
+
pei1
|
| 854 |
+
pei2
|
| 855 |
+
pei4
|
| 856 |
+
pen1
|
| 857 |
+
pen2
|
| 858 |
+
pen4
|
| 859 |
+
peng1
|
| 860 |
+
peng2
|
| 861 |
+
peng3
|
| 862 |
+
peng4
|
| 863 |
+
pi1
|
| 864 |
+
pi2
|
| 865 |
+
pi3
|
| 866 |
+
pi4
|
| 867 |
+
pian1
|
| 868 |
+
pian2
|
| 869 |
+
pian4
|
| 870 |
+
piao1
|
| 871 |
+
piao2
|
| 872 |
+
piao3
|
| 873 |
+
piao4
|
| 874 |
+
pie1
|
| 875 |
+
pie2
|
| 876 |
+
pie3
|
| 877 |
+
pin1
|
| 878 |
+
pin2
|
| 879 |
+
pin3
|
| 880 |
+
pin4
|
| 881 |
+
ping1
|
| 882 |
+
ping2
|
| 883 |
+
po1
|
| 884 |
+
po2
|
| 885 |
+
po3
|
| 886 |
+
po4
|
| 887 |
+
pou1
|
| 888 |
+
pu1
|
| 889 |
+
pu2
|
| 890 |
+
pu3
|
| 891 |
+
pu4
|
| 892 |
+
q
|
| 893 |
+
qi1
|
| 894 |
+
qi2
|
| 895 |
+
qi3
|
| 896 |
+
qi4
|
| 897 |
+
qia1
|
| 898 |
+
qia3
|
| 899 |
+
qia4
|
| 900 |
+
qian1
|
| 901 |
+
qian2
|
| 902 |
+
qian3
|
| 903 |
+
qian4
|
| 904 |
+
qiang1
|
| 905 |
+
qiang2
|
| 906 |
+
qiang3
|
| 907 |
+
qiang4
|
| 908 |
+
qiao1
|
| 909 |
+
qiao2
|
| 910 |
+
qiao3
|
| 911 |
+
qiao4
|
| 912 |
+
qie1
|
| 913 |
+
qie2
|
| 914 |
+
qie3
|
| 915 |
+
qie4
|
| 916 |
+
qin1
|
| 917 |
+
qin2
|
| 918 |
+
qin3
|
| 919 |
+
qin4
|
| 920 |
+
qing1
|
| 921 |
+
qing2
|
| 922 |
+
qing3
|
| 923 |
+
qing4
|
| 924 |
+
qiong1
|
| 925 |
+
qiong2
|
| 926 |
+
qiu1
|
| 927 |
+
qiu2
|
| 928 |
+
qiu3
|
| 929 |
+
qu1
|
| 930 |
+
qu2
|
| 931 |
+
qu3
|
| 932 |
+
qu4
|
| 933 |
+
quan1
|
| 934 |
+
quan2
|
| 935 |
+
quan3
|
| 936 |
+
quan4
|
| 937 |
+
que1
|
| 938 |
+
que2
|
| 939 |
+
que4
|
| 940 |
+
qun2
|
| 941 |
+
r
|
| 942 |
+
ran2
|
| 943 |
+
ran3
|
| 944 |
+
rang1
|
| 945 |
+
rang2
|
| 946 |
+
rang3
|
| 947 |
+
rang4
|
| 948 |
+
rao2
|
| 949 |
+
rao3
|
| 950 |
+
rao4
|
| 951 |
+
re2
|
| 952 |
+
re3
|
| 953 |
+
re4
|
| 954 |
+
ren2
|
| 955 |
+
ren3
|
| 956 |
+
ren4
|
| 957 |
+
reng1
|
| 958 |
+
reng2
|
| 959 |
+
ri4
|
| 960 |
+
rong1
|
| 961 |
+
rong2
|
| 962 |
+
rong3
|
| 963 |
+
rou2
|
| 964 |
+
rou4
|
| 965 |
+
ru2
|
| 966 |
+
ru3
|
| 967 |
+
ru4
|
| 968 |
+
ruan2
|
| 969 |
+
ruan3
|
| 970 |
+
rui3
|
| 971 |
+
rui4
|
| 972 |
+
run4
|
| 973 |
+
ruo4
|
| 974 |
+
s
|
| 975 |
+
sa1
|
| 976 |
+
sa2
|
| 977 |
+
sa3
|
| 978 |
+
sa4
|
| 979 |
+
sai1
|
| 980 |
+
sai4
|
| 981 |
+
san1
|
| 982 |
+
san2
|
| 983 |
+
san3
|
| 984 |
+
san4
|
| 985 |
+
sang1
|
| 986 |
+
sang3
|
| 987 |
+
sang4
|
| 988 |
+
sao1
|
| 989 |
+
sao2
|
| 990 |
+
sao3
|
| 991 |
+
sao4
|
| 992 |
+
se4
|
| 993 |
+
sen1
|
| 994 |
+
seng1
|
| 995 |
+
sha1
|
| 996 |
+
sha2
|
| 997 |
+
sha3
|
| 998 |
+
sha4
|
| 999 |
+
shai1
|
| 1000 |
+
shai2
|
| 1001 |
+
shai3
|
| 1002 |
+
shai4
|
| 1003 |
+
shan1
|
| 1004 |
+
shan3
|
| 1005 |
+
shan4
|
| 1006 |
+
shang
|
| 1007 |
+
shang1
|
| 1008 |
+
shang3
|
| 1009 |
+
shang4
|
| 1010 |
+
shao1
|
| 1011 |
+
shao2
|
| 1012 |
+
shao3
|
| 1013 |
+
shao4
|
| 1014 |
+
she1
|
| 1015 |
+
she2
|
| 1016 |
+
she3
|
| 1017 |
+
she4
|
| 1018 |
+
shei2
|
| 1019 |
+
shen1
|
| 1020 |
+
shen2
|
| 1021 |
+
shen3
|
| 1022 |
+
shen4
|
| 1023 |
+
sheng1
|
| 1024 |
+
sheng2
|
| 1025 |
+
sheng3
|
| 1026 |
+
sheng4
|
| 1027 |
+
shi
|
| 1028 |
+
shi1
|
| 1029 |
+
shi2
|
| 1030 |
+
shi3
|
| 1031 |
+
shi4
|
| 1032 |
+
shou1
|
| 1033 |
+
shou2
|
| 1034 |
+
shou3
|
| 1035 |
+
shou4
|
| 1036 |
+
shu1
|
| 1037 |
+
shu2
|
| 1038 |
+
shu3
|
| 1039 |
+
shu4
|
| 1040 |
+
shua1
|
| 1041 |
+
shua2
|
| 1042 |
+
shua3
|
| 1043 |
+
shua4
|
| 1044 |
+
shuai1
|
| 1045 |
+
shuai3
|
| 1046 |
+
shuai4
|
| 1047 |
+
shuan1
|
| 1048 |
+
shuan4
|
| 1049 |
+
shuang1
|
| 1050 |
+
shuang3
|
| 1051 |
+
shui2
|
| 1052 |
+
shui3
|
| 1053 |
+
shui4
|
| 1054 |
+
shun3
|
| 1055 |
+
shun4
|
| 1056 |
+
shuo1
|
| 1057 |
+
shuo4
|
| 1058 |
+
si1
|
| 1059 |
+
si2
|
| 1060 |
+
si3
|
| 1061 |
+
si4
|
| 1062 |
+
song1
|
| 1063 |
+
song3
|
| 1064 |
+
song4
|
| 1065 |
+
sou1
|
| 1066 |
+
sou3
|
| 1067 |
+
sou4
|
| 1068 |
+
su1
|
| 1069 |
+
su2
|
| 1070 |
+
su4
|
| 1071 |
+
suan1
|
| 1072 |
+
suan4
|
| 1073 |
+
sui1
|
| 1074 |
+
sui2
|
| 1075 |
+
sui3
|
| 1076 |
+
sui4
|
| 1077 |
+
sun1
|
| 1078 |
+
sun3
|
| 1079 |
+
suo
|
| 1080 |
+
suo1
|
| 1081 |
+
suo2
|
| 1082 |
+
suo3
|
| 1083 |
+
t
|
| 1084 |
+
ta1
|
| 1085 |
+
ta2
|
| 1086 |
+
ta3
|
| 1087 |
+
ta4
|
| 1088 |
+
tai1
|
| 1089 |
+
tai2
|
| 1090 |
+
tai4
|
| 1091 |
+
tan1
|
| 1092 |
+
tan2
|
| 1093 |
+
tan3
|
| 1094 |
+
tan4
|
| 1095 |
+
tang1
|
| 1096 |
+
tang2
|
| 1097 |
+
tang3
|
| 1098 |
+
tang4
|
| 1099 |
+
tao1
|
| 1100 |
+
tao2
|
| 1101 |
+
tao3
|
| 1102 |
+
tao4
|
| 1103 |
+
te4
|
| 1104 |
+
teng2
|
| 1105 |
+
ti1
|
| 1106 |
+
ti2
|
| 1107 |
+
ti3
|
| 1108 |
+
ti4
|
| 1109 |
+
tian1
|
| 1110 |
+
tian2
|
| 1111 |
+
tian3
|
| 1112 |
+
tiao1
|
| 1113 |
+
tiao2
|
| 1114 |
+
tiao3
|
| 1115 |
+
tiao4
|
| 1116 |
+
tie1
|
| 1117 |
+
tie2
|
| 1118 |
+
tie3
|
| 1119 |
+
tie4
|
| 1120 |
+
ting1
|
| 1121 |
+
ting2
|
| 1122 |
+
ting3
|
| 1123 |
+
tong1
|
| 1124 |
+
tong2
|
| 1125 |
+
tong3
|
| 1126 |
+
tong4
|
| 1127 |
+
tou
|
| 1128 |
+
tou1
|
| 1129 |
+
tou2
|
| 1130 |
+
tou4
|
| 1131 |
+
tu1
|
| 1132 |
+
tu2
|
| 1133 |
+
tu3
|
| 1134 |
+
tu4
|
| 1135 |
+
tuan1
|
| 1136 |
+
tuan2
|
| 1137 |
+
tui1
|
| 1138 |
+
tui2
|
| 1139 |
+
tui3
|
| 1140 |
+
tui4
|
| 1141 |
+
tun1
|
| 1142 |
+
tun2
|
| 1143 |
+
tun4
|
| 1144 |
+
tuo1
|
| 1145 |
+
tuo2
|
| 1146 |
+
tuo3
|
| 1147 |
+
tuo4
|
| 1148 |
+
u
|
| 1149 |
+
v
|
| 1150 |
+
w
|
| 1151 |
+
wa
|
| 1152 |
+
wa1
|
| 1153 |
+
wa2
|
| 1154 |
+
wa3
|
| 1155 |
+
wa4
|
| 1156 |
+
wai1
|
| 1157 |
+
wai3
|
| 1158 |
+
wai4
|
| 1159 |
+
wan1
|
| 1160 |
+
wan2
|
| 1161 |
+
wan3
|
| 1162 |
+
wan4
|
| 1163 |
+
wang1
|
| 1164 |
+
wang2
|
| 1165 |
+
wang3
|
| 1166 |
+
wang4
|
| 1167 |
+
wei1
|
| 1168 |
+
wei2
|
| 1169 |
+
wei3
|
| 1170 |
+
wei4
|
| 1171 |
+
wen1
|
| 1172 |
+
wen2
|
| 1173 |
+
wen3
|
| 1174 |
+
wen4
|
| 1175 |
+
weng1
|
| 1176 |
+
weng4
|
| 1177 |
+
wo1
|
| 1178 |
+
wo2
|
| 1179 |
+
wo3
|
| 1180 |
+
wo4
|
| 1181 |
+
wu1
|
| 1182 |
+
wu2
|
| 1183 |
+
wu3
|
| 1184 |
+
wu4
|
| 1185 |
+
x
|
| 1186 |
+
xi1
|
| 1187 |
+
xi2
|
| 1188 |
+
xi3
|
| 1189 |
+
xi4
|
| 1190 |
+
xia1
|
| 1191 |
+
xia2
|
| 1192 |
+
xia4
|
| 1193 |
+
xian1
|
| 1194 |
+
xian2
|
| 1195 |
+
xian3
|
| 1196 |
+
xian4
|
| 1197 |
+
xiang1
|
| 1198 |
+
xiang2
|
| 1199 |
+
xiang3
|
| 1200 |
+
xiang4
|
| 1201 |
+
xiao1
|
| 1202 |
+
xiao2
|
| 1203 |
+
xiao3
|
| 1204 |
+
xiao4
|
| 1205 |
+
xie1
|
| 1206 |
+
xie2
|
| 1207 |
+
xie3
|
| 1208 |
+
xie4
|
| 1209 |
+
xin1
|
| 1210 |
+
xin2
|
| 1211 |
+
xin4
|
| 1212 |
+
xing1
|
| 1213 |
+
xing2
|
| 1214 |
+
xing3
|
| 1215 |
+
xing4
|
| 1216 |
+
xiong1
|
| 1217 |
+
xiong2
|
| 1218 |
+
xiu1
|
| 1219 |
+
xiu3
|
| 1220 |
+
xiu4
|
| 1221 |
+
xu
|
| 1222 |
+
xu1
|
| 1223 |
+
xu2
|
| 1224 |
+
xu3
|
| 1225 |
+
xu4
|
| 1226 |
+
xuan1
|
| 1227 |
+
xuan2
|
| 1228 |
+
xuan3
|
| 1229 |
+
xuan4
|
| 1230 |
+
xue1
|
| 1231 |
+
xue2
|
| 1232 |
+
xue3
|
| 1233 |
+
xue4
|
| 1234 |
+
xun1
|
| 1235 |
+
xun2
|
| 1236 |
+
xun4
|
| 1237 |
+
y
|
| 1238 |
+
ya
|
| 1239 |
+
ya1
|
| 1240 |
+
ya2
|
| 1241 |
+
ya3
|
| 1242 |
+
ya4
|
| 1243 |
+
yan1
|
| 1244 |
+
yan2
|
| 1245 |
+
yan3
|
| 1246 |
+
yan4
|
| 1247 |
+
yang1
|
| 1248 |
+
yang2
|
| 1249 |
+
yang3
|
| 1250 |
+
yang4
|
| 1251 |
+
yao1
|
| 1252 |
+
yao2
|
| 1253 |
+
yao3
|
| 1254 |
+
yao4
|
| 1255 |
+
ye1
|
| 1256 |
+
ye2
|
| 1257 |
+
ye3
|
| 1258 |
+
ye4
|
| 1259 |
+
yi
|
| 1260 |
+
yi1
|
| 1261 |
+
yi2
|
| 1262 |
+
yi3
|
| 1263 |
+
yi4
|
| 1264 |
+
yin1
|
| 1265 |
+
yin2
|
| 1266 |
+
yin3
|
| 1267 |
+
yin4
|
| 1268 |
+
ying1
|
| 1269 |
+
ying2
|
| 1270 |
+
ying3
|
| 1271 |
+
ying4
|
| 1272 |
+
yo1
|
| 1273 |
+
yong1
|
| 1274 |
+
yong2
|
| 1275 |
+
yong3
|
| 1276 |
+
yong4
|
| 1277 |
+
you1
|
| 1278 |
+
you2
|
| 1279 |
+
you3
|
| 1280 |
+
you4
|
| 1281 |
+
yu1
|
| 1282 |
+
yu2
|
| 1283 |
+
yu3
|
| 1284 |
+
yu4
|
| 1285 |
+
yuan1
|
| 1286 |
+
yuan2
|
| 1287 |
+
yuan3
|
| 1288 |
+
yuan4
|
| 1289 |
+
yue1
|
| 1290 |
+
yue4
|
| 1291 |
+
yun1
|
| 1292 |
+
yun2
|
| 1293 |
+
yun3
|
| 1294 |
+
yun4
|
| 1295 |
+
z
|
| 1296 |
+
za1
|
| 1297 |
+
za2
|
| 1298 |
+
za3
|
| 1299 |
+
zai1
|
| 1300 |
+
zai3
|
| 1301 |
+
zai4
|
| 1302 |
+
zan1
|
| 1303 |
+
zan2
|
| 1304 |
+
zan3
|
| 1305 |
+
zan4
|
| 1306 |
+
zang1
|
| 1307 |
+
zang4
|
| 1308 |
+
zao1
|
| 1309 |
+
zao2
|
| 1310 |
+
zao3
|
| 1311 |
+
zao4
|
| 1312 |
+
ze2
|
| 1313 |
+
ze4
|
| 1314 |
+
zei2
|
| 1315 |
+
zen3
|
| 1316 |
+
zeng1
|
| 1317 |
+
zeng4
|
| 1318 |
+
zha1
|
| 1319 |
+
zha2
|
| 1320 |
+
zha3
|
| 1321 |
+
zha4
|
| 1322 |
+
zhai1
|
| 1323 |
+
zhai2
|
| 1324 |
+
zhai3
|
| 1325 |
+
zhai4
|
| 1326 |
+
zhan1
|
| 1327 |
+
zhan2
|
| 1328 |
+
zhan3
|
| 1329 |
+
zhan4
|
| 1330 |
+
zhang1
|
| 1331 |
+
zhang2
|
| 1332 |
+
zhang3
|
| 1333 |
+
zhang4
|
| 1334 |
+
zhao1
|
| 1335 |
+
zhao2
|
| 1336 |
+
zhao3
|
| 1337 |
+
zhao4
|
| 1338 |
+
zhe
|
| 1339 |
+
zhe1
|
| 1340 |
+
zhe2
|
| 1341 |
+
zhe3
|
| 1342 |
+
zhe4
|
| 1343 |
+
zhen1
|
| 1344 |
+
zhen2
|
| 1345 |
+
zhen3
|
| 1346 |
+
zhen4
|
| 1347 |
+
zheng1
|
| 1348 |
+
zheng2
|
| 1349 |
+
zheng3
|
| 1350 |
+
zheng4
|
| 1351 |
+
zhi1
|
| 1352 |
+
zhi2
|
| 1353 |
+
zhi3
|
| 1354 |
+
zhi4
|
| 1355 |
+
zhong1
|
| 1356 |
+
zhong2
|
| 1357 |
+
zhong3
|
| 1358 |
+
zhong4
|
| 1359 |
+
zhou1
|
| 1360 |
+
zhou2
|
| 1361 |
+
zhou3
|
| 1362 |
+
zhou4
|
| 1363 |
+
zhu1
|
| 1364 |
+
zhu2
|
| 1365 |
+
zhu3
|
| 1366 |
+
zhu4
|
| 1367 |
+
zhua1
|
| 1368 |
+
zhua2
|
| 1369 |
+
zhua3
|
| 1370 |
+
zhuai1
|
| 1371 |
+
zhuai3
|
| 1372 |
+
zhuai4
|
| 1373 |
+
zhuan1
|
| 1374 |
+
zhuan2
|
| 1375 |
+
zhuan3
|
| 1376 |
+
zhuan4
|
| 1377 |
+
zhuang1
|
| 1378 |
+
zhuang4
|
| 1379 |
+
zhui1
|
| 1380 |
+
zhui4
|
| 1381 |
+
zhun1
|
| 1382 |
+
zhun2
|
| 1383 |
+
zhun3
|
| 1384 |
+
zhuo1
|
| 1385 |
+
zhuo2
|
| 1386 |
+
zi
|
| 1387 |
+
zi1
|
| 1388 |
+
zi2
|
| 1389 |
+
zi3
|
| 1390 |
+
zi4
|
| 1391 |
+
zong1
|
| 1392 |
+
zong2
|
| 1393 |
+
zong3
|
| 1394 |
+
zong4
|
| 1395 |
+
zou1
|
| 1396 |
+
zou2
|
| 1397 |
+
zou3
|
| 1398 |
+
zou4
|
| 1399 |
+
zu1
|
| 1400 |
+
zu2
|
| 1401 |
+
zu3
|
| 1402 |
+
zuan1
|
| 1403 |
+
zuan3
|
| 1404 |
+
zuan4
|
| 1405 |
+
zui2
|
| 1406 |
+
zui3
|
| 1407 |
+
zui4
|
| 1408 |
+
zun1
|
| 1409 |
+
zuo
|
| 1410 |
+
zuo1
|
| 1411 |
+
zuo2
|
| 1412 |
+
zuo3
|
| 1413 |
+
zuo4
|
| 1414 |
+
{
|
| 1415 |
+
~
|
| 1416 |
+
¡
|
| 1417 |
+
¢
|
| 1418 |
+
£
|
| 1419 |
+
¥
|
| 1420 |
+
§
|
| 1421 |
+
¨
|
| 1422 |
+
©
|
| 1423 |
+
«
|
| 1424 |
+
®
|
| 1425 |
+
¯
|
| 1426 |
+
°
|
| 1427 |
+
±
|
| 1428 |
+
²
|
| 1429 |
+
³
|
| 1430 |
+
´
|
| 1431 |
+
µ
|
| 1432 |
+
·
|
| 1433 |
+
¹
|
| 1434 |
+
º
|
| 1435 |
+
»
|
| 1436 |
+
¼
|
| 1437 |
+
½
|
| 1438 |
+
¾
|
| 1439 |
+
¿
|
| 1440 |
+
À
|
| 1441 |
+
Á
|
| 1442 |
+
Â
|
| 1443 |
+
Ã
|
| 1444 |
+
Ä
|
| 1445 |
+
Å
|
| 1446 |
+
Æ
|
| 1447 |
+
Ç
|
| 1448 |
+
È
|
| 1449 |
+
É
|
| 1450 |
+
Ê
|
| 1451 |
+
Í
|
| 1452 |
+
Î
|
| 1453 |
+
Ñ
|
| 1454 |
+
Ó
|
| 1455 |
+
Ö
|
| 1456 |
+
×
|
| 1457 |
+
Ø
|
| 1458 |
+
Ú
|
| 1459 |
+
Ü
|
| 1460 |
+
Ý
|
| 1461 |
+
Þ
|
| 1462 |
+
ß
|
| 1463 |
+
à
|
| 1464 |
+
á
|
| 1465 |
+
â
|
| 1466 |
+
ã
|
| 1467 |
+
ä
|
| 1468 |
+
å
|
| 1469 |
+
æ
|
| 1470 |
+
ç
|
| 1471 |
+
è
|
| 1472 |
+
é
|
| 1473 |
+
ê
|
| 1474 |
+
ë
|
| 1475 |
+
ì
|
| 1476 |
+
í
|
| 1477 |
+
î
|
| 1478 |
+
ï
|
| 1479 |
+
ð
|
| 1480 |
+
ñ
|
| 1481 |
+
ò
|
| 1482 |
+
ó
|
| 1483 |
+
ô
|
| 1484 |
+
õ
|
| 1485 |
+
ö
|
| 1486 |
+
ø
|
| 1487 |
+
ù
|
| 1488 |
+
ú
|
| 1489 |
+
û
|
| 1490 |
+
ü
|
| 1491 |
+
ý
|
| 1492 |
+
Ā
|
| 1493 |
+
ā
|
| 1494 |
+
ă
|
| 1495 |
+
ą
|
| 1496 |
+
ć
|
| 1497 |
+
Č
|
| 1498 |
+
č
|
| 1499 |
+
Đ
|
| 1500 |
+
đ
|
| 1501 |
+
ē
|
| 1502 |
+
ė
|
| 1503 |
+
ę
|
| 1504 |
+
ě
|
| 1505 |
+
ĝ
|
| 1506 |
+
ğ
|
| 1507 |
+
ħ
|
| 1508 |
+
ī
|
| 1509 |
+
į
|
| 1510 |
+
İ
|
| 1511 |
+
ı
|
| 1512 |
+
Ł
|
| 1513 |
+
ł
|
| 1514 |
+
ń
|
| 1515 |
+
ņ
|
| 1516 |
+
ň
|
| 1517 |
+
ŋ
|
| 1518 |
+
Ō
|
| 1519 |
+
ō
|
| 1520 |
+
ő
|
| 1521 |
+
œ
|
| 1522 |
+
ř
|
| 1523 |
+
Ś
|
| 1524 |
+
ś
|
| 1525 |
+
Ş
|
| 1526 |
+
ş
|
| 1527 |
+
Š
|
| 1528 |
+
š
|
| 1529 |
+
Ť
|
| 1530 |
+
ť
|
| 1531 |
+
ũ
|
| 1532 |
+
ū
|
| 1533 |
+
ź
|
| 1534 |
+
Ż
|
| 1535 |
+
ż
|
| 1536 |
+
Ž
|
| 1537 |
+
ž
|
| 1538 |
+
ơ
|
| 1539 |
+
ư
|
| 1540 |
+
ǎ
|
| 1541 |
+
ǐ
|
| 1542 |
+
ǒ
|
| 1543 |
+
ǔ
|
| 1544 |
+
ǚ
|
| 1545 |
+
ș
|
| 1546 |
+
ț
|
| 1547 |
+
ɑ
|
| 1548 |
+
ɔ
|
| 1549 |
+
ɕ
|
| 1550 |
+
ə
|
| 1551 |
+
ɛ
|
| 1552 |
+
ɜ
|
| 1553 |
+
ɡ
|
| 1554 |
+
ɣ
|
| 1555 |
+
ɪ
|
| 1556 |
+
ɫ
|
| 1557 |
+
ɴ
|
| 1558 |
+
ɹ
|
| 1559 |
+
ɾ
|
| 1560 |
+
ʃ
|
| 1561 |
+
ʊ
|
| 1562 |
+
ʌ
|
| 1563 |
+
ʒ
|
| 1564 |
+
ʔ
|
| 1565 |
+
ʰ
|
| 1566 |
+
ʷ
|
| 1567 |
+
ʻ
|
| 1568 |
+
ʾ
|
| 1569 |
+
ʿ
|
| 1570 |
+
ˈ
|
| 1571 |
+
ː
|
| 1572 |
+
˙
|
| 1573 |
+
˜
|
| 1574 |
+
ˢ
|
| 1575 |
+
́
|
| 1576 |
+
̅
|
| 1577 |
+
Α
|
| 1578 |
+
Β
|
| 1579 |
+
Δ
|
| 1580 |
+
Ε
|
| 1581 |
+
Θ
|
| 1582 |
+
Κ
|
| 1583 |
+
Λ
|
| 1584 |
+
Μ
|
| 1585 |
+
Ξ
|
| 1586 |
+
Π
|
| 1587 |
+
Σ
|
| 1588 |
+
Τ
|
| 1589 |
+
Φ
|
| 1590 |
+
Χ
|
| 1591 |
+
Ψ
|
| 1592 |
+
Ω
|
| 1593 |
+
ά
|
| 1594 |
+
έ
|
| 1595 |
+
ή
|
| 1596 |
+
ί
|
| 1597 |
+
α
|
| 1598 |
+
β
|
| 1599 |
+
γ
|
| 1600 |
+
δ
|
| 1601 |
+
ε
|
| 1602 |
+
ζ
|
| 1603 |
+
η
|
| 1604 |
+
θ
|
| 1605 |
+
ι
|
| 1606 |
+
κ
|
| 1607 |
+
λ
|
| 1608 |
+
μ
|
| 1609 |
+
ν
|
| 1610 |
+
ξ
|
| 1611 |
+
ο
|
| 1612 |
+
π
|
| 1613 |
+
ρ
|
| 1614 |
+
ς
|
| 1615 |
+
σ
|
| 1616 |
+
τ
|
| 1617 |
+
υ
|
| 1618 |
+
φ
|
| 1619 |
+
χ
|
| 1620 |
+
ψ
|
| 1621 |
+
ω
|
| 1622 |
+
ϊ
|
| 1623 |
+
ό
|
| 1624 |
+
ύ
|
| 1625 |
+
ώ
|
| 1626 |
+
ϕ
|
| 1627 |
+
ϵ
|
| 1628 |
+
Ё
|
| 1629 |
+
А
|
| 1630 |
+
Б
|
| 1631 |
+
В
|
| 1632 |
+
Г
|
| 1633 |
+
Д
|
| 1634 |
+
Е
|
| 1635 |
+
Ж
|
| 1636 |
+
З
|
| 1637 |
+
И
|
| 1638 |
+
Й
|
| 1639 |
+
К
|
| 1640 |
+
Л
|
| 1641 |
+
М
|
| 1642 |
+
Н
|
| 1643 |
+
О
|
| 1644 |
+
П
|
| 1645 |
+
Р
|
| 1646 |
+
С
|
| 1647 |
+
Т
|
| 1648 |
+
У
|
| 1649 |
+
Ф
|
| 1650 |
+
Х
|
| 1651 |
+
Ц
|
| 1652 |
+
Ч
|
| 1653 |
+
Ш
|
| 1654 |
+
Щ
|
| 1655 |
+
Ы
|
| 1656 |
+
Ь
|
| 1657 |
+
Э
|
| 1658 |
+
Ю
|
| 1659 |
+
Я
|
| 1660 |
+
а
|
| 1661 |
+
б
|
| 1662 |
+
в
|
| 1663 |
+
г
|
| 1664 |
+
д
|
| 1665 |
+
е
|
| 1666 |
+
ж
|
| 1667 |
+
з
|
| 1668 |
+
и
|
| 1669 |
+
й
|
| 1670 |
+
к
|
| 1671 |
+
л
|
| 1672 |
+
м
|
| 1673 |
+
н
|
| 1674 |
+
о
|
| 1675 |
+
п
|
| 1676 |
+
р
|
| 1677 |
+
с
|
| 1678 |
+
т
|
| 1679 |
+
у
|
| 1680 |
+
ф
|
| 1681 |
+
х
|
| 1682 |
+
ц
|
| 1683 |
+
ч
|
| 1684 |
+
ш
|
| 1685 |
+
щ
|
| 1686 |
+
ъ
|
| 1687 |
+
ы
|
| 1688 |
+
ь
|
| 1689 |
+
э
|
| 1690 |
+
ю
|
| 1691 |
+
я
|
| 1692 |
+
ё
|
| 1693 |
+
і
|
| 1694 |
+
ְ
|
| 1695 |
+
ִ
|
| 1696 |
+
ֵ
|
| 1697 |
+
ֶ
|
| 1698 |
+
ַ
|
| 1699 |
+
ָ
|
| 1700 |
+
ֹ
|
| 1701 |
+
ּ
|
| 1702 |
+
־
|
| 1703 |
+
ׁ
|
| 1704 |
+
א
|
| 1705 |
+
ב
|
| 1706 |
+
ג
|
| 1707 |
+
ד
|
| 1708 |
+
ה
|
| 1709 |
+
ו
|
| 1710 |
+
ז
|
| 1711 |
+
ח
|
| 1712 |
+
ט
|
| 1713 |
+
י
|
| 1714 |
+
כ
|
| 1715 |
+
ל
|
| 1716 |
+
ם
|
| 1717 |
+
מ
|
| 1718 |
+
ן
|
| 1719 |
+
נ
|
| 1720 |
+
ס
|
| 1721 |
+
ע
|
| 1722 |
+
פ
|
| 1723 |
+
ק
|
| 1724 |
+
ר
|
| 1725 |
+
ש
|
| 1726 |
+
ת
|
| 1727 |
+
أ
|
| 1728 |
+
ب
|
| 1729 |
+
ة
|
| 1730 |
+
ت
|
| 1731 |
+
ج
|
| 1732 |
+
ح
|
| 1733 |
+
د
|
| 1734 |
+
ر
|
| 1735 |
+
ز
|
| 1736 |
+
س
|
| 1737 |
+
ص
|
| 1738 |
+
ط
|
| 1739 |
+
ع
|
| 1740 |
+
ق
|
| 1741 |
+
ك
|
| 1742 |
+
ل
|
| 1743 |
+
م
|
| 1744 |
+
ن
|
| 1745 |
+
ه
|
| 1746 |
+
و
|
| 1747 |
+
ي
|
| 1748 |
+
َ
|
| 1749 |
+
ُ
|
| 1750 |
+
ِ
|
| 1751 |
+
ْ
|
| 1752 |
+
ก
|
| 1753 |
+
ข
|
| 1754 |
+
ง
|
| 1755 |
+
จ
|
| 1756 |
+
ต
|
| 1757 |
+
ท
|
| 1758 |
+
น
|
| 1759 |
+
ป
|
| 1760 |
+
ย
|
| 1761 |
+
ร
|
| 1762 |
+
ว
|
| 1763 |
+
ส
|
| 1764 |
+
ห
|
| 1765 |
+
อ
|
| 1766 |
+
ฮ
|
| 1767 |
+
ั
|
| 1768 |
+
า
|
| 1769 |
+
ี
|
| 1770 |
+
ึ
|
| 1771 |
+
โ
|
| 1772 |
+
ใ
|
| 1773 |
+
ไ
|
| 1774 |
+
่
|
| 1775 |
+
้
|
| 1776 |
+
์
|
| 1777 |
+
ḍ
|
| 1778 |
+
Ḥ
|
| 1779 |
+
ḥ
|
| 1780 |
+
ṁ
|
| 1781 |
+
ṃ
|
| 1782 |
+
ṅ
|
| 1783 |
+
ṇ
|
| 1784 |
+
Ṛ
|
| 1785 |
+
ṛ
|
| 1786 |
+
Ṣ
|
| 1787 |
+
ṣ
|
| 1788 |
+
Ṭ
|
| 1789 |
+
ṭ
|
| 1790 |
+
ạ
|
| 1791 |
+
ả
|
| 1792 |
+
Ấ
|
| 1793 |
+
ấ
|
| 1794 |
+
ầ
|
| 1795 |
+
ậ
|
| 1796 |
+
ắ
|
| 1797 |
+
ằ
|
| 1798 |
+
ẻ
|
| 1799 |
+
ẽ
|
| 1800 |
+
ế
|
| 1801 |
+
ề
|
| 1802 |
+
ể
|
| 1803 |
+
ễ
|
| 1804 |
+
ệ
|
| 1805 |
+
ị
|
| 1806 |
+
ọ
|
| 1807 |
+
ỏ
|
| 1808 |
+
ố
|
| 1809 |
+
ồ
|
| 1810 |
+
ộ
|
| 1811 |
+
ớ
|
| 1812 |
+
ờ
|
| 1813 |
+
ở
|
| 1814 |
+
ụ
|
| 1815 |
+
ủ
|
| 1816 |
+
ứ
|
| 1817 |
+
ữ
|
| 1818 |
+
ἀ
|
| 1819 |
+
ἁ
|
| 1820 |
+
Ἀ
|
| 1821 |
+
ἐ
|
| 1822 |
+
ἔ
|
| 1823 |
+
ἰ
|
| 1824 |
+
ἱ
|
| 1825 |
+
ὀ
|
| 1826 |
+
ὁ
|
| 1827 |
+
ὐ
|
| 1828 |
+
ὲ
|
| 1829 |
+
ὸ
|
| 1830 |
+
ᾶ
|
| 1831 |
+
᾽
|
| 1832 |
+
ῆ
|
| 1833 |
+
ῇ
|
| 1834 |
+
ῶ
|
| 1835 |
+
|
| 1836 |
+
‑
|
| 1837 |
+
‒
|
| 1838 |
+
–
|
| 1839 |
+
—
|
| 1840 |
+
―
|
| 1841 |
+
‖
|
| 1842 |
+
†
|
| 1843 |
+
‡
|
| 1844 |
+
•
|
| 1845 |
+
…
|
| 1846 |
+
‧
|
| 1847 |
+
|
| 1848 |
+
′
|
| 1849 |
+
″
|
| 1850 |
+
⁄
|
| 1851 |
+
|
| 1852 |
+
⁰
|
| 1853 |
+
⁴
|
| 1854 |
+
⁵
|
| 1855 |
+
⁶
|
| 1856 |
+
⁷
|
| 1857 |
+
⁸
|
| 1858 |
+
⁹
|
| 1859 |
+
₁
|
| 1860 |
+
₂
|
| 1861 |
+
₃
|
| 1862 |
+
€
|
| 1863 |
+
₱
|
| 1864 |
+
₹
|
| 1865 |
+
₽
|
| 1866 |
+
℃
|
| 1867 |
+
ℏ
|
| 1868 |
+
ℓ
|
| 1869 |
+
№
|
| 1870 |
+
ℝ
|
| 1871 |
+
™
|
| 1872 |
+
⅓
|
| 1873 |
+
⅔
|
| 1874 |
+
⅛
|
| 1875 |
+
→
|
| 1876 |
+
∂
|
| 1877 |
+
∈
|
| 1878 |
+
∑
|
| 1879 |
+
−
|
| 1880 |
+
∗
|
| 1881 |
+
√
|
| 1882 |
+
∞
|
| 1883 |
+
∫
|
| 1884 |
+
≈
|
| 1885 |
+
≠
|
| 1886 |
+
≡
|
| 1887 |
+
≤
|
| 1888 |
+
≥
|
| 1889 |
+
⋅
|
| 1890 |
+
⋯
|
| 1891 |
+
█
|
| 1892 |
+
♪
|
| 1893 |
+
⟨
|
| 1894 |
+
⟩
|
| 1895 |
+
、
|
| 1896 |
+
。
|
| 1897 |
+
《
|
| 1898 |
+
》
|
| 1899 |
+
「
|
| 1900 |
+
」
|
| 1901 |
+
【
|
| 1902 |
+
】
|
| 1903 |
+
あ
|
| 1904 |
+
う
|
| 1905 |
+
え
|
| 1906 |
+
お
|
| 1907 |
+
か
|
| 1908 |
+
が
|
| 1909 |
+
き
|
| 1910 |
+
ぎ
|
| 1911 |
+
く
|
| 1912 |
+
ぐ
|
| 1913 |
+
け
|
| 1914 |
+
げ
|
| 1915 |
+
こ
|
| 1916 |
+
ご
|
| 1917 |
+
さ
|
| 1918 |
+
し
|
| 1919 |
+
じ
|
| 1920 |
+
す
|
| 1921 |
+
ず
|
| 1922 |
+
せ
|
| 1923 |
+
ぜ
|
| 1924 |
+
そ
|
| 1925 |
+
ぞ
|
| 1926 |
+
た
|
| 1927 |
+
だ
|
| 1928 |
+
ち
|
| 1929 |
+
っ
|
| 1930 |
+
つ
|
| 1931 |
+
で
|
| 1932 |
+
と
|
| 1933 |
+
ど
|
| 1934 |
+
な
|
| 1935 |
+
に
|
| 1936 |
+
ね
|
| 1937 |
+
の
|
| 1938 |
+
は
|
| 1939 |
+
ば
|
| 1940 |
+
ひ
|
| 1941 |
+
ぶ
|
| 1942 |
+
へ
|
| 1943 |
+
べ
|
| 1944 |
+
ま
|
| 1945 |
+
み
|
| 1946 |
+
む
|
| 1947 |
+
め
|
| 1948 |
+
も
|
| 1949 |
+
ゃ
|
| 1950 |
+
や
|
| 1951 |
+
ゆ
|
| 1952 |
+
ょ
|
| 1953 |
+
よ
|
| 1954 |
+
ら
|
| 1955 |
+
り
|
| 1956 |
+
る
|
| 1957 |
+
れ
|
| 1958 |
+
ろ
|
| 1959 |
+
わ
|
| 1960 |
+
を
|
| 1961 |
+
ん
|
| 1962 |
+
ァ
|
| 1963 |
+
ア
|
| 1964 |
+
ィ
|
| 1965 |
+
イ
|
| 1966 |
+
ウ
|
| 1967 |
+
ェ
|
| 1968 |
+
エ
|
| 1969 |
+
オ
|
| 1970 |
+
カ
|
| 1971 |
+
ガ
|
| 1972 |
+
キ
|
| 1973 |
+
ク
|
| 1974 |
+
ケ
|
| 1975 |
+
ゲ
|
| 1976 |
+
コ
|
| 1977 |
+
ゴ
|
| 1978 |
+
サ
|
| 1979 |
+
ザ
|
| 1980 |
+
シ
|
| 1981 |
+
ジ
|
| 1982 |
+
ス
|
| 1983 |
+
ズ
|
| 1984 |
+
セ
|
| 1985 |
+
ゾ
|
| 1986 |
+
タ
|
| 1987 |
+
ダ
|
| 1988 |
+
チ
|
| 1989 |
+
ッ
|
| 1990 |
+
ツ
|
| 1991 |
+
テ
|
| 1992 |
+
デ
|
| 1993 |
+
ト
|
| 1994 |
+
ド
|
| 1995 |
+
ナ
|
| 1996 |
+
ニ
|
| 1997 |
+
ネ
|
| 1998 |
+
ノ
|
| 1999 |
+
バ
|
| 2000 |
+
パ
|
| 2001 |
+
ビ
|
| 2002 |
+
ピ
|
| 2003 |
+
フ
|
| 2004 |
+
プ
|
| 2005 |
+
ヘ
|
| 2006 |
+
ベ
|
| 2007 |
+
ペ
|
| 2008 |
+
ホ
|
| 2009 |
+
ボ
|
| 2010 |
+
ポ
|
| 2011 |
+
マ
|
| 2012 |
+
ミ
|
| 2013 |
+
ム
|
| 2014 |
+
メ
|
| 2015 |
+
モ
|
| 2016 |
+
ャ
|
| 2017 |
+
ヤ
|
| 2018 |
+
ュ
|
| 2019 |
+
ユ
|
| 2020 |
+
ョ
|
| 2021 |
+
ヨ
|
| 2022 |
+
ラ
|
| 2023 |
+
リ
|
| 2024 |
+
ル
|
| 2025 |
+
レ
|
| 2026 |
+
ロ
|
| 2027 |
+
ワ
|
| 2028 |
+
ン
|
| 2029 |
+
・
|
| 2030 |
+
ー
|
| 2031 |
+
ㄋ
|
| 2032 |
+
ㄍ
|
| 2033 |
+
ㄎ
|
| 2034 |
+
ㄏ
|
| 2035 |
+
ㄓ
|
| 2036 |
+
ㄕ
|
| 2037 |
+
ㄚ
|
| 2038 |
+
ㄜ
|
| 2039 |
+
ㄟ
|
| 2040 |
+
ㄤ
|
| 2041 |
+
ㄥ
|
| 2042 |
+
ㄧ
|
| 2043 |
+
ㄱ
|
| 2044 |
+
ㄴ
|
| 2045 |
+
ㄷ
|
| 2046 |
+
ㄹ
|
| 2047 |
+
ㅁ
|
| 2048 |
+
ㅂ
|
| 2049 |
+
ㅅ
|
| 2050 |
+
ㅈ
|
| 2051 |
+
ㅍ
|
| 2052 |
+
ㅎ
|
| 2053 |
+
ㅏ
|
| 2054 |
+
ㅓ
|
| 2055 |
+
ㅗ
|
| 2056 |
+
ㅜ
|
| 2057 |
+
ㅡ
|
| 2058 |
+
ㅣ
|
| 2059 |
+
㗎
|
| 2060 |
+
가
|
| 2061 |
+
각
|
| 2062 |
+
간
|
| 2063 |
+
갈
|
| 2064 |
+
감
|
| 2065 |
+
갑
|
| 2066 |
+
갓
|
| 2067 |
+
갔
|
| 2068 |
+
강
|
| 2069 |
+
같
|
| 2070 |
+
개
|
| 2071 |
+
거
|
| 2072 |
+
건
|
| 2073 |
+
걸
|
| 2074 |
+
겁
|
| 2075 |
+
것
|
| 2076 |
+
겉
|
| 2077 |
+
게
|
| 2078 |
+
겠
|
| 2079 |
+
겨
|
| 2080 |
+
결
|
| 2081 |
+
겼
|
| 2082 |
+
경
|
| 2083 |
+
계
|
| 2084 |
+
고
|
| 2085 |
+
곤
|
| 2086 |
+
골
|
| 2087 |
+
곱
|
| 2088 |
+
공
|
| 2089 |
+
과
|
| 2090 |
+
관
|
| 2091 |
+
광
|
| 2092 |
+
교
|
| 2093 |
+
구
|
| 2094 |
+
국
|
| 2095 |
+
굴
|
| 2096 |
+
귀
|
| 2097 |
+
귄
|
| 2098 |
+
그
|
| 2099 |
+
근
|
| 2100 |
+
글
|
| 2101 |
+
금
|
| 2102 |
+
기
|
| 2103 |
+
긴
|
| 2104 |
+
길
|
| 2105 |
+
까
|
| 2106 |
+
깍
|
| 2107 |
+
깔
|
| 2108 |
+
깜
|
| 2109 |
+
깨
|
| 2110 |
+
께
|
| 2111 |
+
꼬
|
| 2112 |
+
꼭
|
| 2113 |
+
꽃
|
| 2114 |
+
꾸
|
| 2115 |
+
꿔
|
| 2116 |
+
끔
|
| 2117 |
+
끗
|
| 2118 |
+
끝
|
| 2119 |
+
끼
|
| 2120 |
+
나
|
| 2121 |
+
난
|
| 2122 |
+
날
|
| 2123 |
+
남
|
| 2124 |
+
납
|
| 2125 |
+
내
|
| 2126 |
+
냐
|
| 2127 |
+
냥
|
| 2128 |
+
너
|
| 2129 |
+
넘
|
| 2130 |
+
넣
|
| 2131 |
+
네
|
| 2132 |
+
녁
|
| 2133 |
+
년
|
| 2134 |
+
녕
|
| 2135 |
+
노
|
| 2136 |
+
녹
|
| 2137 |
+
놀
|
| 2138 |
+
누
|
| 2139 |
+
눈
|
| 2140 |
+
느
|
| 2141 |
+
는
|
| 2142 |
+
늘
|
| 2143 |
+
니
|
| 2144 |
+
님
|
| 2145 |
+
닙
|
| 2146 |
+
다
|
| 2147 |
+
닥
|
| 2148 |
+
단
|
| 2149 |
+
달
|
| 2150 |
+
닭
|
| 2151 |
+
당
|
| 2152 |
+
대
|
| 2153 |
+
더
|
| 2154 |
+
덕
|
| 2155 |
+
던
|
| 2156 |
+
덥
|
| 2157 |
+
데
|
| 2158 |
+
도
|
| 2159 |
+
독
|
| 2160 |
+
동
|
| 2161 |
+
돼
|
| 2162 |
+
됐
|
| 2163 |
+
되
|
| 2164 |
+
된
|
| 2165 |
+
될
|
| 2166 |
+
두
|
| 2167 |
+
둑
|
| 2168 |
+
둥
|
| 2169 |
+
드
|
| 2170 |
+
들
|
| 2171 |
+
등
|
| 2172 |
+
디
|
| 2173 |
+
따
|
| 2174 |
+
딱
|
| 2175 |
+
딸
|
| 2176 |
+
땅
|
| 2177 |
+
때
|
| 2178 |
+
떤
|
| 2179 |
+
떨
|
| 2180 |
+
떻
|
| 2181 |
+
또
|
| 2182 |
+
똑
|
| 2183 |
+
뚱
|
| 2184 |
+
뛰
|
| 2185 |
+
뜻
|
| 2186 |
+
띠
|
| 2187 |
+
라
|
| 2188 |
+
락
|
| 2189 |
+
란
|
| 2190 |
+
람
|
| 2191 |
+
랍
|
| 2192 |
+
랑
|
| 2193 |
+
래
|
| 2194 |
+
랜
|
| 2195 |
+
러
|
| 2196 |
+
런
|
| 2197 |
+
럼
|
| 2198 |
+
렇
|
| 2199 |
+
레
|
| 2200 |
+
려
|
| 2201 |
+
력
|
| 2202 |
+
렵
|
| 2203 |
+
렸
|
| 2204 |
+
로
|
| 2205 |
+
록
|
| 2206 |
+
롬
|
| 2207 |
+
루
|
| 2208 |
+
르
|
| 2209 |
+
른
|
| 2210 |
+
를
|
| 2211 |
+
름
|
| 2212 |
+
릉
|
| 2213 |
+
리
|
| 2214 |
+
릴
|
| 2215 |
+
림
|
| 2216 |
+
마
|
| 2217 |
+
막
|
| 2218 |
+
만
|
| 2219 |
+
많
|
| 2220 |
+
말
|
| 2221 |
+
맑
|
| 2222 |
+
맙
|
| 2223 |
+
맛
|
| 2224 |
+
매
|
| 2225 |
+
머
|
| 2226 |
+
먹
|
| 2227 |
+
멍
|
| 2228 |
+
메
|
| 2229 |
+
면
|
| 2230 |
+
명
|
| 2231 |
+
몇
|
| 2232 |
+
모
|
| 2233 |
+
목
|
| 2234 |
+
몸
|
| 2235 |
+
못
|
| 2236 |
+
무
|
| 2237 |
+
문
|
| 2238 |
+
물
|
| 2239 |
+
뭐
|
| 2240 |
+
뭘
|
| 2241 |
+
미
|
| 2242 |
+
민
|
| 2243 |
+
밌
|
| 2244 |
+
밑
|
| 2245 |
+
바
|
| 2246 |
+
박
|
| 2247 |
+
밖
|
| 2248 |
+
반
|
| 2249 |
+
받
|
| 2250 |
+
발
|
| 2251 |
+
밤
|
| 2252 |
+
밥
|
| 2253 |
+
방
|
| 2254 |
+
배
|
| 2255 |
+
백
|
| 2256 |
+
밸
|
| 2257 |
+
뱀
|
| 2258 |
+
버
|
| 2259 |
+
번
|
| 2260 |
+
벌
|
| 2261 |
+
벚
|
| 2262 |
+
베
|
| 2263 |
+
벼
|
| 2264 |
+
벽
|
| 2265 |
+
별
|
| 2266 |
+
병
|
| 2267 |
+
보
|
| 2268 |
+
복
|
| 2269 |
+
본
|
| 2270 |
+
볼
|
| 2271 |
+
봐
|
| 2272 |
+
봤
|
| 2273 |
+
부
|
| 2274 |
+
분
|
| 2275 |
+
불
|
| 2276 |
+
비
|
| 2277 |
+
빔
|
| 2278 |
+
빛
|
| 2279 |
+
빠
|
| 2280 |
+
빨
|
| 2281 |
+
뼈
|
| 2282 |
+
뽀
|
| 2283 |
+
뿅
|
| 2284 |
+
쁘
|
| 2285 |
+
사
|
| 2286 |
+
산
|
| 2287 |
+
살
|
| 2288 |
+
삼
|
| 2289 |
+
샀
|
| 2290 |
+
상
|
| 2291 |
+
새
|
| 2292 |
+
색
|
| 2293 |
+
생
|
| 2294 |
+
서
|
| 2295 |
+
선
|
| 2296 |
+
설
|
| 2297 |
+
섭
|
| 2298 |
+
섰
|
| 2299 |
+
성
|
| 2300 |
+
세
|
| 2301 |
+
셔
|
| 2302 |
+
션
|
| 2303 |
+
셨
|
| 2304 |
+
소
|
| 2305 |
+
속
|
| 2306 |
+
손
|
| 2307 |
+
송
|
| 2308 |
+
수
|
| 2309 |
+
숙
|
| 2310 |
+
순
|
| 2311 |
+
술
|
| 2312 |
+
숫
|
| 2313 |
+
숭
|
| 2314 |
+
숲
|
| 2315 |
+
쉬
|
| 2316 |
+
쉽
|
| 2317 |
+
스
|
| 2318 |
+
슨
|
| 2319 |
+
습
|
| 2320 |
+
슷
|
| 2321 |
+
시
|
| 2322 |
+
식
|
| 2323 |
+
신
|
| 2324 |
+
실
|
| 2325 |
+
싫
|
| 2326 |
+
심
|
| 2327 |
+
십
|
| 2328 |
+
싶
|
| 2329 |
+
싸
|
| 2330 |
+
써
|
| 2331 |
+
쓰
|
| 2332 |
+
쓴
|
| 2333 |
+
씌
|
| 2334 |
+
씨
|
| 2335 |
+
씩
|
| 2336 |
+
씬
|
| 2337 |
+
아
|
| 2338 |
+
악
|
| 2339 |
+
안
|
| 2340 |
+
않
|
| 2341 |
+
알
|
| 2342 |
+
야
|
| 2343 |
+
약
|
| 2344 |
+
얀
|
| 2345 |
+
양
|
| 2346 |
+
얘
|
| 2347 |
+
어
|
| 2348 |
+
언
|
| 2349 |
+
얼
|
| 2350 |
+
엄
|
| 2351 |
+
업
|
| 2352 |
+
없
|
| 2353 |
+
었
|
| 2354 |
+
엉
|
| 2355 |
+
에
|
| 2356 |
+
여
|
| 2357 |
+
역
|
| 2358 |
+
연
|
| 2359 |
+
염
|
| 2360 |
+
엽
|
| 2361 |
+
영
|
| 2362 |
+
옆
|
| 2363 |
+
예
|
| 2364 |
+
옛
|
| 2365 |
+
오
|
| 2366 |
+
온
|
| 2367 |
+
올
|
| 2368 |
+
옷
|
| 2369 |
+
옹
|
| 2370 |
+
와
|
| 2371 |
+
왔
|
| 2372 |
+
왜
|
| 2373 |
+
요
|
| 2374 |
+
욕
|
| 2375 |
+
용
|
| 2376 |
+
우
|
| 2377 |
+
운
|
| 2378 |
+
울
|
| 2379 |
+
웃
|
| 2380 |
+
워
|
| 2381 |
+
원
|
| 2382 |
+
월
|
| 2383 |
+
웠
|
| 2384 |
+
위
|
| 2385 |
+
윙
|
| 2386 |
+
유
|
| 2387 |
+
육
|
| 2388 |
+
윤
|
| 2389 |
+
으
|
| 2390 |
+
은
|
| 2391 |
+
을
|
| 2392 |
+
음
|
| 2393 |
+
응
|
| 2394 |
+
의
|
| 2395 |
+
이
|
| 2396 |
+
익
|
| 2397 |
+
인
|
| 2398 |
+
일
|
| 2399 |
+
읽
|
| 2400 |
+
임
|
| 2401 |
+
입
|
| 2402 |
+
있
|
| 2403 |
+
자
|
| 2404 |
+
작
|
| 2405 |
+
잔
|
| 2406 |
+
잖
|
| 2407 |
+
잘
|
| 2408 |
+
잡
|
| 2409 |
+
잤
|
| 2410 |
+
장
|
| 2411 |
+
재
|
| 2412 |
+
저
|
| 2413 |
+
전
|
| 2414 |
+
점
|
| 2415 |
+
정
|
| 2416 |
+
제
|
| 2417 |
+
져
|
| 2418 |
+
졌
|
| 2419 |
+
조
|
| 2420 |
+
족
|
| 2421 |
+
좀
|
| 2422 |
+
종
|
| 2423 |
+
좋
|
| 2424 |
+
죠
|
| 2425 |
+
주
|
| 2426 |
+
준
|
| 2427 |
+
줄
|
| 2428 |
+
중
|
| 2429 |
+
줘
|
| 2430 |
+
즈
|
| 2431 |
+
즐
|
| 2432 |
+
즘
|
| 2433 |
+
지
|
| 2434 |
+
진
|
| 2435 |
+
집
|
| 2436 |
+
짜
|
| 2437 |
+
짝
|
| 2438 |
+
쩌
|
| 2439 |
+
쪼
|
| 2440 |
+
쪽
|
| 2441 |
+
쫌
|
| 2442 |
+
쭈
|
| 2443 |
+
쯔
|
| 2444 |
+
찌
|
| 2445 |
+
찍
|
| 2446 |
+
차
|
| 2447 |
+
착
|
| 2448 |
+
찾
|
| 2449 |
+
책
|
| 2450 |
+
처
|
| 2451 |
+
천
|
| 2452 |
+
철
|
| 2453 |
+
체
|
| 2454 |
+
쳐
|
| 2455 |
+
쳤
|
| 2456 |
+
초
|
| 2457 |
+
촌
|
| 2458 |
+
추
|
| 2459 |
+
출
|
| 2460 |
+
춤
|
| 2461 |
+
춥
|
| 2462 |
+
춰
|
| 2463 |
+
치
|
| 2464 |
+
친
|
| 2465 |
+
칠
|
| 2466 |
+
침
|
| 2467 |
+
칩
|
| 2468 |
+
칼
|
| 2469 |
+
커
|
| 2470 |
+
켓
|
| 2471 |
+
코
|
| 2472 |
+
콩
|
| 2473 |
+
쿠
|
| 2474 |
+
퀴
|
| 2475 |
+
크
|
| 2476 |
+
큰
|
| 2477 |
+
큽
|
| 2478 |
+
키
|
| 2479 |
+
킨
|
| 2480 |
+
타
|
| 2481 |
+
태
|
| 2482 |
+
터
|
| 2483 |
+
턴
|
| 2484 |
+
털
|
| 2485 |
+
테
|
| 2486 |
+
토
|
| 2487 |
+
통
|
| 2488 |
+
투
|
| 2489 |
+
트
|
| 2490 |
+
특
|
| 2491 |
+
튼
|
| 2492 |
+
틀
|
| 2493 |
+
티
|
| 2494 |
+
팀
|
| 2495 |
+
파
|
| 2496 |
+
팔
|
| 2497 |
+
패
|
| 2498 |
+
페
|
| 2499 |
+
펜
|
| 2500 |
+
펭
|
| 2501 |
+
평
|
| 2502 |
+
포
|
| 2503 |
+
폭
|
| 2504 |
+
표
|
| 2505 |
+
품
|
| 2506 |
+
풍
|
| 2507 |
+
프
|
| 2508 |
+
플
|
| 2509 |
+
피
|
| 2510 |
+
필
|
| 2511 |
+
하
|
| 2512 |
+
학
|
| 2513 |
+
한
|
| 2514 |
+
할
|
| 2515 |
+
함
|
| 2516 |
+
합
|
| 2517 |
+
항
|
| 2518 |
+
해
|
| 2519 |
+
햇
|
| 2520 |
+
했
|
| 2521 |
+
행
|
| 2522 |
+
허
|
| 2523 |
+
험
|
| 2524 |
+
형
|
| 2525 |
+
혜
|
| 2526 |
+
호
|
| 2527 |
+
혼
|
| 2528 |
+
홀
|
| 2529 |
+
화
|
| 2530 |
+
회
|
| 2531 |
+
획
|
| 2532 |
+
후
|
| 2533 |
+
휴
|
| 2534 |
+
흐
|
| 2535 |
+
흔
|
| 2536 |
+
희
|
| 2537 |
+
히
|
| 2538 |
+
힘
|
| 2539 |
+
ﷺ
|
| 2540 |
+
ﷻ
|
| 2541 |
+
!
|
| 2542 |
+
,
|
| 2543 |
+
?
|
| 2544 |
+
�
|
| 2545 |
+
𠮶
|
2flow/models/downloads/F5TTS_Base_bigvgan/model_1250000.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bdab3e92fc2b77447aa8c46aac77531d970822b191ca198e5ab94aef99265df9
|
| 3 |
+
size 1348555394
|
2flow/models/downloads/F5TTS_v1_Base/model_1250000.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:670900fd14e6c458b95da6e9ed317cdb20dbaf7a1c02ac06a05475a9d32b6a38
|
| 3 |
+
size 1348435761
|
2flow/models/downloads/F5TTS_v1_Base/vocab.txt
ADDED
|
@@ -0,0 +1,2545 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
!
|
| 3 |
+
"
|
| 4 |
+
#
|
| 5 |
+
$
|
| 6 |
+
%
|
| 7 |
+
&
|
| 8 |
+
'
|
| 9 |
+
(
|
| 10 |
+
)
|
| 11 |
+
*
|
| 12 |
+
+
|
| 13 |
+
,
|
| 14 |
+
-
|
| 15 |
+
.
|
| 16 |
+
/
|
| 17 |
+
0
|
| 18 |
+
1
|
| 19 |
+
2
|
| 20 |
+
3
|
| 21 |
+
4
|
| 22 |
+
5
|
| 23 |
+
6
|
| 24 |
+
7
|
| 25 |
+
8
|
| 26 |
+
9
|
| 27 |
+
:
|
| 28 |
+
;
|
| 29 |
+
=
|
| 30 |
+
>
|
| 31 |
+
?
|
| 32 |
+
@
|
| 33 |
+
A
|
| 34 |
+
B
|
| 35 |
+
C
|
| 36 |
+
D
|
| 37 |
+
E
|
| 38 |
+
F
|
| 39 |
+
G
|
| 40 |
+
H
|
| 41 |
+
I
|
| 42 |
+
J
|
| 43 |
+
K
|
| 44 |
+
L
|
| 45 |
+
M
|
| 46 |
+
N
|
| 47 |
+
O
|
| 48 |
+
P
|
| 49 |
+
Q
|
| 50 |
+
R
|
| 51 |
+
S
|
| 52 |
+
T
|
| 53 |
+
U
|
| 54 |
+
V
|
| 55 |
+
W
|
| 56 |
+
X
|
| 57 |
+
Y
|
| 58 |
+
Z
|
| 59 |
+
[
|
| 60 |
+
\
|
| 61 |
+
]
|
| 62 |
+
_
|
| 63 |
+
a
|
| 64 |
+
a1
|
| 65 |
+
ai1
|
| 66 |
+
ai2
|
| 67 |
+
ai3
|
| 68 |
+
ai4
|
| 69 |
+
an1
|
| 70 |
+
an3
|
| 71 |
+
an4
|
| 72 |
+
ang1
|
| 73 |
+
ang2
|
| 74 |
+
ang4
|
| 75 |
+
ao1
|
| 76 |
+
ao2
|
| 77 |
+
ao3
|
| 78 |
+
ao4
|
| 79 |
+
b
|
| 80 |
+
ba
|
| 81 |
+
ba1
|
| 82 |
+
ba2
|
| 83 |
+
ba3
|
| 84 |
+
ba4
|
| 85 |
+
bai1
|
| 86 |
+
bai2
|
| 87 |
+
bai3
|
| 88 |
+
bai4
|
| 89 |
+
ban1
|
| 90 |
+
ban2
|
| 91 |
+
ban3
|
| 92 |
+
ban4
|
| 93 |
+
bang1
|
| 94 |
+
bang2
|
| 95 |
+
bang3
|
| 96 |
+
bang4
|
| 97 |
+
bao1
|
| 98 |
+
bao2
|
| 99 |
+
bao3
|
| 100 |
+
bao4
|
| 101 |
+
bei
|
| 102 |
+
bei1
|
| 103 |
+
bei2
|
| 104 |
+
bei3
|
| 105 |
+
bei4
|
| 106 |
+
ben1
|
| 107 |
+
ben2
|
| 108 |
+
ben3
|
| 109 |
+
ben4
|
| 110 |
+
beng
|
| 111 |
+
beng1
|
| 112 |
+
beng2
|
| 113 |
+
beng3
|
| 114 |
+
beng4
|
| 115 |
+
bi1
|
| 116 |
+
bi2
|
| 117 |
+
bi3
|
| 118 |
+
bi4
|
| 119 |
+
bian1
|
| 120 |
+
bian2
|
| 121 |
+
bian3
|
| 122 |
+
bian4
|
| 123 |
+
biao1
|
| 124 |
+
biao2
|
| 125 |
+
biao3
|
| 126 |
+
bie1
|
| 127 |
+
bie2
|
| 128 |
+
bie3
|
| 129 |
+
bie4
|
| 130 |
+
bin1
|
| 131 |
+
bin4
|
| 132 |
+
bing1
|
| 133 |
+
bing2
|
| 134 |
+
bing3
|
| 135 |
+
bing4
|
| 136 |
+
bo
|
| 137 |
+
bo1
|
| 138 |
+
bo2
|
| 139 |
+
bo3
|
| 140 |
+
bo4
|
| 141 |
+
bu2
|
| 142 |
+
bu3
|
| 143 |
+
bu4
|
| 144 |
+
c
|
| 145 |
+
ca1
|
| 146 |
+
cai1
|
| 147 |
+
cai2
|
| 148 |
+
cai3
|
| 149 |
+
cai4
|
| 150 |
+
can1
|
| 151 |
+
can2
|
| 152 |
+
can3
|
| 153 |
+
can4
|
| 154 |
+
cang1
|
| 155 |
+
cang2
|
| 156 |
+
cao1
|
| 157 |
+
cao2
|
| 158 |
+
cao3
|
| 159 |
+
ce4
|
| 160 |
+
cen1
|
| 161 |
+
cen2
|
| 162 |
+
ceng1
|
| 163 |
+
ceng2
|
| 164 |
+
ceng4
|
| 165 |
+
cha1
|
| 166 |
+
cha2
|
| 167 |
+
cha3
|
| 168 |
+
cha4
|
| 169 |
+
chai1
|
| 170 |
+
chai2
|
| 171 |
+
chan1
|
| 172 |
+
chan2
|
| 173 |
+
chan3
|
| 174 |
+
chan4
|
| 175 |
+
chang1
|
| 176 |
+
chang2
|
| 177 |
+
chang3
|
| 178 |
+
chang4
|
| 179 |
+
chao1
|
| 180 |
+
chao2
|
| 181 |
+
chao3
|
| 182 |
+
che1
|
| 183 |
+
che2
|
| 184 |
+
che3
|
| 185 |
+
che4
|
| 186 |
+
chen1
|
| 187 |
+
chen2
|
| 188 |
+
chen3
|
| 189 |
+
chen4
|
| 190 |
+
cheng1
|
| 191 |
+
cheng2
|
| 192 |
+
cheng3
|
| 193 |
+
cheng4
|
| 194 |
+
chi1
|
| 195 |
+
chi2
|
| 196 |
+
chi3
|
| 197 |
+
chi4
|
| 198 |
+
chong1
|
| 199 |
+
chong2
|
| 200 |
+
chong3
|
| 201 |
+
chong4
|
| 202 |
+
chou1
|
| 203 |
+
chou2
|
| 204 |
+
chou3
|
| 205 |
+
chou4
|
| 206 |
+
chu1
|
| 207 |
+
chu2
|
| 208 |
+
chu3
|
| 209 |
+
chu4
|
| 210 |
+
chua1
|
| 211 |
+
chuai1
|
| 212 |
+
chuai2
|
| 213 |
+
chuai3
|
| 214 |
+
chuai4
|
| 215 |
+
chuan1
|
| 216 |
+
chuan2
|
| 217 |
+
chuan3
|
| 218 |
+
chuan4
|
| 219 |
+
chuang1
|
| 220 |
+
chuang2
|
| 221 |
+
chuang3
|
| 222 |
+
chuang4
|
| 223 |
+
chui1
|
| 224 |
+
chui2
|
| 225 |
+
chun1
|
| 226 |
+
chun2
|
| 227 |
+
chun3
|
| 228 |
+
chuo1
|
| 229 |
+
chuo4
|
| 230 |
+
ci1
|
| 231 |
+
ci2
|
| 232 |
+
ci3
|
| 233 |
+
ci4
|
| 234 |
+
cong1
|
| 235 |
+
cong2
|
| 236 |
+
cou4
|
| 237 |
+
cu1
|
| 238 |
+
cu4
|
| 239 |
+
cuan1
|
| 240 |
+
cuan2
|
| 241 |
+
cuan4
|
| 242 |
+
cui1
|
| 243 |
+
cui3
|
| 244 |
+
cui4
|
| 245 |
+
cun1
|
| 246 |
+
cun2
|
| 247 |
+
cun4
|
| 248 |
+
cuo1
|
| 249 |
+
cuo2
|
| 250 |
+
cuo4
|
| 251 |
+
d
|
| 252 |
+
da
|
| 253 |
+
da1
|
| 254 |
+
da2
|
| 255 |
+
da3
|
| 256 |
+
da4
|
| 257 |
+
dai1
|
| 258 |
+
dai2
|
| 259 |
+
dai3
|
| 260 |
+
dai4
|
| 261 |
+
dan1
|
| 262 |
+
dan2
|
| 263 |
+
dan3
|
| 264 |
+
dan4
|
| 265 |
+
dang1
|
| 266 |
+
dang2
|
| 267 |
+
dang3
|
| 268 |
+
dang4
|
| 269 |
+
dao1
|
| 270 |
+
dao2
|
| 271 |
+
dao3
|
| 272 |
+
dao4
|
| 273 |
+
de
|
| 274 |
+
de1
|
| 275 |
+
de2
|
| 276 |
+
dei3
|
| 277 |
+
den4
|
| 278 |
+
deng1
|
| 279 |
+
deng2
|
| 280 |
+
deng3
|
| 281 |
+
deng4
|
| 282 |
+
di1
|
| 283 |
+
di2
|
| 284 |
+
di3
|
| 285 |
+
di4
|
| 286 |
+
dia3
|
| 287 |
+
dian1
|
| 288 |
+
dian2
|
| 289 |
+
dian3
|
| 290 |
+
dian4
|
| 291 |
+
diao1
|
| 292 |
+
diao3
|
| 293 |
+
diao4
|
| 294 |
+
die1
|
| 295 |
+
die2
|
| 296 |
+
die4
|
| 297 |
+
ding1
|
| 298 |
+
ding2
|
| 299 |
+
ding3
|
| 300 |
+
ding4
|
| 301 |
+
diu1
|
| 302 |
+
dong1
|
| 303 |
+
dong3
|
| 304 |
+
dong4
|
| 305 |
+
dou1
|
| 306 |
+
dou2
|
| 307 |
+
dou3
|
| 308 |
+
dou4
|
| 309 |
+
du1
|
| 310 |
+
du2
|
| 311 |
+
du3
|
| 312 |
+
du4
|
| 313 |
+
duan1
|
| 314 |
+
duan2
|
| 315 |
+
duan3
|
| 316 |
+
duan4
|
| 317 |
+
dui1
|
| 318 |
+
dui4
|
| 319 |
+
dun1
|
| 320 |
+
dun3
|
| 321 |
+
dun4
|
| 322 |
+
duo1
|
| 323 |
+
duo2
|
| 324 |
+
duo3
|
| 325 |
+
duo4
|
| 326 |
+
e
|
| 327 |
+
e1
|
| 328 |
+
e2
|
| 329 |
+
e3
|
| 330 |
+
e4
|
| 331 |
+
ei2
|
| 332 |
+
en1
|
| 333 |
+
en4
|
| 334 |
+
er
|
| 335 |
+
er2
|
| 336 |
+
er3
|
| 337 |
+
er4
|
| 338 |
+
f
|
| 339 |
+
fa1
|
| 340 |
+
fa2
|
| 341 |
+
fa3
|
| 342 |
+
fa4
|
| 343 |
+
fan1
|
| 344 |
+
fan2
|
| 345 |
+
fan3
|
| 346 |
+
fan4
|
| 347 |
+
fang1
|
| 348 |
+
fang2
|
| 349 |
+
fang3
|
| 350 |
+
fang4
|
| 351 |
+
fei1
|
| 352 |
+
fei2
|
| 353 |
+
fei3
|
| 354 |
+
fei4
|
| 355 |
+
fen1
|
| 356 |
+
fen2
|
| 357 |
+
fen3
|
| 358 |
+
fen4
|
| 359 |
+
feng1
|
| 360 |
+
feng2
|
| 361 |
+
feng3
|
| 362 |
+
feng4
|
| 363 |
+
fo2
|
| 364 |
+
fou2
|
| 365 |
+
fou3
|
| 366 |
+
fu1
|
| 367 |
+
fu2
|
| 368 |
+
fu3
|
| 369 |
+
fu4
|
| 370 |
+
g
|
| 371 |
+
ga1
|
| 372 |
+
ga2
|
| 373 |
+
ga3
|
| 374 |
+
ga4
|
| 375 |
+
gai1
|
| 376 |
+
gai2
|
| 377 |
+
gai3
|
| 378 |
+
gai4
|
| 379 |
+
gan1
|
| 380 |
+
gan2
|
| 381 |
+
gan3
|
| 382 |
+
gan4
|
| 383 |
+
gang1
|
| 384 |
+
gang2
|
| 385 |
+
gang3
|
| 386 |
+
gang4
|
| 387 |
+
gao1
|
| 388 |
+
gao2
|
| 389 |
+
gao3
|
| 390 |
+
gao4
|
| 391 |
+
ge1
|
| 392 |
+
ge2
|
| 393 |
+
ge3
|
| 394 |
+
ge4
|
| 395 |
+
gei2
|
| 396 |
+
gei3
|
| 397 |
+
gen1
|
| 398 |
+
gen2
|
| 399 |
+
gen3
|
| 400 |
+
gen4
|
| 401 |
+
geng1
|
| 402 |
+
geng3
|
| 403 |
+
geng4
|
| 404 |
+
gong1
|
| 405 |
+
gong3
|
| 406 |
+
gong4
|
| 407 |
+
gou1
|
| 408 |
+
gou2
|
| 409 |
+
gou3
|
| 410 |
+
gou4
|
| 411 |
+
gu
|
| 412 |
+
gu1
|
| 413 |
+
gu2
|
| 414 |
+
gu3
|
| 415 |
+
gu4
|
| 416 |
+
gua1
|
| 417 |
+
gua2
|
| 418 |
+
gua3
|
| 419 |
+
gua4
|
| 420 |
+
guai1
|
| 421 |
+
guai2
|
| 422 |
+
guai3
|
| 423 |
+
guai4
|
| 424 |
+
guan1
|
| 425 |
+
guan2
|
| 426 |
+
guan3
|
| 427 |
+
guan4
|
| 428 |
+
guang1
|
| 429 |
+
guang2
|
| 430 |
+
guang3
|
| 431 |
+
guang4
|
| 432 |
+
gui1
|
| 433 |
+
gui2
|
| 434 |
+
gui3
|
| 435 |
+
gui4
|
| 436 |
+
gun3
|
| 437 |
+
gun4
|
| 438 |
+
guo1
|
| 439 |
+
guo2
|
| 440 |
+
guo3
|
| 441 |
+
guo4
|
| 442 |
+
h
|
| 443 |
+
ha1
|
| 444 |
+
ha2
|
| 445 |
+
ha3
|
| 446 |
+
hai1
|
| 447 |
+
hai2
|
| 448 |
+
hai3
|
| 449 |
+
hai4
|
| 450 |
+
han1
|
| 451 |
+
han2
|
| 452 |
+
han3
|
| 453 |
+
han4
|
| 454 |
+
hang1
|
| 455 |
+
hang2
|
| 456 |
+
hang4
|
| 457 |
+
hao1
|
| 458 |
+
hao2
|
| 459 |
+
hao3
|
| 460 |
+
hao4
|
| 461 |
+
he1
|
| 462 |
+
he2
|
| 463 |
+
he4
|
| 464 |
+
hei1
|
| 465 |
+
hen2
|
| 466 |
+
hen3
|
| 467 |
+
hen4
|
| 468 |
+
heng1
|
| 469 |
+
heng2
|
| 470 |
+
heng4
|
| 471 |
+
hong1
|
| 472 |
+
hong2
|
| 473 |
+
hong3
|
| 474 |
+
hong4
|
| 475 |
+
hou1
|
| 476 |
+
hou2
|
| 477 |
+
hou3
|
| 478 |
+
hou4
|
| 479 |
+
hu1
|
| 480 |
+
hu2
|
| 481 |
+
hu3
|
| 482 |
+
hu4
|
| 483 |
+
hua1
|
| 484 |
+
hua2
|
| 485 |
+
hua4
|
| 486 |
+
huai2
|
| 487 |
+
huai4
|
| 488 |
+
huan1
|
| 489 |
+
huan2
|
| 490 |
+
huan3
|
| 491 |
+
huan4
|
| 492 |
+
huang1
|
| 493 |
+
huang2
|
| 494 |
+
huang3
|
| 495 |
+
huang4
|
| 496 |
+
hui1
|
| 497 |
+
hui2
|
| 498 |
+
hui3
|
| 499 |
+
hui4
|
| 500 |
+
hun1
|
| 501 |
+
hun2
|
| 502 |
+
hun4
|
| 503 |
+
huo
|
| 504 |
+
huo1
|
| 505 |
+
huo2
|
| 506 |
+
huo3
|
| 507 |
+
huo4
|
| 508 |
+
i
|
| 509 |
+
j
|
| 510 |
+
ji1
|
| 511 |
+
ji2
|
| 512 |
+
ji3
|
| 513 |
+
ji4
|
| 514 |
+
jia
|
| 515 |
+
jia1
|
| 516 |
+
jia2
|
| 517 |
+
jia3
|
| 518 |
+
jia4
|
| 519 |
+
jian1
|
| 520 |
+
jian2
|
| 521 |
+
jian3
|
| 522 |
+
jian4
|
| 523 |
+
jiang1
|
| 524 |
+
jiang2
|
| 525 |
+
jiang3
|
| 526 |
+
jiang4
|
| 527 |
+
jiao1
|
| 528 |
+
jiao2
|
| 529 |
+
jiao3
|
| 530 |
+
jiao4
|
| 531 |
+
jie1
|
| 532 |
+
jie2
|
| 533 |
+
jie3
|
| 534 |
+
jie4
|
| 535 |
+
jin1
|
| 536 |
+
jin2
|
| 537 |
+
jin3
|
| 538 |
+
jin4
|
| 539 |
+
jing1
|
| 540 |
+
jing2
|
| 541 |
+
jing3
|
| 542 |
+
jing4
|
| 543 |
+
jiong3
|
| 544 |
+
jiu1
|
| 545 |
+
jiu2
|
| 546 |
+
jiu3
|
| 547 |
+
jiu4
|
| 548 |
+
ju1
|
| 549 |
+
ju2
|
| 550 |
+
ju3
|
| 551 |
+
ju4
|
| 552 |
+
juan1
|
| 553 |
+
juan2
|
| 554 |
+
juan3
|
| 555 |
+
juan4
|
| 556 |
+
jue1
|
| 557 |
+
jue2
|
| 558 |
+
jue4
|
| 559 |
+
jun1
|
| 560 |
+
jun4
|
| 561 |
+
k
|
| 562 |
+
ka1
|
| 563 |
+
ka2
|
| 564 |
+
ka3
|
| 565 |
+
kai1
|
| 566 |
+
kai2
|
| 567 |
+
kai3
|
| 568 |
+
kai4
|
| 569 |
+
kan1
|
| 570 |
+
kan2
|
| 571 |
+
kan3
|
| 572 |
+
kan4
|
| 573 |
+
kang1
|
| 574 |
+
kang2
|
| 575 |
+
kang4
|
| 576 |
+
kao1
|
| 577 |
+
kao2
|
| 578 |
+
kao3
|
| 579 |
+
kao4
|
| 580 |
+
ke1
|
| 581 |
+
ke2
|
| 582 |
+
ke3
|
| 583 |
+
ke4
|
| 584 |
+
ken3
|
| 585 |
+
keng1
|
| 586 |
+
kong1
|
| 587 |
+
kong3
|
| 588 |
+
kong4
|
| 589 |
+
kou1
|
| 590 |
+
kou2
|
| 591 |
+
kou3
|
| 592 |
+
kou4
|
| 593 |
+
ku1
|
| 594 |
+
ku2
|
| 595 |
+
ku3
|
| 596 |
+
ku4
|
| 597 |
+
kua1
|
| 598 |
+
kua3
|
| 599 |
+
kua4
|
| 600 |
+
kuai3
|
| 601 |
+
kuai4
|
| 602 |
+
kuan1
|
| 603 |
+
kuan2
|
| 604 |
+
kuan3
|
| 605 |
+
kuang1
|
| 606 |
+
kuang2
|
| 607 |
+
kuang4
|
| 608 |
+
kui1
|
| 609 |
+
kui2
|
| 610 |
+
kui3
|
| 611 |
+
kui4
|
| 612 |
+
kun1
|
| 613 |
+
kun3
|
| 614 |
+
kun4
|
| 615 |
+
kuo4
|
| 616 |
+
l
|
| 617 |
+
la
|
| 618 |
+
la1
|
| 619 |
+
la2
|
| 620 |
+
la3
|
| 621 |
+
la4
|
| 622 |
+
lai2
|
| 623 |
+
lai4
|
| 624 |
+
lan2
|
| 625 |
+
lan3
|
| 626 |
+
lan4
|
| 627 |
+
lang1
|
| 628 |
+
lang2
|
| 629 |
+
lang3
|
| 630 |
+
lang4
|
| 631 |
+
lao1
|
| 632 |
+
lao2
|
| 633 |
+
lao3
|
| 634 |
+
lao4
|
| 635 |
+
le
|
| 636 |
+
le1
|
| 637 |
+
le4
|
| 638 |
+
lei
|
| 639 |
+
lei1
|
| 640 |
+
lei2
|
| 641 |
+
lei3
|
| 642 |
+
lei4
|
| 643 |
+
leng1
|
| 644 |
+
leng2
|
| 645 |
+
leng3
|
| 646 |
+
leng4
|
| 647 |
+
li
|
| 648 |
+
li1
|
| 649 |
+
li2
|
| 650 |
+
li3
|
| 651 |
+
li4
|
| 652 |
+
lia3
|
| 653 |
+
lian2
|
| 654 |
+
lian3
|
| 655 |
+
lian4
|
| 656 |
+
liang2
|
| 657 |
+
liang3
|
| 658 |
+
liang4
|
| 659 |
+
liao1
|
| 660 |
+
liao2
|
| 661 |
+
liao3
|
| 662 |
+
liao4
|
| 663 |
+
lie1
|
| 664 |
+
lie2
|
| 665 |
+
lie3
|
| 666 |
+
lie4
|
| 667 |
+
lin1
|
| 668 |
+
lin2
|
| 669 |
+
lin3
|
| 670 |
+
lin4
|
| 671 |
+
ling2
|
| 672 |
+
ling3
|
| 673 |
+
ling4
|
| 674 |
+
liu1
|
| 675 |
+
liu2
|
| 676 |
+
liu3
|
| 677 |
+
liu4
|
| 678 |
+
long1
|
| 679 |
+
long2
|
| 680 |
+
long3
|
| 681 |
+
long4
|
| 682 |
+
lou1
|
| 683 |
+
lou2
|
| 684 |
+
lou3
|
| 685 |
+
lou4
|
| 686 |
+
lu1
|
| 687 |
+
lu2
|
| 688 |
+
lu3
|
| 689 |
+
lu4
|
| 690 |
+
luan2
|
| 691 |
+
luan3
|
| 692 |
+
luan4
|
| 693 |
+
lun1
|
| 694 |
+
lun2
|
| 695 |
+
lun4
|
| 696 |
+
luo1
|
| 697 |
+
luo2
|
| 698 |
+
luo3
|
| 699 |
+
luo4
|
| 700 |
+
lv2
|
| 701 |
+
lv3
|
| 702 |
+
lv4
|
| 703 |
+
lve3
|
| 704 |
+
lve4
|
| 705 |
+
m
|
| 706 |
+
ma
|
| 707 |
+
ma1
|
| 708 |
+
ma2
|
| 709 |
+
ma3
|
| 710 |
+
ma4
|
| 711 |
+
mai2
|
| 712 |
+
mai3
|
| 713 |
+
mai4
|
| 714 |
+
man1
|
| 715 |
+
man2
|
| 716 |
+
man3
|
| 717 |
+
man4
|
| 718 |
+
mang2
|
| 719 |
+
mang3
|
| 720 |
+
mao1
|
| 721 |
+
mao2
|
| 722 |
+
mao3
|
| 723 |
+
mao4
|
| 724 |
+
me
|
| 725 |
+
mei2
|
| 726 |
+
mei3
|
| 727 |
+
mei4
|
| 728 |
+
men
|
| 729 |
+
men1
|
| 730 |
+
men2
|
| 731 |
+
men4
|
| 732 |
+
meng
|
| 733 |
+
meng1
|
| 734 |
+
meng2
|
| 735 |
+
meng3
|
| 736 |
+
meng4
|
| 737 |
+
mi1
|
| 738 |
+
mi2
|
| 739 |
+
mi3
|
| 740 |
+
mi4
|
| 741 |
+
mian2
|
| 742 |
+
mian3
|
| 743 |
+
mian4
|
| 744 |
+
miao1
|
| 745 |
+
miao2
|
| 746 |
+
miao3
|
| 747 |
+
miao4
|
| 748 |
+
mie1
|
| 749 |
+
mie4
|
| 750 |
+
min2
|
| 751 |
+
min3
|
| 752 |
+
ming2
|
| 753 |
+
ming3
|
| 754 |
+
ming4
|
| 755 |
+
miu4
|
| 756 |
+
mo1
|
| 757 |
+
mo2
|
| 758 |
+
mo3
|
| 759 |
+
mo4
|
| 760 |
+
mou1
|
| 761 |
+
mou2
|
| 762 |
+
mou3
|
| 763 |
+
mu2
|
| 764 |
+
mu3
|
| 765 |
+
mu4
|
| 766 |
+
n
|
| 767 |
+
n2
|
| 768 |
+
na1
|
| 769 |
+
na2
|
| 770 |
+
na3
|
| 771 |
+
na4
|
| 772 |
+
nai2
|
| 773 |
+
nai3
|
| 774 |
+
nai4
|
| 775 |
+
nan1
|
| 776 |
+
nan2
|
| 777 |
+
nan3
|
| 778 |
+
nan4
|
| 779 |
+
nang1
|
| 780 |
+
nang2
|
| 781 |
+
nang3
|
| 782 |
+
nao1
|
| 783 |
+
nao2
|
| 784 |
+
nao3
|
| 785 |
+
nao4
|
| 786 |
+
ne
|
| 787 |
+
ne2
|
| 788 |
+
ne4
|
| 789 |
+
nei3
|
| 790 |
+
nei4
|
| 791 |
+
nen4
|
| 792 |
+
neng2
|
| 793 |
+
ni1
|
| 794 |
+
ni2
|
| 795 |
+
ni3
|
| 796 |
+
ni4
|
| 797 |
+
nian1
|
| 798 |
+
nian2
|
| 799 |
+
nian3
|
| 800 |
+
nian4
|
| 801 |
+
niang2
|
| 802 |
+
niang4
|
| 803 |
+
niao2
|
| 804 |
+
niao3
|
| 805 |
+
niao4
|
| 806 |
+
nie1
|
| 807 |
+
nie4
|
| 808 |
+
nin2
|
| 809 |
+
ning2
|
| 810 |
+
ning3
|
| 811 |
+
ning4
|
| 812 |
+
niu1
|
| 813 |
+
niu2
|
| 814 |
+
niu3
|
| 815 |
+
niu4
|
| 816 |
+
nong2
|
| 817 |
+
nong4
|
| 818 |
+
nou4
|
| 819 |
+
nu2
|
| 820 |
+
nu3
|
| 821 |
+
nu4
|
| 822 |
+
nuan3
|
| 823 |
+
nuo2
|
| 824 |
+
nuo4
|
| 825 |
+
nv2
|
| 826 |
+
nv3
|
| 827 |
+
nve4
|
| 828 |
+
o
|
| 829 |
+
o1
|
| 830 |
+
o2
|
| 831 |
+
ou1
|
| 832 |
+
ou2
|
| 833 |
+
ou3
|
| 834 |
+
ou4
|
| 835 |
+
p
|
| 836 |
+
pa1
|
| 837 |
+
pa2
|
| 838 |
+
pa4
|
| 839 |
+
pai1
|
| 840 |
+
pai2
|
| 841 |
+
pai3
|
| 842 |
+
pai4
|
| 843 |
+
pan1
|
| 844 |
+
pan2
|
| 845 |
+
pan4
|
| 846 |
+
pang1
|
| 847 |
+
pang2
|
| 848 |
+
pang4
|
| 849 |
+
pao1
|
| 850 |
+
pao2
|
| 851 |
+
pao3
|
| 852 |
+
pao4
|
| 853 |
+
pei1
|
| 854 |
+
pei2
|
| 855 |
+
pei4
|
| 856 |
+
pen1
|
| 857 |
+
pen2
|
| 858 |
+
pen4
|
| 859 |
+
peng1
|
| 860 |
+
peng2
|
| 861 |
+
peng3
|
| 862 |
+
peng4
|
| 863 |
+
pi1
|
| 864 |
+
pi2
|
| 865 |
+
pi3
|
| 866 |
+
pi4
|
| 867 |
+
pian1
|
| 868 |
+
pian2
|
| 869 |
+
pian4
|
| 870 |
+
piao1
|
| 871 |
+
piao2
|
| 872 |
+
piao3
|
| 873 |
+
piao4
|
| 874 |
+
pie1
|
| 875 |
+
pie2
|
| 876 |
+
pie3
|
| 877 |
+
pin1
|
| 878 |
+
pin2
|
| 879 |
+
pin3
|
| 880 |
+
pin4
|
| 881 |
+
ping1
|
| 882 |
+
ping2
|
| 883 |
+
po1
|
| 884 |
+
po2
|
| 885 |
+
po3
|
| 886 |
+
po4
|
| 887 |
+
pou1
|
| 888 |
+
pu1
|
| 889 |
+
pu2
|
| 890 |
+
pu3
|
| 891 |
+
pu4
|
| 892 |
+
q
|
| 893 |
+
qi1
|
| 894 |
+
qi2
|
| 895 |
+
qi3
|
| 896 |
+
qi4
|
| 897 |
+
qia1
|
| 898 |
+
qia3
|
| 899 |
+
qia4
|
| 900 |
+
qian1
|
| 901 |
+
qian2
|
| 902 |
+
qian3
|
| 903 |
+
qian4
|
| 904 |
+
qiang1
|
| 905 |
+
qiang2
|
| 906 |
+
qiang3
|
| 907 |
+
qiang4
|
| 908 |
+
qiao1
|
| 909 |
+
qiao2
|
| 910 |
+
qiao3
|
| 911 |
+
qiao4
|
| 912 |
+
qie1
|
| 913 |
+
qie2
|
| 914 |
+
qie3
|
| 915 |
+
qie4
|
| 916 |
+
qin1
|
| 917 |
+
qin2
|
| 918 |
+
qin3
|
| 919 |
+
qin4
|
| 920 |
+
qing1
|
| 921 |
+
qing2
|
| 922 |
+
qing3
|
| 923 |
+
qing4
|
| 924 |
+
qiong1
|
| 925 |
+
qiong2
|
| 926 |
+
qiu1
|
| 927 |
+
qiu2
|
| 928 |
+
qiu3
|
| 929 |
+
qu1
|
| 930 |
+
qu2
|
| 931 |
+
qu3
|
| 932 |
+
qu4
|
| 933 |
+
quan1
|
| 934 |
+
quan2
|
| 935 |
+
quan3
|
| 936 |
+
quan4
|
| 937 |
+
que1
|
| 938 |
+
que2
|
| 939 |
+
que4
|
| 940 |
+
qun2
|
| 941 |
+
r
|
| 942 |
+
ran2
|
| 943 |
+
ran3
|
| 944 |
+
rang1
|
| 945 |
+
rang2
|
| 946 |
+
rang3
|
| 947 |
+
rang4
|
| 948 |
+
rao2
|
| 949 |
+
rao3
|
| 950 |
+
rao4
|
| 951 |
+
re2
|
| 952 |
+
re3
|
| 953 |
+
re4
|
| 954 |
+
ren2
|
| 955 |
+
ren3
|
| 956 |
+
ren4
|
| 957 |
+
reng1
|
| 958 |
+
reng2
|
| 959 |
+
ri4
|
| 960 |
+
rong1
|
| 961 |
+
rong2
|
| 962 |
+
rong3
|
| 963 |
+
rou2
|
| 964 |
+
rou4
|
| 965 |
+
ru2
|
| 966 |
+
ru3
|
| 967 |
+
ru4
|
| 968 |
+
ruan2
|
| 969 |
+
ruan3
|
| 970 |
+
rui3
|
| 971 |
+
rui4
|
| 972 |
+
run4
|
| 973 |
+
ruo4
|
| 974 |
+
s
|
| 975 |
+
sa1
|
| 976 |
+
sa2
|
| 977 |
+
sa3
|
| 978 |
+
sa4
|
| 979 |
+
sai1
|
| 980 |
+
sai4
|
| 981 |
+
san1
|
| 982 |
+
san2
|
| 983 |
+
san3
|
| 984 |
+
san4
|
| 985 |
+
sang1
|
| 986 |
+
sang3
|
| 987 |
+
sang4
|
| 988 |
+
sao1
|
| 989 |
+
sao2
|
| 990 |
+
sao3
|
| 991 |
+
sao4
|
| 992 |
+
se4
|
| 993 |
+
sen1
|
| 994 |
+
seng1
|
| 995 |
+
sha1
|
| 996 |
+
sha2
|
| 997 |
+
sha3
|
| 998 |
+
sha4
|
| 999 |
+
shai1
|
| 1000 |
+
shai2
|
| 1001 |
+
shai3
|
| 1002 |
+
shai4
|
| 1003 |
+
shan1
|
| 1004 |
+
shan3
|
| 1005 |
+
shan4
|
| 1006 |
+
shang
|
| 1007 |
+
shang1
|
| 1008 |
+
shang3
|
| 1009 |
+
shang4
|
| 1010 |
+
shao1
|
| 1011 |
+
shao2
|
| 1012 |
+
shao3
|
| 1013 |
+
shao4
|
| 1014 |
+
she1
|
| 1015 |
+
she2
|
| 1016 |
+
she3
|
| 1017 |
+
she4
|
| 1018 |
+
shei2
|
| 1019 |
+
shen1
|
| 1020 |
+
shen2
|
| 1021 |
+
shen3
|
| 1022 |
+
shen4
|
| 1023 |
+
sheng1
|
| 1024 |
+
sheng2
|
| 1025 |
+
sheng3
|
| 1026 |
+
sheng4
|
| 1027 |
+
shi
|
| 1028 |
+
shi1
|
| 1029 |
+
shi2
|
| 1030 |
+
shi3
|
| 1031 |
+
shi4
|
| 1032 |
+
shou1
|
| 1033 |
+
shou2
|
| 1034 |
+
shou3
|
| 1035 |
+
shou4
|
| 1036 |
+
shu1
|
| 1037 |
+
shu2
|
| 1038 |
+
shu3
|
| 1039 |
+
shu4
|
| 1040 |
+
shua1
|
| 1041 |
+
shua2
|
| 1042 |
+
shua3
|
| 1043 |
+
shua4
|
| 1044 |
+
shuai1
|
| 1045 |
+
shuai3
|
| 1046 |
+
shuai4
|
| 1047 |
+
shuan1
|
| 1048 |
+
shuan4
|
| 1049 |
+
shuang1
|
| 1050 |
+
shuang3
|
| 1051 |
+
shui2
|
| 1052 |
+
shui3
|
| 1053 |
+
shui4
|
| 1054 |
+
shun3
|
| 1055 |
+
shun4
|
| 1056 |
+
shuo1
|
| 1057 |
+
shuo4
|
| 1058 |
+
si1
|
| 1059 |
+
si2
|
| 1060 |
+
si3
|
| 1061 |
+
si4
|
| 1062 |
+
song1
|
| 1063 |
+
song3
|
| 1064 |
+
song4
|
| 1065 |
+
sou1
|
| 1066 |
+
sou3
|
| 1067 |
+
sou4
|
| 1068 |
+
su1
|
| 1069 |
+
su2
|
| 1070 |
+
su4
|
| 1071 |
+
suan1
|
| 1072 |
+
suan4
|
| 1073 |
+
sui1
|
| 1074 |
+
sui2
|
| 1075 |
+
sui3
|
| 1076 |
+
sui4
|
| 1077 |
+
sun1
|
| 1078 |
+
sun3
|
| 1079 |
+
suo
|
| 1080 |
+
suo1
|
| 1081 |
+
suo2
|
| 1082 |
+
suo3
|
| 1083 |
+
t
|
| 1084 |
+
ta1
|
| 1085 |
+
ta2
|
| 1086 |
+
ta3
|
| 1087 |
+
ta4
|
| 1088 |
+
tai1
|
| 1089 |
+
tai2
|
| 1090 |
+
tai4
|
| 1091 |
+
tan1
|
| 1092 |
+
tan2
|
| 1093 |
+
tan3
|
| 1094 |
+
tan4
|
| 1095 |
+
tang1
|
| 1096 |
+
tang2
|
| 1097 |
+
tang3
|
| 1098 |
+
tang4
|
| 1099 |
+
tao1
|
| 1100 |
+
tao2
|
| 1101 |
+
tao3
|
| 1102 |
+
tao4
|
| 1103 |
+
te4
|
| 1104 |
+
teng2
|
| 1105 |
+
ti1
|
| 1106 |
+
ti2
|
| 1107 |
+
ti3
|
| 1108 |
+
ti4
|
| 1109 |
+
tian1
|
| 1110 |
+
tian2
|
| 1111 |
+
tian3
|
| 1112 |
+
tiao1
|
| 1113 |
+
tiao2
|
| 1114 |
+
tiao3
|
| 1115 |
+
tiao4
|
| 1116 |
+
tie1
|
| 1117 |
+
tie2
|
| 1118 |
+
tie3
|
| 1119 |
+
tie4
|
| 1120 |
+
ting1
|
| 1121 |
+
ting2
|
| 1122 |
+
ting3
|
| 1123 |
+
tong1
|
| 1124 |
+
tong2
|
| 1125 |
+
tong3
|
| 1126 |
+
tong4
|
| 1127 |
+
tou
|
| 1128 |
+
tou1
|
| 1129 |
+
tou2
|
| 1130 |
+
tou4
|
| 1131 |
+
tu1
|
| 1132 |
+
tu2
|
| 1133 |
+
tu3
|
| 1134 |
+
tu4
|
| 1135 |
+
tuan1
|
| 1136 |
+
tuan2
|
| 1137 |
+
tui1
|
| 1138 |
+
tui2
|
| 1139 |
+
tui3
|
| 1140 |
+
tui4
|
| 1141 |
+
tun1
|
| 1142 |
+
tun2
|
| 1143 |
+
tun4
|
| 1144 |
+
tuo1
|
| 1145 |
+
tuo2
|
| 1146 |
+
tuo3
|
| 1147 |
+
tuo4
|
| 1148 |
+
u
|
| 1149 |
+
v
|
| 1150 |
+
w
|
| 1151 |
+
wa
|
| 1152 |
+
wa1
|
| 1153 |
+
wa2
|
| 1154 |
+
wa3
|
| 1155 |
+
wa4
|
| 1156 |
+
wai1
|
| 1157 |
+
wai3
|
| 1158 |
+
wai4
|
| 1159 |
+
wan1
|
| 1160 |
+
wan2
|
| 1161 |
+
wan3
|
| 1162 |
+
wan4
|
| 1163 |
+
wang1
|
| 1164 |
+
wang2
|
| 1165 |
+
wang3
|
| 1166 |
+
wang4
|
| 1167 |
+
wei1
|
| 1168 |
+
wei2
|
| 1169 |
+
wei3
|
| 1170 |
+
wei4
|
| 1171 |
+
wen1
|
| 1172 |
+
wen2
|
| 1173 |
+
wen3
|
| 1174 |
+
wen4
|
| 1175 |
+
weng1
|
| 1176 |
+
weng4
|
| 1177 |
+
wo1
|
| 1178 |
+
wo2
|
| 1179 |
+
wo3
|
| 1180 |
+
wo4
|
| 1181 |
+
wu1
|
| 1182 |
+
wu2
|
| 1183 |
+
wu3
|
| 1184 |
+
wu4
|
| 1185 |
+
x
|
| 1186 |
+
xi1
|
| 1187 |
+
xi2
|
| 1188 |
+
xi3
|
| 1189 |
+
xi4
|
| 1190 |
+
xia1
|
| 1191 |
+
xia2
|
| 1192 |
+
xia4
|
| 1193 |
+
xian1
|
| 1194 |
+
xian2
|
| 1195 |
+
xian3
|
| 1196 |
+
xian4
|
| 1197 |
+
xiang1
|
| 1198 |
+
xiang2
|
| 1199 |
+
xiang3
|
| 1200 |
+
xiang4
|
| 1201 |
+
xiao1
|
| 1202 |
+
xiao2
|
| 1203 |
+
xiao3
|
| 1204 |
+
xiao4
|
| 1205 |
+
xie1
|
| 1206 |
+
xie2
|
| 1207 |
+
xie3
|
| 1208 |
+
xie4
|
| 1209 |
+
xin1
|
| 1210 |
+
xin2
|
| 1211 |
+
xin4
|
| 1212 |
+
xing1
|
| 1213 |
+
xing2
|
| 1214 |
+
xing3
|
| 1215 |
+
xing4
|
| 1216 |
+
xiong1
|
| 1217 |
+
xiong2
|
| 1218 |
+
xiu1
|
| 1219 |
+
xiu3
|
| 1220 |
+
xiu4
|
| 1221 |
+
xu
|
| 1222 |
+
xu1
|
| 1223 |
+
xu2
|
| 1224 |
+
xu3
|
| 1225 |
+
xu4
|
| 1226 |
+
xuan1
|
| 1227 |
+
xuan2
|
| 1228 |
+
xuan3
|
| 1229 |
+
xuan4
|
| 1230 |
+
xue1
|
| 1231 |
+
xue2
|
| 1232 |
+
xue3
|
| 1233 |
+
xue4
|
| 1234 |
+
xun1
|
| 1235 |
+
xun2
|
| 1236 |
+
xun4
|
| 1237 |
+
y
|
| 1238 |
+
ya
|
| 1239 |
+
ya1
|
| 1240 |
+
ya2
|
| 1241 |
+
ya3
|
| 1242 |
+
ya4
|
| 1243 |
+
yan1
|
| 1244 |
+
yan2
|
| 1245 |
+
yan3
|
| 1246 |
+
yan4
|
| 1247 |
+
yang1
|
| 1248 |
+
yang2
|
| 1249 |
+
yang3
|
| 1250 |
+
yang4
|
| 1251 |
+
yao1
|
| 1252 |
+
yao2
|
| 1253 |
+
yao3
|
| 1254 |
+
yao4
|
| 1255 |
+
ye1
|
| 1256 |
+
ye2
|
| 1257 |
+
ye3
|
| 1258 |
+
ye4
|
| 1259 |
+
yi
|
| 1260 |
+
yi1
|
| 1261 |
+
yi2
|
| 1262 |
+
yi3
|
| 1263 |
+
yi4
|
| 1264 |
+
yin1
|
| 1265 |
+
yin2
|
| 1266 |
+
yin3
|
| 1267 |
+
yin4
|
| 1268 |
+
ying1
|
| 1269 |
+
ying2
|
| 1270 |
+
ying3
|
| 1271 |
+
ying4
|
| 1272 |
+
yo1
|
| 1273 |
+
yong1
|
| 1274 |
+
yong2
|
| 1275 |
+
yong3
|
| 1276 |
+
yong4
|
| 1277 |
+
you1
|
| 1278 |
+
you2
|
| 1279 |
+
you3
|
| 1280 |
+
you4
|
| 1281 |
+
yu1
|
| 1282 |
+
yu2
|
| 1283 |
+
yu3
|
| 1284 |
+
yu4
|
| 1285 |
+
yuan1
|
| 1286 |
+
yuan2
|
| 1287 |
+
yuan3
|
| 1288 |
+
yuan4
|
| 1289 |
+
yue1
|
| 1290 |
+
yue4
|
| 1291 |
+
yun1
|
| 1292 |
+
yun2
|
| 1293 |
+
yun3
|
| 1294 |
+
yun4
|
| 1295 |
+
z
|
| 1296 |
+
za1
|
| 1297 |
+
za2
|
| 1298 |
+
za3
|
| 1299 |
+
zai1
|
| 1300 |
+
zai3
|
| 1301 |
+
zai4
|
| 1302 |
+
zan1
|
| 1303 |
+
zan2
|
| 1304 |
+
zan3
|
| 1305 |
+
zan4
|
| 1306 |
+
zang1
|
| 1307 |
+
zang4
|
| 1308 |
+
zao1
|
| 1309 |
+
zao2
|
| 1310 |
+
zao3
|
| 1311 |
+
zao4
|
| 1312 |
+
ze2
|
| 1313 |
+
ze4
|
| 1314 |
+
zei2
|
| 1315 |
+
zen3
|
| 1316 |
+
zeng1
|
| 1317 |
+
zeng4
|
| 1318 |
+
zha1
|
| 1319 |
+
zha2
|
| 1320 |
+
zha3
|
| 1321 |
+
zha4
|
| 1322 |
+
zhai1
|
| 1323 |
+
zhai2
|
| 1324 |
+
zhai3
|
| 1325 |
+
zhai4
|
| 1326 |
+
zhan1
|
| 1327 |
+
zhan2
|
| 1328 |
+
zhan3
|
| 1329 |
+
zhan4
|
| 1330 |
+
zhang1
|
| 1331 |
+
zhang2
|
| 1332 |
+
zhang3
|
| 1333 |
+
zhang4
|
| 1334 |
+
zhao1
|
| 1335 |
+
zhao2
|
| 1336 |
+
zhao3
|
| 1337 |
+
zhao4
|
| 1338 |
+
zhe
|
| 1339 |
+
zhe1
|
| 1340 |
+
zhe2
|
| 1341 |
+
zhe3
|
| 1342 |
+
zhe4
|
| 1343 |
+
zhen1
|
| 1344 |
+
zhen2
|
| 1345 |
+
zhen3
|
| 1346 |
+
zhen4
|
| 1347 |
+
zheng1
|
| 1348 |
+
zheng2
|
| 1349 |
+
zheng3
|
| 1350 |
+
zheng4
|
| 1351 |
+
zhi1
|
| 1352 |
+
zhi2
|
| 1353 |
+
zhi3
|
| 1354 |
+
zhi4
|
| 1355 |
+
zhong1
|
| 1356 |
+
zhong2
|
| 1357 |
+
zhong3
|
| 1358 |
+
zhong4
|
| 1359 |
+
zhou1
|
| 1360 |
+
zhou2
|
| 1361 |
+
zhou3
|
| 1362 |
+
zhou4
|
| 1363 |
+
zhu1
|
| 1364 |
+
zhu2
|
| 1365 |
+
zhu3
|
| 1366 |
+
zhu4
|
| 1367 |
+
zhua1
|
| 1368 |
+
zhua2
|
| 1369 |
+
zhua3
|
| 1370 |
+
zhuai1
|
| 1371 |
+
zhuai3
|
| 1372 |
+
zhuai4
|
| 1373 |
+
zhuan1
|
| 1374 |
+
zhuan2
|
| 1375 |
+
zhuan3
|
| 1376 |
+
zhuan4
|
| 1377 |
+
zhuang1
|
| 1378 |
+
zhuang4
|
| 1379 |
+
zhui1
|
| 1380 |
+
zhui4
|
| 1381 |
+
zhun1
|
| 1382 |
+
zhun2
|
| 1383 |
+
zhun3
|
| 1384 |
+
zhuo1
|
| 1385 |
+
zhuo2
|
| 1386 |
+
zi
|
| 1387 |
+
zi1
|
| 1388 |
+
zi2
|
| 1389 |
+
zi3
|
| 1390 |
+
zi4
|
| 1391 |
+
zong1
|
| 1392 |
+
zong2
|
| 1393 |
+
zong3
|
| 1394 |
+
zong4
|
| 1395 |
+
zou1
|
| 1396 |
+
zou2
|
| 1397 |
+
zou3
|
| 1398 |
+
zou4
|
| 1399 |
+
zu1
|
| 1400 |
+
zu2
|
| 1401 |
+
zu3
|
| 1402 |
+
zuan1
|
| 1403 |
+
zuan3
|
| 1404 |
+
zuan4
|
| 1405 |
+
zui2
|
| 1406 |
+
zui3
|
| 1407 |
+
zui4
|
| 1408 |
+
zun1
|
| 1409 |
+
zuo
|
| 1410 |
+
zuo1
|
| 1411 |
+
zuo2
|
| 1412 |
+
zuo3
|
| 1413 |
+
zuo4
|
| 1414 |
+
{
|
| 1415 |
+
~
|
| 1416 |
+
¡
|
| 1417 |
+
¢
|
| 1418 |
+
£
|
| 1419 |
+
¥
|
| 1420 |
+
§
|
| 1421 |
+
¨
|
| 1422 |
+
©
|
| 1423 |
+
«
|
| 1424 |
+
®
|
| 1425 |
+
¯
|
| 1426 |
+
°
|
| 1427 |
+
±
|
| 1428 |
+
²
|
| 1429 |
+
³
|
| 1430 |
+
´
|
| 1431 |
+
µ
|
| 1432 |
+
·
|
| 1433 |
+
¹
|
| 1434 |
+
º
|
| 1435 |
+
»
|
| 1436 |
+
¼
|
| 1437 |
+
½
|
| 1438 |
+
¾
|
| 1439 |
+
¿
|
| 1440 |
+
À
|
| 1441 |
+
Á
|
| 1442 |
+
Â
|
| 1443 |
+
Ã
|
| 1444 |
+
Ä
|
| 1445 |
+
Å
|
| 1446 |
+
Æ
|
| 1447 |
+
Ç
|
| 1448 |
+
È
|
| 1449 |
+
É
|
| 1450 |
+
Ê
|
| 1451 |
+
Í
|
| 1452 |
+
Î
|
| 1453 |
+
Ñ
|
| 1454 |
+
Ó
|
| 1455 |
+
Ö
|
| 1456 |
+
×
|
| 1457 |
+
Ø
|
| 1458 |
+
Ú
|
| 1459 |
+
Ü
|
| 1460 |
+
Ý
|
| 1461 |
+
Þ
|
| 1462 |
+
ß
|
| 1463 |
+
à
|
| 1464 |
+
á
|
| 1465 |
+
â
|
| 1466 |
+
ã
|
| 1467 |
+
ä
|
| 1468 |
+
å
|
| 1469 |
+
æ
|
| 1470 |
+
ç
|
| 1471 |
+
è
|
| 1472 |
+
é
|
| 1473 |
+
ê
|
| 1474 |
+
ë
|
| 1475 |
+
ì
|
| 1476 |
+
í
|
| 1477 |
+
î
|
| 1478 |
+
ï
|
| 1479 |
+
ð
|
| 1480 |
+
ñ
|
| 1481 |
+
ò
|
| 1482 |
+
ó
|
| 1483 |
+
ô
|
| 1484 |
+
õ
|
| 1485 |
+
ö
|
| 1486 |
+
ø
|
| 1487 |
+
ù
|
| 1488 |
+
ú
|
| 1489 |
+
û
|
| 1490 |
+
ü
|
| 1491 |
+
ý
|
| 1492 |
+
Ā
|
| 1493 |
+
ā
|
| 1494 |
+
ă
|
| 1495 |
+
ą
|
| 1496 |
+
ć
|
| 1497 |
+
Č
|
| 1498 |
+
č
|
| 1499 |
+
Đ
|
| 1500 |
+
đ
|
| 1501 |
+
ē
|
| 1502 |
+
ė
|
| 1503 |
+
ę
|
| 1504 |
+
ě
|
| 1505 |
+
ĝ
|
| 1506 |
+
ğ
|
| 1507 |
+
ħ
|
| 1508 |
+
ī
|
| 1509 |
+
į
|
| 1510 |
+
İ
|
| 1511 |
+
ı
|
| 1512 |
+
Ł
|
| 1513 |
+
ł
|
| 1514 |
+
ń
|
| 1515 |
+
ņ
|
| 1516 |
+
ň
|
| 1517 |
+
ŋ
|
| 1518 |
+
Ō
|
| 1519 |
+
ō
|
| 1520 |
+
ő
|
| 1521 |
+
œ
|
| 1522 |
+
ř
|
| 1523 |
+
Ś
|
| 1524 |
+
ś
|
| 1525 |
+
Ş
|
| 1526 |
+
ş
|
| 1527 |
+
Š
|
| 1528 |
+
š
|
| 1529 |
+
Ť
|
| 1530 |
+
ť
|
| 1531 |
+
ũ
|
| 1532 |
+
ū
|
| 1533 |
+
ź
|
| 1534 |
+
Ż
|
| 1535 |
+
ż
|
| 1536 |
+
Ž
|
| 1537 |
+
ž
|
| 1538 |
+
ơ
|
| 1539 |
+
ư
|
| 1540 |
+
ǎ
|
| 1541 |
+
ǐ
|
| 1542 |
+
ǒ
|
| 1543 |
+
ǔ
|
| 1544 |
+
ǚ
|
| 1545 |
+
ș
|
| 1546 |
+
ț
|
| 1547 |
+
ɑ
|
| 1548 |
+
ɔ
|
| 1549 |
+
ɕ
|
| 1550 |
+
ə
|
| 1551 |
+
ɛ
|
| 1552 |
+
ɜ
|
| 1553 |
+
ɡ
|
| 1554 |
+
ɣ
|
| 1555 |
+
ɪ
|
| 1556 |
+
ɫ
|
| 1557 |
+
ɴ
|
| 1558 |
+
ɹ
|
| 1559 |
+
ɾ
|
| 1560 |
+
ʃ
|
| 1561 |
+
ʊ
|
| 1562 |
+
ʌ
|
| 1563 |
+
ʒ
|
| 1564 |
+
ʔ
|
| 1565 |
+
ʰ
|
| 1566 |
+
ʷ
|
| 1567 |
+
ʻ
|
| 1568 |
+
ʾ
|
| 1569 |
+
ʿ
|
| 1570 |
+
ˈ
|
| 1571 |
+
ː
|
| 1572 |
+
˙
|
| 1573 |
+
˜
|
| 1574 |
+
ˢ
|
| 1575 |
+
́
|
| 1576 |
+
̅
|
| 1577 |
+
Α
|
| 1578 |
+
Β
|
| 1579 |
+
Δ
|
| 1580 |
+
Ε
|
| 1581 |
+
Θ
|
| 1582 |
+
Κ
|
| 1583 |
+
Λ
|
| 1584 |
+
Μ
|
| 1585 |
+
Ξ
|
| 1586 |
+
Π
|
| 1587 |
+
Σ
|
| 1588 |
+
Τ
|
| 1589 |
+
Φ
|
| 1590 |
+
Χ
|
| 1591 |
+
Ψ
|
| 1592 |
+
Ω
|
| 1593 |
+
ά
|
| 1594 |
+
έ
|
| 1595 |
+
ή
|
| 1596 |
+
ί
|
| 1597 |
+
α
|
| 1598 |
+
β
|
| 1599 |
+
γ
|
| 1600 |
+
δ
|
| 1601 |
+
ε
|
| 1602 |
+
ζ
|
| 1603 |
+
η
|
| 1604 |
+
θ
|
| 1605 |
+
ι
|
| 1606 |
+
κ
|
| 1607 |
+
λ
|
| 1608 |
+
μ
|
| 1609 |
+
ν
|
| 1610 |
+
ξ
|
| 1611 |
+
ο
|
| 1612 |
+
π
|
| 1613 |
+
ρ
|
| 1614 |
+
ς
|
| 1615 |
+
σ
|
| 1616 |
+
τ
|
| 1617 |
+
υ
|
| 1618 |
+
φ
|
| 1619 |
+
χ
|
| 1620 |
+
ψ
|
| 1621 |
+
ω
|
| 1622 |
+
ϊ
|
| 1623 |
+
ό
|
| 1624 |
+
ύ
|
| 1625 |
+
ώ
|
| 1626 |
+
ϕ
|
| 1627 |
+
ϵ
|
| 1628 |
+
Ё
|
| 1629 |
+
А
|
| 1630 |
+
Б
|
| 1631 |
+
В
|
| 1632 |
+
Г
|
| 1633 |
+
Д
|
| 1634 |
+
Е
|
| 1635 |
+
Ж
|
| 1636 |
+
З
|
| 1637 |
+
И
|
| 1638 |
+
Й
|
| 1639 |
+
К
|
| 1640 |
+
Л
|
| 1641 |
+
М
|
| 1642 |
+
Н
|
| 1643 |
+
О
|
| 1644 |
+
П
|
| 1645 |
+
Р
|
| 1646 |
+
С
|
| 1647 |
+
Т
|
| 1648 |
+
У
|
| 1649 |
+
Ф
|
| 1650 |
+
Х
|
| 1651 |
+
Ц
|
| 1652 |
+
Ч
|
| 1653 |
+
Ш
|
| 1654 |
+
Щ
|
| 1655 |
+
Ы
|
| 1656 |
+
Ь
|
| 1657 |
+
Э
|
| 1658 |
+
Ю
|
| 1659 |
+
Я
|
| 1660 |
+
а
|
| 1661 |
+
б
|
| 1662 |
+
в
|
| 1663 |
+
г
|
| 1664 |
+
д
|
| 1665 |
+
е
|
| 1666 |
+
ж
|
| 1667 |
+
з
|
| 1668 |
+
и
|
| 1669 |
+
й
|
| 1670 |
+
к
|
| 1671 |
+
л
|
| 1672 |
+
м
|
| 1673 |
+
н
|
| 1674 |
+
о
|
| 1675 |
+
п
|
| 1676 |
+
р
|
| 1677 |
+
с
|
| 1678 |
+
т
|
| 1679 |
+
у
|
| 1680 |
+
ф
|
| 1681 |
+
х
|
| 1682 |
+
ц
|
| 1683 |
+
ч
|
| 1684 |
+
ш
|
| 1685 |
+
щ
|
| 1686 |
+
ъ
|
| 1687 |
+
ы
|
| 1688 |
+
ь
|
| 1689 |
+
э
|
| 1690 |
+
ю
|
| 1691 |
+
я
|
| 1692 |
+
ё
|
| 1693 |
+
і
|
| 1694 |
+
ְ
|
| 1695 |
+
ִ
|
| 1696 |
+
ֵ
|
| 1697 |
+
ֶ
|
| 1698 |
+
ַ
|
| 1699 |
+
ָ
|
| 1700 |
+
ֹ
|
| 1701 |
+
ּ
|
| 1702 |
+
־
|
| 1703 |
+
ׁ
|
| 1704 |
+
א
|
| 1705 |
+
ב
|
| 1706 |
+
ג
|
| 1707 |
+
ד
|
| 1708 |
+
ה
|
| 1709 |
+
ו
|
| 1710 |
+
ז
|
| 1711 |
+
ח
|
| 1712 |
+
ט
|
| 1713 |
+
י
|
| 1714 |
+
כ
|
| 1715 |
+
ל
|
| 1716 |
+
ם
|
| 1717 |
+
מ
|
| 1718 |
+
ן
|
| 1719 |
+
נ
|
| 1720 |
+
ס
|
| 1721 |
+
ע
|
| 1722 |
+
פ
|
| 1723 |
+
ק
|
| 1724 |
+
ר
|
| 1725 |
+
ש
|
| 1726 |
+
ת
|
| 1727 |
+
أ
|
| 1728 |
+
ب
|
| 1729 |
+
ة
|
| 1730 |
+
ت
|
| 1731 |
+
ج
|
| 1732 |
+
ح
|
| 1733 |
+
د
|
| 1734 |
+
ر
|
| 1735 |
+
ز
|
| 1736 |
+
س
|
| 1737 |
+
ص
|
| 1738 |
+
ط
|
| 1739 |
+
ع
|
| 1740 |
+
ق
|
| 1741 |
+
ك
|
| 1742 |
+
ل
|
| 1743 |
+
م
|
| 1744 |
+
ن
|
| 1745 |
+
ه
|
| 1746 |
+
و
|
| 1747 |
+
ي
|
| 1748 |
+
َ
|
| 1749 |
+
ُ
|
| 1750 |
+
ِ
|
| 1751 |
+
ْ
|
| 1752 |
+
ก
|
| 1753 |
+
ข
|
| 1754 |
+
ง
|
| 1755 |
+
จ
|
| 1756 |
+
ต
|
| 1757 |
+
ท
|
| 1758 |
+
น
|
| 1759 |
+
ป
|
| 1760 |
+
ย
|
| 1761 |
+
ร
|
| 1762 |
+
ว
|
| 1763 |
+
ส
|
| 1764 |
+
ห
|
| 1765 |
+
อ
|
| 1766 |
+
ฮ
|
| 1767 |
+
ั
|
| 1768 |
+
า
|
| 1769 |
+
ี
|
| 1770 |
+
ึ
|
| 1771 |
+
โ
|
| 1772 |
+
ใ
|
| 1773 |
+
ไ
|
| 1774 |
+
่
|
| 1775 |
+
้
|
| 1776 |
+
์
|
| 1777 |
+
ḍ
|
| 1778 |
+
Ḥ
|
| 1779 |
+
ḥ
|
| 1780 |
+
ṁ
|
| 1781 |
+
ṃ
|
| 1782 |
+
ṅ
|
| 1783 |
+
ṇ
|
| 1784 |
+
Ṛ
|
| 1785 |
+
ṛ
|
| 1786 |
+
Ṣ
|
| 1787 |
+
ṣ
|
| 1788 |
+
Ṭ
|
| 1789 |
+
ṭ
|
| 1790 |
+
ạ
|
| 1791 |
+
ả
|
| 1792 |
+
Ấ
|
| 1793 |
+
ấ
|
| 1794 |
+
ầ
|
| 1795 |
+
ậ
|
| 1796 |
+
ắ
|
| 1797 |
+
ằ
|
| 1798 |
+
ẻ
|
| 1799 |
+
ẽ
|
| 1800 |
+
ế
|
| 1801 |
+
ề
|
| 1802 |
+
ể
|
| 1803 |
+
ễ
|
| 1804 |
+
ệ
|
| 1805 |
+
ị
|
| 1806 |
+
ọ
|
| 1807 |
+
ỏ
|
| 1808 |
+
ố
|
| 1809 |
+
ồ
|
| 1810 |
+
ộ
|
| 1811 |
+
ớ
|
| 1812 |
+
ờ
|
| 1813 |
+
ở
|
| 1814 |
+
ụ
|
| 1815 |
+
ủ
|
| 1816 |
+
ứ
|
| 1817 |
+
ữ
|
| 1818 |
+
ἀ
|
| 1819 |
+
ἁ
|
| 1820 |
+
Ἀ
|
| 1821 |
+
ἐ
|
| 1822 |
+
ἔ
|
| 1823 |
+
ἰ
|
| 1824 |
+
ἱ
|
| 1825 |
+
ὀ
|
| 1826 |
+
ὁ
|
| 1827 |
+
ὐ
|
| 1828 |
+
ὲ
|
| 1829 |
+
ὸ
|
| 1830 |
+
ᾶ
|
| 1831 |
+
᾽
|
| 1832 |
+
ῆ
|
| 1833 |
+
ῇ
|
| 1834 |
+
ῶ
|
| 1835 |
+
|
| 1836 |
+
‑
|
| 1837 |
+
‒
|
| 1838 |
+
–
|
| 1839 |
+
—
|
| 1840 |
+
―
|
| 1841 |
+
‖
|
| 1842 |
+
†
|
| 1843 |
+
‡
|
| 1844 |
+
•
|
| 1845 |
+
…
|
| 1846 |
+
‧
|
| 1847 |
+
|
| 1848 |
+
′
|
| 1849 |
+
″
|
| 1850 |
+
⁄
|
| 1851 |
+
|
| 1852 |
+
⁰
|
| 1853 |
+
⁴
|
| 1854 |
+
⁵
|
| 1855 |
+
⁶
|
| 1856 |
+
⁷
|
| 1857 |
+
⁸
|
| 1858 |
+
⁹
|
| 1859 |
+
₁
|
| 1860 |
+
₂
|
| 1861 |
+
₃
|
| 1862 |
+
€
|
| 1863 |
+
₱
|
| 1864 |
+
₹
|
| 1865 |
+
₽
|
| 1866 |
+
℃
|
| 1867 |
+
ℏ
|
| 1868 |
+
ℓ
|
| 1869 |
+
№
|
| 1870 |
+
ℝ
|
| 1871 |
+
™
|
| 1872 |
+
⅓
|
| 1873 |
+
⅔
|
| 1874 |
+
⅛
|
| 1875 |
+
→
|
| 1876 |
+
∂
|
| 1877 |
+
∈
|
| 1878 |
+
∑
|
| 1879 |
+
−
|
| 1880 |
+
∗
|
| 1881 |
+
√
|
| 1882 |
+
∞
|
| 1883 |
+
∫
|
| 1884 |
+
≈
|
| 1885 |
+
≠
|
| 1886 |
+
≡
|
| 1887 |
+
≤
|
| 1888 |
+
≥
|
| 1889 |
+
⋅
|
| 1890 |
+
⋯
|
| 1891 |
+
█
|
| 1892 |
+
♪
|
| 1893 |
+
⟨
|
| 1894 |
+
⟩
|
| 1895 |
+
、
|
| 1896 |
+
。
|
| 1897 |
+
《
|
| 1898 |
+
》
|
| 1899 |
+
「
|
| 1900 |
+
」
|
| 1901 |
+
【
|
| 1902 |
+
】
|
| 1903 |
+
あ
|
| 1904 |
+
う
|
| 1905 |
+
え
|
| 1906 |
+
お
|
| 1907 |
+
か
|
| 1908 |
+
が
|
| 1909 |
+
き
|
| 1910 |
+
ぎ
|
| 1911 |
+
く
|
| 1912 |
+
ぐ
|
| 1913 |
+
け
|
| 1914 |
+
げ
|
| 1915 |
+
こ
|
| 1916 |
+
ご
|
| 1917 |
+
さ
|
| 1918 |
+
し
|
| 1919 |
+
じ
|
| 1920 |
+
す
|
| 1921 |
+
ず
|
| 1922 |
+
せ
|
| 1923 |
+
ぜ
|
| 1924 |
+
そ
|
| 1925 |
+
ぞ
|
| 1926 |
+
た
|
| 1927 |
+
だ
|
| 1928 |
+
ち
|
| 1929 |
+
っ
|
| 1930 |
+
つ
|
| 1931 |
+
で
|
| 1932 |
+
と
|
| 1933 |
+
ど
|
| 1934 |
+
な
|
| 1935 |
+
に
|
| 1936 |
+
ね
|
| 1937 |
+
の
|
| 1938 |
+
は
|
| 1939 |
+
ば
|
| 1940 |
+
ひ
|
| 1941 |
+
ぶ
|
| 1942 |
+
へ
|
| 1943 |
+
べ
|
| 1944 |
+
ま
|
| 1945 |
+
み
|
| 1946 |
+
む
|
| 1947 |
+
め
|
| 1948 |
+
も
|
| 1949 |
+
ゃ
|
| 1950 |
+
や
|
| 1951 |
+
ゆ
|
| 1952 |
+
ょ
|
| 1953 |
+
よ
|
| 1954 |
+
ら
|
| 1955 |
+
り
|
| 1956 |
+
る
|
| 1957 |
+
れ
|
| 1958 |
+
ろ
|
| 1959 |
+
わ
|
| 1960 |
+
を
|
| 1961 |
+
ん
|
| 1962 |
+
ァ
|
| 1963 |
+
ア
|
| 1964 |
+
ィ
|
| 1965 |
+
イ
|
| 1966 |
+
ウ
|
| 1967 |
+
ェ
|
| 1968 |
+
エ
|
| 1969 |
+
オ
|
| 1970 |
+
カ
|
| 1971 |
+
ガ
|
| 1972 |
+
キ
|
| 1973 |
+
ク
|
| 1974 |
+
ケ
|
| 1975 |
+
ゲ
|
| 1976 |
+
コ
|
| 1977 |
+
ゴ
|
| 1978 |
+
サ
|
| 1979 |
+
ザ
|
| 1980 |
+
シ
|
| 1981 |
+
ジ
|
| 1982 |
+
ス
|
| 1983 |
+
ズ
|
| 1984 |
+
セ
|
| 1985 |
+
ゾ
|
| 1986 |
+
タ
|
| 1987 |
+
ダ
|
| 1988 |
+
チ
|
| 1989 |
+
ッ
|
| 1990 |
+
ツ
|
| 1991 |
+
テ
|
| 1992 |
+
デ
|
| 1993 |
+
ト
|
| 1994 |
+
ド
|
| 1995 |
+
ナ
|
| 1996 |
+
ニ
|
| 1997 |
+
ネ
|
| 1998 |
+
ノ
|
| 1999 |
+
バ
|
| 2000 |
+
パ
|
| 2001 |
+
ビ
|
| 2002 |
+
ピ
|
| 2003 |
+
フ
|
| 2004 |
+
プ
|
| 2005 |
+
ヘ
|
| 2006 |
+
ベ
|
| 2007 |
+
ペ
|
| 2008 |
+
ホ
|
| 2009 |
+
ボ
|
| 2010 |
+
ポ
|
| 2011 |
+
マ
|
| 2012 |
+
ミ
|
| 2013 |
+
ム
|
| 2014 |
+
メ
|
| 2015 |
+
モ
|
| 2016 |
+
ャ
|
| 2017 |
+
ヤ
|
| 2018 |
+
ュ
|
| 2019 |
+
ユ
|
| 2020 |
+
ョ
|
| 2021 |
+
ヨ
|
| 2022 |
+
ラ
|
| 2023 |
+
リ
|
| 2024 |
+
ル
|
| 2025 |
+
レ
|
| 2026 |
+
ロ
|
| 2027 |
+
ワ
|
| 2028 |
+
ン
|
| 2029 |
+
・
|
| 2030 |
+
ー
|
| 2031 |
+
ㄋ
|
| 2032 |
+
ㄍ
|
| 2033 |
+
ㄎ
|
| 2034 |
+
ㄏ
|
| 2035 |
+
ㄓ
|
| 2036 |
+
ㄕ
|
| 2037 |
+
ㄚ
|
| 2038 |
+
ㄜ
|
| 2039 |
+
ㄟ
|
| 2040 |
+
ㄤ
|
| 2041 |
+
ㄥ
|
| 2042 |
+
ㄧ
|
| 2043 |
+
ㄱ
|
| 2044 |
+
ㄴ
|
| 2045 |
+
ㄷ
|
| 2046 |
+
ㄹ
|
| 2047 |
+
ㅁ
|
| 2048 |
+
ㅂ
|
| 2049 |
+
ㅅ
|
| 2050 |
+
ㅈ
|
| 2051 |
+
ㅍ
|
| 2052 |
+
ㅎ
|
| 2053 |
+
ㅏ
|
| 2054 |
+
ㅓ
|
| 2055 |
+
ㅗ
|
| 2056 |
+
ㅜ
|
| 2057 |
+
ㅡ
|
| 2058 |
+
ㅣ
|
| 2059 |
+
㗎
|
| 2060 |
+
가
|
| 2061 |
+
각
|
| 2062 |
+
간
|
| 2063 |
+
갈
|
| 2064 |
+
감
|
| 2065 |
+
갑
|
| 2066 |
+
갓
|
| 2067 |
+
갔
|
| 2068 |
+
강
|
| 2069 |
+
같
|
| 2070 |
+
개
|
| 2071 |
+
거
|
| 2072 |
+
건
|
| 2073 |
+
걸
|
| 2074 |
+
겁
|
| 2075 |
+
것
|
| 2076 |
+
겉
|
| 2077 |
+
게
|
| 2078 |
+
겠
|
| 2079 |
+
겨
|
| 2080 |
+
결
|
| 2081 |
+
겼
|
| 2082 |
+
경
|
| 2083 |
+
계
|
| 2084 |
+
고
|
| 2085 |
+
곤
|
| 2086 |
+
골
|
| 2087 |
+
곱
|
| 2088 |
+
공
|
| 2089 |
+
과
|
| 2090 |
+
관
|
| 2091 |
+
광
|
| 2092 |
+
교
|
| 2093 |
+
구
|
| 2094 |
+
국
|
| 2095 |
+
굴
|
| 2096 |
+
귀
|
| 2097 |
+
귄
|
| 2098 |
+
그
|
| 2099 |
+
근
|
| 2100 |
+
글
|
| 2101 |
+
금
|
| 2102 |
+
기
|
| 2103 |
+
긴
|
| 2104 |
+
길
|
| 2105 |
+
까
|
| 2106 |
+
깍
|
| 2107 |
+
깔
|
| 2108 |
+
깜
|
| 2109 |
+
깨
|
| 2110 |
+
께
|
| 2111 |
+
꼬
|
| 2112 |
+
꼭
|
| 2113 |
+
꽃
|
| 2114 |
+
꾸
|
| 2115 |
+
꿔
|
| 2116 |
+
끔
|
| 2117 |
+
끗
|
| 2118 |
+
끝
|
| 2119 |
+
끼
|
| 2120 |
+
나
|
| 2121 |
+
난
|
| 2122 |
+
날
|
| 2123 |
+
남
|
| 2124 |
+
납
|
| 2125 |
+
내
|
| 2126 |
+
냐
|
| 2127 |
+
냥
|
| 2128 |
+
너
|
| 2129 |
+
넘
|
| 2130 |
+
넣
|
| 2131 |
+
네
|
| 2132 |
+
녁
|
| 2133 |
+
년
|
| 2134 |
+
녕
|
| 2135 |
+
노
|
| 2136 |
+
녹
|
| 2137 |
+
놀
|
| 2138 |
+
누
|
| 2139 |
+
눈
|
| 2140 |
+
느
|
| 2141 |
+
는
|
| 2142 |
+
늘
|
| 2143 |
+
니
|
| 2144 |
+
님
|
| 2145 |
+
닙
|
| 2146 |
+
다
|
| 2147 |
+
닥
|
| 2148 |
+
단
|
| 2149 |
+
달
|
| 2150 |
+
닭
|
| 2151 |
+
당
|
| 2152 |
+
대
|
| 2153 |
+
더
|
| 2154 |
+
덕
|
| 2155 |
+
던
|
| 2156 |
+
덥
|
| 2157 |
+
데
|
| 2158 |
+
도
|
| 2159 |
+
독
|
| 2160 |
+
동
|
| 2161 |
+
돼
|
| 2162 |
+
됐
|
| 2163 |
+
되
|
| 2164 |
+
된
|
| 2165 |
+
될
|
| 2166 |
+
두
|
| 2167 |
+
둑
|
| 2168 |
+
둥
|
| 2169 |
+
드
|
| 2170 |
+
들
|
| 2171 |
+
등
|
| 2172 |
+
디
|
| 2173 |
+
따
|
| 2174 |
+
딱
|
| 2175 |
+
딸
|
| 2176 |
+
땅
|
| 2177 |
+
때
|
| 2178 |
+
떤
|
| 2179 |
+
떨
|
| 2180 |
+
떻
|
| 2181 |
+
또
|
| 2182 |
+
똑
|
| 2183 |
+
뚱
|
| 2184 |
+
뛰
|
| 2185 |
+
뜻
|
| 2186 |
+
띠
|
| 2187 |
+
라
|
| 2188 |
+
락
|
| 2189 |
+
란
|
| 2190 |
+
람
|
| 2191 |
+
랍
|
| 2192 |
+
랑
|
| 2193 |
+
래
|
| 2194 |
+
랜
|
| 2195 |
+
러
|
| 2196 |
+
런
|
| 2197 |
+
럼
|
| 2198 |
+
렇
|
| 2199 |
+
레
|
| 2200 |
+
려
|
| 2201 |
+
력
|
| 2202 |
+
렵
|
| 2203 |
+
렸
|
| 2204 |
+
로
|
| 2205 |
+
록
|
| 2206 |
+
롬
|
| 2207 |
+
루
|
| 2208 |
+
르
|
| 2209 |
+
른
|
| 2210 |
+
를
|
| 2211 |
+
름
|
| 2212 |
+
릉
|
| 2213 |
+
리
|
| 2214 |
+
릴
|
| 2215 |
+
림
|
| 2216 |
+
마
|
| 2217 |
+
막
|
| 2218 |
+
만
|
| 2219 |
+
많
|
| 2220 |
+
말
|
| 2221 |
+
맑
|
| 2222 |
+
맙
|
| 2223 |
+
맛
|
| 2224 |
+
매
|
| 2225 |
+
머
|
| 2226 |
+
먹
|
| 2227 |
+
멍
|
| 2228 |
+
메
|
| 2229 |
+
면
|
| 2230 |
+
명
|
| 2231 |
+
몇
|
| 2232 |
+
모
|
| 2233 |
+
목
|
| 2234 |
+
몸
|
| 2235 |
+
못
|
| 2236 |
+
무
|
| 2237 |
+
문
|
| 2238 |
+
물
|
| 2239 |
+
뭐
|
| 2240 |
+
뭘
|
| 2241 |
+
미
|
| 2242 |
+
민
|
| 2243 |
+
밌
|
| 2244 |
+
밑
|
| 2245 |
+
바
|
| 2246 |
+
박
|
| 2247 |
+
밖
|
| 2248 |
+
반
|
| 2249 |
+
받
|
| 2250 |
+
발
|
| 2251 |
+
밤
|
| 2252 |
+
밥
|
| 2253 |
+
방
|
| 2254 |
+
배
|
| 2255 |
+
백
|
| 2256 |
+
밸
|
| 2257 |
+
뱀
|
| 2258 |
+
버
|
| 2259 |
+
번
|
| 2260 |
+
벌
|
| 2261 |
+
벚
|
| 2262 |
+
베
|
| 2263 |
+
벼
|
| 2264 |
+
벽
|
| 2265 |
+
별
|
| 2266 |
+
병
|
| 2267 |
+
보
|
| 2268 |
+
복
|
| 2269 |
+
본
|
| 2270 |
+
볼
|
| 2271 |
+
봐
|
| 2272 |
+
봤
|
| 2273 |
+
부
|
| 2274 |
+
분
|
| 2275 |
+
불
|
| 2276 |
+
비
|
| 2277 |
+
빔
|
| 2278 |
+
빛
|
| 2279 |
+
빠
|
| 2280 |
+
빨
|
| 2281 |
+
뼈
|
| 2282 |
+
뽀
|
| 2283 |
+
뿅
|
| 2284 |
+
쁘
|
| 2285 |
+
사
|
| 2286 |
+
산
|
| 2287 |
+
살
|
| 2288 |
+
삼
|
| 2289 |
+
샀
|
| 2290 |
+
상
|
| 2291 |
+
새
|
| 2292 |
+
색
|
| 2293 |
+
생
|
| 2294 |
+
서
|
| 2295 |
+
선
|
| 2296 |
+
설
|
| 2297 |
+
섭
|
| 2298 |
+
섰
|
| 2299 |
+
성
|
| 2300 |
+
세
|
| 2301 |
+
셔
|
| 2302 |
+
션
|
| 2303 |
+
셨
|
| 2304 |
+
소
|
| 2305 |
+
속
|
| 2306 |
+
손
|
| 2307 |
+
송
|
| 2308 |
+
수
|
| 2309 |
+
숙
|
| 2310 |
+
순
|
| 2311 |
+
술
|
| 2312 |
+
숫
|
| 2313 |
+
숭
|
| 2314 |
+
숲
|
| 2315 |
+
쉬
|
| 2316 |
+
쉽
|
| 2317 |
+
스
|
| 2318 |
+
슨
|
| 2319 |
+
습
|
| 2320 |
+
슷
|
| 2321 |
+
시
|
| 2322 |
+
식
|
| 2323 |
+
신
|
| 2324 |
+
실
|
| 2325 |
+
싫
|
| 2326 |
+
심
|
| 2327 |
+
십
|
| 2328 |
+
싶
|
| 2329 |
+
싸
|
| 2330 |
+
써
|
| 2331 |
+
쓰
|
| 2332 |
+
쓴
|
| 2333 |
+
씌
|
| 2334 |
+
씨
|
| 2335 |
+
씩
|
| 2336 |
+
씬
|
| 2337 |
+
아
|
| 2338 |
+
악
|
| 2339 |
+
안
|
| 2340 |
+
않
|
| 2341 |
+
알
|
| 2342 |
+
야
|
| 2343 |
+
약
|
| 2344 |
+
얀
|
| 2345 |
+
양
|
| 2346 |
+
얘
|
| 2347 |
+
어
|
| 2348 |
+
언
|
| 2349 |
+
얼
|
| 2350 |
+
엄
|
| 2351 |
+
업
|
| 2352 |
+
없
|
| 2353 |
+
었
|
| 2354 |
+
엉
|
| 2355 |
+
에
|
| 2356 |
+
여
|
| 2357 |
+
역
|
| 2358 |
+
연
|
| 2359 |
+
염
|
| 2360 |
+
엽
|
| 2361 |
+
영
|
| 2362 |
+
옆
|
| 2363 |
+
예
|
| 2364 |
+
옛
|
| 2365 |
+
오
|
| 2366 |
+
온
|
| 2367 |
+
올
|
| 2368 |
+
옷
|
| 2369 |
+
옹
|
| 2370 |
+
와
|
| 2371 |
+
왔
|
| 2372 |
+
왜
|
| 2373 |
+
요
|
| 2374 |
+
욕
|
| 2375 |
+
용
|
| 2376 |
+
우
|
| 2377 |
+
운
|
| 2378 |
+
울
|
| 2379 |
+
웃
|
| 2380 |
+
워
|
| 2381 |
+
원
|
| 2382 |
+
월
|
| 2383 |
+
웠
|
| 2384 |
+
위
|
| 2385 |
+
윙
|
| 2386 |
+
유
|
| 2387 |
+
육
|
| 2388 |
+
윤
|
| 2389 |
+
으
|
| 2390 |
+
은
|
| 2391 |
+
을
|
| 2392 |
+
음
|
| 2393 |
+
응
|
| 2394 |
+
의
|
| 2395 |
+
이
|
| 2396 |
+
익
|
| 2397 |
+
인
|
| 2398 |
+
일
|
| 2399 |
+
읽
|
| 2400 |
+
임
|
| 2401 |
+
입
|
| 2402 |
+
있
|
| 2403 |
+
자
|
| 2404 |
+
작
|
| 2405 |
+
잔
|
| 2406 |
+
잖
|
| 2407 |
+
잘
|
| 2408 |
+
잡
|
| 2409 |
+
잤
|
| 2410 |
+
장
|
| 2411 |
+
재
|
| 2412 |
+
저
|
| 2413 |
+
전
|
| 2414 |
+
점
|
| 2415 |
+
정
|
| 2416 |
+
제
|
| 2417 |
+
져
|
| 2418 |
+
졌
|
| 2419 |
+
조
|
| 2420 |
+
족
|
| 2421 |
+
좀
|
| 2422 |
+
종
|
| 2423 |
+
좋
|
| 2424 |
+
죠
|
| 2425 |
+
주
|
| 2426 |
+
준
|
| 2427 |
+
줄
|
| 2428 |
+
중
|
| 2429 |
+
줘
|
| 2430 |
+
즈
|
| 2431 |
+
즐
|
| 2432 |
+
즘
|
| 2433 |
+
지
|
| 2434 |
+
진
|
| 2435 |
+
집
|
| 2436 |
+
짜
|
| 2437 |
+
짝
|
| 2438 |
+
쩌
|
| 2439 |
+
쪼
|
| 2440 |
+
쪽
|
| 2441 |
+
쫌
|
| 2442 |
+
쭈
|
| 2443 |
+
쯔
|
| 2444 |
+
찌
|
| 2445 |
+
찍
|
| 2446 |
+
차
|
| 2447 |
+
착
|
| 2448 |
+
찾
|
| 2449 |
+
책
|
| 2450 |
+
처
|
| 2451 |
+
천
|
| 2452 |
+
철
|
| 2453 |
+
체
|
| 2454 |
+
쳐
|
| 2455 |
+
쳤
|
| 2456 |
+
초
|
| 2457 |
+
촌
|
| 2458 |
+
추
|
| 2459 |
+
출
|
| 2460 |
+
춤
|
| 2461 |
+
춥
|
| 2462 |
+
춰
|
| 2463 |
+
치
|
| 2464 |
+
친
|
| 2465 |
+
칠
|
| 2466 |
+
침
|
| 2467 |
+
칩
|
| 2468 |
+
칼
|
| 2469 |
+
커
|
| 2470 |
+
켓
|
| 2471 |
+
코
|
| 2472 |
+
콩
|
| 2473 |
+
쿠
|
| 2474 |
+
퀴
|
| 2475 |
+
크
|
| 2476 |
+
큰
|
| 2477 |
+
큽
|
| 2478 |
+
키
|
| 2479 |
+
킨
|
| 2480 |
+
타
|
| 2481 |
+
태
|
| 2482 |
+
터
|
| 2483 |
+
턴
|
| 2484 |
+
털
|
| 2485 |
+
테
|
| 2486 |
+
토
|
| 2487 |
+
통
|
| 2488 |
+
투
|
| 2489 |
+
트
|
| 2490 |
+
특
|
| 2491 |
+
튼
|
| 2492 |
+
틀
|
| 2493 |
+
티
|
| 2494 |
+
팀
|
| 2495 |
+
파
|
| 2496 |
+
팔
|
| 2497 |
+
패
|
| 2498 |
+
페
|
| 2499 |
+
펜
|
| 2500 |
+
펭
|
| 2501 |
+
평
|
| 2502 |
+
포
|
| 2503 |
+
폭
|
| 2504 |
+
표
|
| 2505 |
+
품
|
| 2506 |
+
풍
|
| 2507 |
+
프
|
| 2508 |
+
플
|
| 2509 |
+
피
|
| 2510 |
+
필
|
| 2511 |
+
하
|
| 2512 |
+
학
|
| 2513 |
+
한
|
| 2514 |
+
할
|
| 2515 |
+
함
|
| 2516 |
+
합
|
| 2517 |
+
항
|
| 2518 |
+
해
|
| 2519 |
+
햇
|
| 2520 |
+
했
|
| 2521 |
+
행
|
| 2522 |
+
허
|
| 2523 |
+
험
|
| 2524 |
+
형
|
| 2525 |
+
혜
|
| 2526 |
+
호
|
| 2527 |
+
혼
|
| 2528 |
+
홀
|
| 2529 |
+
화
|
| 2530 |
+
회
|
| 2531 |
+
획
|
| 2532 |
+
후
|
| 2533 |
+
휴
|
| 2534 |
+
흐
|
| 2535 |
+
흔
|
| 2536 |
+
희
|
| 2537 |
+
히
|
| 2538 |
+
힘
|
| 2539 |
+
ﷺ
|
| 2540 |
+
ﷻ
|
| 2541 |
+
!
|
| 2542 |
+
,
|
| 2543 |
+
?
|
| 2544 |
+
�
|
| 2545 |
+
𠮶
|
2flow/models/downloads/F5TTS_v1_Base_no_zero_init/model_1250000.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:790d5b83e2afea3cc879fabfed58b2b4da214c882ef34513adfed82684a4c47f
|
| 3 |
+
size 1348435761
|
2flow/patch/__init__.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
from .baichuan.model import BaichuanForCausalLM
|
| 16 |
+
from .bert.model import (
|
| 17 |
+
BertForQuestionAnswering,
|
| 18 |
+
BertForSequenceClassification,
|
| 19 |
+
BertModel,
|
| 20 |
+
RobertaForQuestionAnswering,
|
| 21 |
+
RobertaForSequenceClassification,
|
| 22 |
+
RobertaModel,
|
| 23 |
+
)
|
| 24 |
+
from .bloom.model import BloomForCausalLM, BloomModel
|
| 25 |
+
from .chatglm.config import ChatGLMConfig
|
| 26 |
+
from .chatglm.model import ChatGLMForCausalLM, ChatGLMModel
|
| 27 |
+
from .cogvlm.config import CogVLMConfig
|
| 28 |
+
from .cogvlm.model import CogVLMForCausalLM
|
| 29 |
+
from .commandr.model import CohereForCausalLM
|
| 30 |
+
from .dbrx.config import DbrxConfig
|
| 31 |
+
from .dbrx.model import DbrxForCausalLM
|
| 32 |
+
from .deepseek_v1.model import DeepseekForCausalLM
|
| 33 |
+
from .deepseek_v2.model import DeepseekV2ForCausalLM
|
| 34 |
+
from .dit.model import DiT
|
| 35 |
+
from .eagle.model import EagleForCausalLM
|
| 36 |
+
from .enc_dec.model import DecoderModel, EncoderModel, WhisperEncoder
|
| 37 |
+
from .f5tts.model import F5TTS
|
| 38 |
+
from .falcon.config import FalconConfig
|
| 39 |
+
from .falcon.model import FalconForCausalLM, FalconModel
|
| 40 |
+
from .gemma.config import GEMMA2_ARCHITECTURE, GEMMA_ARCHITECTURE, GemmaConfig
|
| 41 |
+
from .gemma.model import GemmaForCausalLM
|
| 42 |
+
from .gpt.config import GPTConfig
|
| 43 |
+
from .gpt.model import GPTForCausalLM, GPTModel
|
| 44 |
+
from .gptj.config import GPTJConfig
|
| 45 |
+
from .gptj.model import GPTJForCausalLM, GPTJModel
|
| 46 |
+
from .gptneox.model import GPTNeoXForCausalLM, GPTNeoXModel
|
| 47 |
+
from .grok.model import GrokForCausalLM
|
| 48 |
+
from .llama.config import LLaMAConfig
|
| 49 |
+
from .llama.model import LLaMAForCausalLM, LLaMAModel
|
| 50 |
+
from .mamba.model import MambaForCausalLM
|
| 51 |
+
from .medusa.config import MedusaConfig
|
| 52 |
+
from .medusa.model import MedusaForCausalLm
|
| 53 |
+
from .mllama.model import MLLaMAModel
|
| 54 |
+
from .modeling_utils import PretrainedConfig, PretrainedModel, SpeculativeDecodingMode
|
| 55 |
+
from .mpt.model import MPTForCausalLM, MPTModel
|
| 56 |
+
from .nemotron_nas.model import DeciLMForCausalLM
|
| 57 |
+
from .opt.model import OPTForCausalLM, OPTModel
|
| 58 |
+
from .phi.model import PhiForCausalLM, PhiModel
|
| 59 |
+
from .phi3.model import Phi3ForCausalLM, Phi3Model
|
| 60 |
+
from .qwen.model import QWenForCausalLM
|
| 61 |
+
from .recurrentgemma.model import RecurrentGemmaForCausalLM
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
__all__ = [
|
| 65 |
+
"BertModel",
|
| 66 |
+
"BertForQuestionAnswering",
|
| 67 |
+
"BertForSequenceClassification",
|
| 68 |
+
"RobertaModel",
|
| 69 |
+
"RobertaForQuestionAnswering",
|
| 70 |
+
"RobertaForSequenceClassification",
|
| 71 |
+
"BloomModel",
|
| 72 |
+
"BloomForCausalLM",
|
| 73 |
+
"DiT",
|
| 74 |
+
"DeepseekForCausalLM",
|
| 75 |
+
"FalconConfig",
|
| 76 |
+
"DeepseekV2ForCausalLM",
|
| 77 |
+
"FalconForCausalLM",
|
| 78 |
+
"FalconModel",
|
| 79 |
+
"GPTConfig",
|
| 80 |
+
"GPTModel",
|
| 81 |
+
"GPTForCausalLM",
|
| 82 |
+
"OPTForCausalLM",
|
| 83 |
+
"OPTModel",
|
| 84 |
+
"LLaMAConfig",
|
| 85 |
+
"LLaMAForCausalLM",
|
| 86 |
+
"LLaMAModel",
|
| 87 |
+
"MedusaConfig",
|
| 88 |
+
"MedusaForCausalLm",
|
| 89 |
+
"GPTJConfig",
|
| 90 |
+
"GPTJModel",
|
| 91 |
+
"GPTJForCausalLM",
|
| 92 |
+
"GPTNeoXModel",
|
| 93 |
+
"GPTNeoXForCausalLM",
|
| 94 |
+
"PhiModel",
|
| 95 |
+
"PhiConfig",
|
| 96 |
+
"Phi3Model",
|
| 97 |
+
"Phi3Config",
|
| 98 |
+
"PhiForCausalLM",
|
| 99 |
+
"Phi3ForCausalLM",
|
| 100 |
+
"ChatGLMConfig",
|
| 101 |
+
"ChatGLMForCausalLM",
|
| 102 |
+
"ChatGLMModel",
|
| 103 |
+
"BaichuanForCausalLM",
|
| 104 |
+
"QWenConfigQWenForCausalLM",
|
| 105 |
+
"QWenModel",
|
| 106 |
+
"EncoderModel",
|
| 107 |
+
"DecoderModel",
|
| 108 |
+
"PretrainedConfig",
|
| 109 |
+
"PretrainedModel",
|
| 110 |
+
"WhisperEncoder",
|
| 111 |
+
"MambaForCausalLM",
|
| 112 |
+
"MambaConfig",
|
| 113 |
+
"MPTForCausalLM",
|
| 114 |
+
"MPTModel",
|
| 115 |
+
"SkyworkForCausalLM",
|
| 116 |
+
"GemmaConfig",
|
| 117 |
+
"GemmaForCausalLM",
|
| 118 |
+
"DbrxConfig",
|
| 119 |
+
"DbrxForCausalLM",
|
| 120 |
+
"RecurrentGemmaForCausalLM",
|
| 121 |
+
"CogVLMConfig",
|
| 122 |
+
"CogVLMForCausalLM",
|
| 123 |
+
"EagleForCausalLM",
|
| 124 |
+
"SpeculativeDecodingMode",
|
| 125 |
+
"CohereForCausalLM",
|
| 126 |
+
"MLLaMAModel",
|
| 127 |
+
"F5TTS",
|
| 128 |
+
]
|
| 129 |
+
|
| 130 |
+
MODEL_MAP = {
|
| 131 |
+
"GPT2LMHeadModel": GPTForCausalLM,
|
| 132 |
+
"GPT2LMHeadCustomModel": GPTForCausalLM,
|
| 133 |
+
"GPTBigCodeForCausalLM": GPTForCausalLM,
|
| 134 |
+
"Starcoder2ForCausalLM": GPTForCausalLM,
|
| 135 |
+
"FuyuForCausalLM": GPTForCausalLM,
|
| 136 |
+
"Kosmos2ForConditionalGeneration": GPTForCausalLM,
|
| 137 |
+
"JAISLMHeadModel": GPTForCausalLM,
|
| 138 |
+
"GPTForCausalLM": GPTForCausalLM,
|
| 139 |
+
"NemotronForCausalLM": GPTForCausalLM,
|
| 140 |
+
"OPTForCausalLM": OPTForCausalLM,
|
| 141 |
+
"BloomForCausalLM": BloomForCausalLM,
|
| 142 |
+
"RWForCausalLM": FalconForCausalLM,
|
| 143 |
+
"FalconForCausalLM": FalconForCausalLM,
|
| 144 |
+
"PhiForCausalLM": PhiForCausalLM,
|
| 145 |
+
"Phi3ForCausalLM": Phi3ForCausalLM,
|
| 146 |
+
"Phi3VForCausalLM": Phi3ForCausalLM,
|
| 147 |
+
"Phi3SmallForCausalLM": Phi3ForCausalLM,
|
| 148 |
+
"PhiMoEForCausalLM": Phi3ForCausalLM,
|
| 149 |
+
"MambaForCausalLM": MambaForCausalLM,
|
| 150 |
+
"GPTNeoXForCausalLM": GPTNeoXForCausalLM,
|
| 151 |
+
"GPTJForCausalLM": GPTJForCausalLM,
|
| 152 |
+
"MPTForCausalLM": MPTForCausalLM,
|
| 153 |
+
"GLMModel": ChatGLMForCausalLM,
|
| 154 |
+
"ChatGLMModel": ChatGLMForCausalLM,
|
| 155 |
+
"ChatGLMForCausalLM": ChatGLMForCausalLM,
|
| 156 |
+
"LlamaForCausalLM": LLaMAForCausalLM,
|
| 157 |
+
"ExaoneForCausalLM": LLaMAForCausalLM,
|
| 158 |
+
"MistralForCausalLM": LLaMAForCausalLM,
|
| 159 |
+
"MixtralForCausalLM": LLaMAForCausalLM,
|
| 160 |
+
"ArcticForCausalLM": LLaMAForCausalLM,
|
| 161 |
+
"Grok1ModelForCausalLM": GrokForCausalLM,
|
| 162 |
+
"InternLMForCausalLM": LLaMAForCausalLM,
|
| 163 |
+
"InternLM2ForCausalLM": LLaMAForCausalLM,
|
| 164 |
+
"MedusaForCausalLM": MedusaForCausalLm,
|
| 165 |
+
"BaichuanForCausalLM": BaichuanForCausalLM,
|
| 166 |
+
"BaiChuanForCausalLM": BaichuanForCausalLM,
|
| 167 |
+
"SkyworkForCausalLM": LLaMAForCausalLM,
|
| 168 |
+
GEMMA_ARCHITECTURE: GemmaForCausalLM,
|
| 169 |
+
GEMMA2_ARCHITECTURE: GemmaForCausalLM,
|
| 170 |
+
"QWenLMHeadModel": QWenForCausalLM,
|
| 171 |
+
"QWenForCausalLM": QWenForCausalLM,
|
| 172 |
+
"Qwen2ForCausalLM": QWenForCausalLM,
|
| 173 |
+
"Qwen2MoeForCausalLM": QWenForCausalLM,
|
| 174 |
+
"Qwen2ForSequenceClassification": QWenForCausalLM,
|
| 175 |
+
"Qwen2VLForConditionalGeneration": QWenForCausalLM,
|
| 176 |
+
"WhisperEncoder": WhisperEncoder,
|
| 177 |
+
"EncoderModel": EncoderModel,
|
| 178 |
+
"DecoderModel": DecoderModel,
|
| 179 |
+
"DbrxForCausalLM": DbrxForCausalLM,
|
| 180 |
+
"RecurrentGemmaForCausalLM": RecurrentGemmaForCausalLM,
|
| 181 |
+
"CogVLMForCausalLM": CogVLMForCausalLM,
|
| 182 |
+
"DiT": DiT,
|
| 183 |
+
"DeepseekForCausalLM": DeepseekForCausalLM,
|
| 184 |
+
"DeciLMForCausalLM": DeciLMForCausalLM,
|
| 185 |
+
"DeepseekV2ForCausalLM": DeepseekV2ForCausalLM,
|
| 186 |
+
"EagleForCausalLM": EagleForCausalLM,
|
| 187 |
+
"CohereForCausalLM": CohereForCausalLM,
|
| 188 |
+
"MllamaForConditionalGeneration": MLLaMAModel,
|
| 189 |
+
"BertForQuestionAnswering": BertForQuestionAnswering,
|
| 190 |
+
"BertForSequenceClassification": BertForSequenceClassification,
|
| 191 |
+
"BertModel": BertModel,
|
| 192 |
+
"RobertaModel": RobertaModel,
|
| 193 |
+
"RobertaForQuestionAnswering": RobertaForQuestionAnswering,
|
| 194 |
+
"RobertaForSequenceClassification": RobertaForSequenceClassification,
|
| 195 |
+
"F5TTS": F5TTS,
|
| 196 |
+
}
|
2flow/patch/f5tts/model.py
ADDED
|
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import sys
|
| 5 |
+
from collections import OrderedDict
|
| 6 |
+
|
| 7 |
+
import tensorrt as trt
|
| 8 |
+
from tensorrt_llm._common import default_net
|
| 9 |
+
|
| 10 |
+
from ..._utils import str_dtype_to_trt
|
| 11 |
+
from ...functional import Tensor, concat
|
| 12 |
+
from ...layers import Linear
|
| 13 |
+
from ...module import Module, ModuleList
|
| 14 |
+
from ...plugin import current_all_reduce_helper
|
| 15 |
+
from ..modeling_utils import PretrainedConfig, PretrainedModel
|
| 16 |
+
from .modules import AdaLayerNormZero_Final, ConvPositionEmbedding, DiTBlock, TimestepEmbedding
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
current_file_path = os.path.abspath(__file__)
|
| 20 |
+
parent_dir = os.path.dirname(current_file_path)
|
| 21 |
+
sys.path.append(parent_dir)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class InputEmbedding(Module):
|
| 25 |
+
def __init__(self, mel_dim, text_dim, out_dim):
|
| 26 |
+
super().__init__()
|
| 27 |
+
self.proj = Linear(mel_dim * 2 + text_dim, out_dim)
|
| 28 |
+
self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)
|
| 29 |
+
|
| 30 |
+
def forward(self, x, cond):
|
| 31 |
+
x = self.proj(concat([x, cond], dim=-1))
|
| 32 |
+
return self.conv_pos_embed(x) + x
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class F5TTS(PretrainedModel):
|
| 36 |
+
def __init__(self, config: PretrainedConfig):
|
| 37 |
+
super().__init__(config)
|
| 38 |
+
self.dtype = str_dtype_to_trt(config.dtype)
|
| 39 |
+
|
| 40 |
+
self.time_embed = TimestepEmbedding(config.hidden_size)
|
| 41 |
+
self.input_embed = InputEmbedding(config.mel_dim, config.text_dim, config.hidden_size)
|
| 42 |
+
|
| 43 |
+
self.dim = config.hidden_size
|
| 44 |
+
self.depth = config.num_hidden_layers
|
| 45 |
+
self.transformer_blocks = ModuleList(
|
| 46 |
+
[
|
| 47 |
+
DiTBlock(
|
| 48 |
+
dim=self.dim,
|
| 49 |
+
heads=config.num_attention_heads,
|
| 50 |
+
dim_head=config.dim_head,
|
| 51 |
+
ff_mult=config.ff_mult,
|
| 52 |
+
dropout=config.dropout,
|
| 53 |
+
)
|
| 54 |
+
for _ in range(self.depth)
|
| 55 |
+
]
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
self.norm_out = AdaLayerNormZero_Final(config.hidden_size) # final modulation
|
| 59 |
+
self.proj_out = Linear(config.hidden_size, config.mel_dim)
|
| 60 |
+
|
| 61 |
+
def forward(
|
| 62 |
+
self,
|
| 63 |
+
noise, # nosied input audio
|
| 64 |
+
cond, # masked cond audio
|
| 65 |
+
time, # time step
|
| 66 |
+
rope_cos,
|
| 67 |
+
rope_sin,
|
| 68 |
+
input_lengths,
|
| 69 |
+
scale=1.0,
|
| 70 |
+
):
|
| 71 |
+
t = self.time_embed(time)
|
| 72 |
+
x = self.input_embed(noise, cond)
|
| 73 |
+
for block in self.transformer_blocks:
|
| 74 |
+
x = block(x, t, rope_cos=rope_cos, rope_sin=rope_sin, input_lengths=input_lengths, scale=scale)
|
| 75 |
+
denoise = self.proj_out(self.norm_out(x, t))
|
| 76 |
+
denoise.mark_output("denoised", self.dtype)
|
| 77 |
+
return denoise
|
| 78 |
+
|
| 79 |
+
def prepare_inputs(self, **kwargs):
|
| 80 |
+
max_batch_size = kwargs["max_batch_size"]
|
| 81 |
+
batch_size_range = [2, 2, max_batch_size]
|
| 82 |
+
mel_size = 100
|
| 83 |
+
max_seq_len = 3000
|
| 84 |
+
num_frames_range = [200, 2 * max_seq_len, max_seq_len * max_batch_size]
|
| 85 |
+
hidden_size = 512
|
| 86 |
+
concat_feature_dim = mel_size + hidden_size
|
| 87 |
+
freq_embed_dim = 256
|
| 88 |
+
head_dim = 64
|
| 89 |
+
mapping = self.config.mapping
|
| 90 |
+
if mapping.tp_size > 1:
|
| 91 |
+
current_all_reduce_helper().set_workspace_tensor(mapping, 1)
|
| 92 |
+
if default_net().plugin_config.remove_input_padding:
|
| 93 |
+
noise = Tensor(
|
| 94 |
+
name="noise",
|
| 95 |
+
dtype=self.dtype,
|
| 96 |
+
shape=[-1, mel_size],
|
| 97 |
+
dim_range=OrderedDict(
|
| 98 |
+
[
|
| 99 |
+
("num_frames", [num_frames_range]),
|
| 100 |
+
("n_mels", [mel_size]),
|
| 101 |
+
]
|
| 102 |
+
),
|
| 103 |
+
)
|
| 104 |
+
cond = Tensor(
|
| 105 |
+
name="cond",
|
| 106 |
+
dtype=self.dtype,
|
| 107 |
+
shape=[-1, concat_feature_dim],
|
| 108 |
+
dim_range=OrderedDict(
|
| 109 |
+
[
|
| 110 |
+
("num_frames", [num_frames_range]),
|
| 111 |
+
("embeded_length", [concat_feature_dim]),
|
| 112 |
+
]
|
| 113 |
+
),
|
| 114 |
+
)
|
| 115 |
+
time = Tensor(
|
| 116 |
+
name="time",
|
| 117 |
+
dtype=self.dtype,
|
| 118 |
+
shape=[-1, freq_embed_dim],
|
| 119 |
+
dim_range=OrderedDict(
|
| 120 |
+
[
|
| 121 |
+
("num_frames", [num_frames_range]),
|
| 122 |
+
("freq_dim", [freq_embed_dim]),
|
| 123 |
+
]
|
| 124 |
+
),
|
| 125 |
+
)
|
| 126 |
+
rope_cos = Tensor(
|
| 127 |
+
name="rope_cos",
|
| 128 |
+
dtype=self.dtype,
|
| 129 |
+
shape=[-1, head_dim],
|
| 130 |
+
dim_range=OrderedDict(
|
| 131 |
+
[
|
| 132 |
+
("num_frames", [num_frames_range]),
|
| 133 |
+
("head_dim", [head_dim]),
|
| 134 |
+
]
|
| 135 |
+
),
|
| 136 |
+
)
|
| 137 |
+
rope_sin = Tensor(
|
| 138 |
+
name="rope_sin",
|
| 139 |
+
dtype=self.dtype,
|
| 140 |
+
shape=[-1, head_dim],
|
| 141 |
+
dim_range=OrderedDict(
|
| 142 |
+
[
|
| 143 |
+
("num_frames", [num_frames_range]),
|
| 144 |
+
("head_dim", [head_dim]),
|
| 145 |
+
]
|
| 146 |
+
),
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
else:
|
| 150 |
+
noise = Tensor(
|
| 151 |
+
name="noise",
|
| 152 |
+
dtype=self.dtype,
|
| 153 |
+
shape=[-1, -1, mel_size],
|
| 154 |
+
dim_range=OrderedDict(
|
| 155 |
+
[
|
| 156 |
+
("batch_size", [batch_size_range]),
|
| 157 |
+
("max_duratuion", [[100, max_seq_len // 2, max_seq_len]]),
|
| 158 |
+
("n_mels", [mel_size]),
|
| 159 |
+
]
|
| 160 |
+
),
|
| 161 |
+
)
|
| 162 |
+
cond = Tensor(
|
| 163 |
+
name="cond",
|
| 164 |
+
dtype=self.dtype,
|
| 165 |
+
shape=[-1, -1, concat_feature_dim],
|
| 166 |
+
dim_range=OrderedDict(
|
| 167 |
+
[
|
| 168 |
+
("batch_size", [batch_size_range]),
|
| 169 |
+
("max_duratuion", [[100, max_seq_len // 2, max_seq_len]]),
|
| 170 |
+
("embeded_length", [concat_feature_dim]),
|
| 171 |
+
]
|
| 172 |
+
),
|
| 173 |
+
)
|
| 174 |
+
time = Tensor(
|
| 175 |
+
name="time",
|
| 176 |
+
dtype=self.dtype,
|
| 177 |
+
shape=[-1, freq_embed_dim],
|
| 178 |
+
dim_range=OrderedDict(
|
| 179 |
+
[
|
| 180 |
+
("batch_size", [batch_size_range]),
|
| 181 |
+
("freq_dim", [freq_embed_dim]),
|
| 182 |
+
]
|
| 183 |
+
),
|
| 184 |
+
)
|
| 185 |
+
rope_cos = Tensor(
|
| 186 |
+
name="rope_cos",
|
| 187 |
+
dtype=self.dtype,
|
| 188 |
+
shape=[-1, -1, head_dim],
|
| 189 |
+
dim_range=OrderedDict(
|
| 190 |
+
[
|
| 191 |
+
("batch_size", [batch_size_range]),
|
| 192 |
+
("max_duratuion", [[100, max_seq_len // 2, max_seq_len]]),
|
| 193 |
+
("head_dim", [head_dim]),
|
| 194 |
+
]
|
| 195 |
+
),
|
| 196 |
+
)
|
| 197 |
+
rope_sin = Tensor(
|
| 198 |
+
name="rope_sin",
|
| 199 |
+
dtype=self.dtype,
|
| 200 |
+
shape=[-1, -1, head_dim],
|
| 201 |
+
dim_range=OrderedDict(
|
| 202 |
+
[
|
| 203 |
+
("batch_size", [batch_size_range]),
|
| 204 |
+
("max_duratuion", [[100, max_seq_len // 2, max_seq_len]]),
|
| 205 |
+
("head_dim", [head_dim]),
|
| 206 |
+
]
|
| 207 |
+
),
|
| 208 |
+
)
|
| 209 |
+
input_lengths = Tensor(
|
| 210 |
+
name="input_lengths",
|
| 211 |
+
dtype=trt.int32,
|
| 212 |
+
shape=[-1],
|
| 213 |
+
dim_range=OrderedDict([("batch_size", [batch_size_range])]),
|
| 214 |
+
)
|
| 215 |
+
return {
|
| 216 |
+
"noise": noise,
|
| 217 |
+
"cond": cond,
|
| 218 |
+
"time": time,
|
| 219 |
+
"rope_cos": rope_cos,
|
| 220 |
+
"rope_sin": rope_sin,
|
| 221 |
+
"input_lengths": input_lengths,
|
| 222 |
+
}
|
2flow/patch/f5tts/modules.py
ADDED
|
@@ -0,0 +1,447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import math
|
| 4 |
+
from typing import Optional
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from tensorrt_llm._common import default_net
|
| 10 |
+
|
| 11 |
+
from ..._utils import str_dtype_to_trt, trt_dtype_to_np
|
| 12 |
+
from ...functional import (
|
| 13 |
+
Tensor,
|
| 14 |
+
bert_attention,
|
| 15 |
+
cast,
|
| 16 |
+
chunk,
|
| 17 |
+
concat,
|
| 18 |
+
constant,
|
| 19 |
+
expand,
|
| 20 |
+
expand_dims,
|
| 21 |
+
expand_dims_like,
|
| 22 |
+
expand_mask,
|
| 23 |
+
gelu,
|
| 24 |
+
matmul,
|
| 25 |
+
permute,
|
| 26 |
+
shape,
|
| 27 |
+
silu,
|
| 28 |
+
slice,
|
| 29 |
+
softmax,
|
| 30 |
+
squeeze,
|
| 31 |
+
unsqueeze,
|
| 32 |
+
view,
|
| 33 |
+
)
|
| 34 |
+
from ...layers import ColumnLinear, Conv1d, LayerNorm, Linear, Mish, RowLinear
|
| 35 |
+
from ...module import Module
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class FeedForward(Module):
|
| 39 |
+
def __init__(self, dim, dim_out=None, mult=4, dropout=0.0):
|
| 40 |
+
super().__init__()
|
| 41 |
+
inner_dim = int(dim * mult)
|
| 42 |
+
dim_out = dim_out if dim_out is not None else dim
|
| 43 |
+
|
| 44 |
+
self.project_in = Linear(dim, inner_dim)
|
| 45 |
+
self.ff = Linear(inner_dim, dim_out)
|
| 46 |
+
|
| 47 |
+
def forward(self, x):
|
| 48 |
+
return self.ff(gelu(self.project_in(x)))
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class AdaLayerNormZero(Module):
|
| 52 |
+
def __init__(self, dim):
|
| 53 |
+
super().__init__()
|
| 54 |
+
|
| 55 |
+
self.linear = Linear(dim, dim * 6)
|
| 56 |
+
self.norm = LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 57 |
+
|
| 58 |
+
def forward(self, x, emb=None):
|
| 59 |
+
emb = self.linear(silu(emb))
|
| 60 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = chunk(emb, 6, dim=1)
|
| 61 |
+
x = self.norm(x)
|
| 62 |
+
ones = constant(np.ones(1, dtype=np.float32)).cast(x.dtype)
|
| 63 |
+
if default_net().plugin_config.remove_input_padding:
|
| 64 |
+
x = x * (ones + scale_msa) + shift_msa
|
| 65 |
+
else:
|
| 66 |
+
x = x * (ones + unsqueeze(scale_msa, 1)) + unsqueeze(shift_msa, 1)
|
| 67 |
+
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class AdaLayerNormZero_Final(Module):
|
| 71 |
+
def __init__(self, dim):
|
| 72 |
+
super().__init__()
|
| 73 |
+
|
| 74 |
+
self.linear = Linear(dim, dim * 2)
|
| 75 |
+
|
| 76 |
+
self.norm = LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 77 |
+
|
| 78 |
+
def forward(self, x, emb):
|
| 79 |
+
emb = self.linear(silu(emb))
|
| 80 |
+
scale, shift = chunk(emb, 2, dim=1)
|
| 81 |
+
ones = constant(np.ones(1, dtype=np.float32)).cast(x.dtype)
|
| 82 |
+
if default_net().plugin_config.remove_input_padding:
|
| 83 |
+
x = self.norm(x) * (ones + scale) + shift
|
| 84 |
+
else:
|
| 85 |
+
x = self.norm(x) * unsqueeze((ones + scale), 1)
|
| 86 |
+
x = x + unsqueeze(shift, 1)
|
| 87 |
+
return x
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
class ConvPositionEmbedding(Module):
|
| 91 |
+
def __init__(self, dim, kernel_size=31, groups=16):
|
| 92 |
+
super().__init__()
|
| 93 |
+
assert kernel_size % 2 != 0
|
| 94 |
+
self.conv1d1 = Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2)
|
| 95 |
+
self.conv1d2 = Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2)
|
| 96 |
+
self.mish = Mish()
|
| 97 |
+
|
| 98 |
+
def forward(self, x, mask=None): # noqa: F722
|
| 99 |
+
if default_net().plugin_config.remove_input_padding:
|
| 100 |
+
x = unsqueeze(x, 0)
|
| 101 |
+
x = permute(x, [0, 2, 1])
|
| 102 |
+
x = self.mish(self.conv1d2(self.mish(self.conv1d1(x))))
|
| 103 |
+
out = permute(x, [0, 2, 1])
|
| 104 |
+
if default_net().plugin_config.remove_input_padding:
|
| 105 |
+
out = squeeze(out, 0)
|
| 106 |
+
return out
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
class Attention(Module):
|
| 110 |
+
def __init__(
|
| 111 |
+
self,
|
| 112 |
+
processor: AttnProcessor,
|
| 113 |
+
dim: int,
|
| 114 |
+
heads: int = 16,
|
| 115 |
+
dim_head: int = 64,
|
| 116 |
+
dropout: float = 0.0,
|
| 117 |
+
context_dim: Optional[int] = None, # if not None -> joint attention
|
| 118 |
+
context_pre_only=None,
|
| 119 |
+
):
|
| 120 |
+
super().__init__()
|
| 121 |
+
|
| 122 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 123 |
+
raise ImportError("Attention equires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
| 124 |
+
|
| 125 |
+
self.processor = processor
|
| 126 |
+
|
| 127 |
+
self.dim = dim # hidden_size
|
| 128 |
+
self.heads = heads
|
| 129 |
+
self.inner_dim = dim_head * heads
|
| 130 |
+
self.dropout = dropout
|
| 131 |
+
self.attention_head_size = dim_head
|
| 132 |
+
self.context_dim = context_dim
|
| 133 |
+
self.context_pre_only = context_pre_only
|
| 134 |
+
self.tp_size = 1
|
| 135 |
+
self.num_attention_heads = heads // self.tp_size
|
| 136 |
+
self.num_attention_kv_heads = heads // self.tp_size # 8
|
| 137 |
+
self.dtype = str_dtype_to_trt("float32")
|
| 138 |
+
self.attention_hidden_size = self.attention_head_size * self.num_attention_heads
|
| 139 |
+
self.to_q = ColumnLinear(
|
| 140 |
+
dim,
|
| 141 |
+
self.tp_size * self.num_attention_heads * self.attention_head_size,
|
| 142 |
+
bias=True,
|
| 143 |
+
dtype=self.dtype,
|
| 144 |
+
tp_group=None,
|
| 145 |
+
tp_size=self.tp_size,
|
| 146 |
+
)
|
| 147 |
+
self.to_k = ColumnLinear(
|
| 148 |
+
dim,
|
| 149 |
+
self.tp_size * self.num_attention_heads * self.attention_head_size,
|
| 150 |
+
bias=True,
|
| 151 |
+
dtype=self.dtype,
|
| 152 |
+
tp_group=None,
|
| 153 |
+
tp_size=self.tp_size,
|
| 154 |
+
)
|
| 155 |
+
self.to_v = ColumnLinear(
|
| 156 |
+
dim,
|
| 157 |
+
self.tp_size * self.num_attention_heads * self.attention_head_size,
|
| 158 |
+
bias=True,
|
| 159 |
+
dtype=self.dtype,
|
| 160 |
+
tp_group=None,
|
| 161 |
+
tp_size=self.tp_size,
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
if self.context_dim is not None:
|
| 165 |
+
self.to_k_c = Linear(context_dim, self.inner_dim)
|
| 166 |
+
self.to_v_c = Linear(context_dim, self.inner_dim)
|
| 167 |
+
if self.context_pre_only is not None:
|
| 168 |
+
self.to_q_c = Linear(context_dim, self.inner_dim)
|
| 169 |
+
|
| 170 |
+
self.to_out = RowLinear(
|
| 171 |
+
self.tp_size * self.num_attention_heads * self.attention_head_size,
|
| 172 |
+
dim,
|
| 173 |
+
bias=True,
|
| 174 |
+
dtype=self.dtype,
|
| 175 |
+
tp_group=None,
|
| 176 |
+
tp_size=self.tp_size,
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
if self.context_pre_only is not None and not self.context_pre_only:
|
| 180 |
+
self.to_out_c = Linear(self.inner_dim, dim)
|
| 181 |
+
|
| 182 |
+
def forward(
|
| 183 |
+
self,
|
| 184 |
+
x, # noised input x
|
| 185 |
+
rope_cos,
|
| 186 |
+
rope_sin,
|
| 187 |
+
input_lengths,
|
| 188 |
+
c=None, # context c
|
| 189 |
+
scale=1.0,
|
| 190 |
+
rope=None,
|
| 191 |
+
c_rope=None, # rotary position embedding for c
|
| 192 |
+
) -> torch.Tensor:
|
| 193 |
+
if c is not None:
|
| 194 |
+
return self.processor(self, x, c=c, input_lengths=input_lengths, scale=scale, rope=rope, c_rope=c_rope)
|
| 195 |
+
else:
|
| 196 |
+
return self.processor(
|
| 197 |
+
self, x, rope_cos=rope_cos, rope_sin=rope_sin, input_lengths=input_lengths, scale=scale
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def rotate_every_two_3dim(tensor: Tensor) -> Tensor:
|
| 202 |
+
shape_tensor = concat(
|
| 203 |
+
[shape(tensor, i) / 2 if i == (tensor.ndim() - 1) else shape(tensor, i) for i in range(tensor.ndim())]
|
| 204 |
+
)
|
| 205 |
+
if default_net().plugin_config.remove_input_padding:
|
| 206 |
+
assert tensor.ndim() == 2
|
| 207 |
+
x1 = slice(tensor, [0, 0], shape_tensor, [1, 2])
|
| 208 |
+
x2 = slice(tensor, [0, 1], shape_tensor, [1, 2])
|
| 209 |
+
x1 = expand_dims(x1, 2)
|
| 210 |
+
x2 = expand_dims(x2, 2)
|
| 211 |
+
zero = constant(np.ascontiguousarray(np.zeros([1], dtype=trt_dtype_to_np(tensor.dtype))))
|
| 212 |
+
x2 = zero - x2
|
| 213 |
+
x = concat([x2, x1], 2)
|
| 214 |
+
out = view(x, concat([shape(x, 0), shape(x, 1) * 2]))
|
| 215 |
+
else:
|
| 216 |
+
assert tensor.ndim() == 3
|
| 217 |
+
|
| 218 |
+
x1 = slice(tensor, [0, 0, 0], shape_tensor, [1, 1, 2])
|
| 219 |
+
x2 = slice(tensor, [0, 0, 1], shape_tensor, [1, 1, 2])
|
| 220 |
+
x1 = expand_dims(x1, 3)
|
| 221 |
+
x2 = expand_dims(x2, 3)
|
| 222 |
+
zero = constant(np.ascontiguousarray(np.zeros([1], dtype=trt_dtype_to_np(tensor.dtype))))
|
| 223 |
+
x2 = zero - x2
|
| 224 |
+
x = concat([x2, x1], 3)
|
| 225 |
+
out = view(x, concat([shape(x, 0), shape(x, 1), shape(x, 2) * 2]))
|
| 226 |
+
|
| 227 |
+
return out
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
# def apply_rotary_pos_emb_3dim(x, rope_cos, rope_sin):
|
| 231 |
+
# if default_net().plugin_config.remove_input_padding:
|
| 232 |
+
# rot_dim = shape(rope_cos, -1) # 64
|
| 233 |
+
# new_t_shape = concat([shape(x, 0), rot_dim]) # (-1, 64)
|
| 234 |
+
# x_ = slice(x, [0, 0], new_t_shape, [1, 1])
|
| 235 |
+
# end_dim = shape(x, -1) - shape(rope_cos, -1)
|
| 236 |
+
# new_t_unrotated_shape = concat([shape(x, 0), end_dim]) # (2, -1, 960)
|
| 237 |
+
# x_unrotated = slice(x, concat([0, rot_dim]), new_t_unrotated_shape, [1, 1])
|
| 238 |
+
# out = concat([x_ * rope_cos + rotate_every_two_3dim(x_) * rope_sin, x_unrotated], dim=-1)
|
| 239 |
+
# else:
|
| 240 |
+
# rot_dim = shape(rope_cos, 2) # 64
|
| 241 |
+
# new_t_shape = concat([shape(x, 0), shape(x, 1), rot_dim]) # (2, -1, 64)
|
| 242 |
+
# x_ = slice(x, [0, 0, 0], new_t_shape, [1, 1, 1])
|
| 243 |
+
# end_dim = shape(x, 2) - shape(rope_cos, 2)
|
| 244 |
+
# new_t_unrotated_shape = concat([shape(x, 0), shape(x, 1), end_dim]) # (2, -1, 960)
|
| 245 |
+
# x_unrotated = slice(x, concat([0, 0, rot_dim]), new_t_unrotated_shape, [1, 1, 1])
|
| 246 |
+
# out = concat([x_ * rope_cos + rotate_every_two_3dim(x_) * rope_sin, x_unrotated], dim=-1)
|
| 247 |
+
# return out
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
def apply_rotary_pos_emb_3dim(x, rope_cos, rope_sin):
|
| 251 |
+
"""
|
| 252 |
+
Apply RoPE for each block (like 64 dims) across all heads.
|
| 253 |
+
Supports both normal and remove_input_padding=True mode.
|
| 254 |
+
"""
|
| 255 |
+
if default_net().plugin_config.remove_input_padding:
|
| 256 |
+
# For [N, D] input
|
| 257 |
+
full_dim = shape(x, 1)
|
| 258 |
+
block_size = shape(rope_cos, 1)
|
| 259 |
+
out_blocks = []
|
| 260 |
+
for i in range(16):
|
| 261 |
+
start = i * 64
|
| 262 |
+
curr_shape = concat([shape(x, 0), block_size])
|
| 263 |
+
x_block = slice(x, [0, start], curr_shape, [1, 1])
|
| 264 |
+
cos_block = slice(rope_cos, [0, start], curr_shape, [1, 1])
|
| 265 |
+
sin_block = slice(rope_sin, [0, start], curr_shape, [1, 1])
|
| 266 |
+
rotated = rotate_every_two_3dim(x_block)
|
| 267 |
+
block_out = x_block * cos_block + rotated * sin_block
|
| 268 |
+
out_blocks.append(block_out)
|
| 269 |
+
out = concat(out_blocks, dim=-1)
|
| 270 |
+
else:
|
| 271 |
+
# For [B, N, D] input
|
| 272 |
+
pieces = []
|
| 273 |
+
rot_dim = shape(rope_cos, 2)
|
| 274 |
+
full_dim = shape(x, 2)
|
| 275 |
+
new_t_shape = concat([shape(x, 0), shape(x, 1), rot_dim])
|
| 276 |
+
for i in range(16):
|
| 277 |
+
x_slice = slice(x, [0, 0, i*64], new_t_shape, [1, 1, 1])
|
| 278 |
+
rotated_slice = x_slice * rope_cos + rotate_every_two_3dim(x_slice) * rope_sin
|
| 279 |
+
pieces.append(rotated_slice)
|
| 280 |
+
out = concat(pieces, dim=-1)
|
| 281 |
+
|
| 282 |
+
return out
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
class AttnProcessor:
|
| 286 |
+
def __init__(self):
|
| 287 |
+
pass
|
| 288 |
+
|
| 289 |
+
def __call__(
|
| 290 |
+
self,
|
| 291 |
+
attn,
|
| 292 |
+
x, # noised input x
|
| 293 |
+
rope_cos,
|
| 294 |
+
rope_sin,
|
| 295 |
+
input_lengths,
|
| 296 |
+
scale=1.0,
|
| 297 |
+
rope=None,
|
| 298 |
+
) -> torch.FloatTensor:
|
| 299 |
+
query = attn.to_q(x)
|
| 300 |
+
key = attn.to_k(x)
|
| 301 |
+
value = attn.to_v(x)
|
| 302 |
+
# k,v,q all (2,1226,1024)
|
| 303 |
+
query = apply_rotary_pos_emb_3dim(query, rope_cos, rope_sin)
|
| 304 |
+
key = apply_rotary_pos_emb_3dim(key, rope_cos, rope_sin)
|
| 305 |
+
|
| 306 |
+
# attention
|
| 307 |
+
inner_dim = key.shape[-1]
|
| 308 |
+
norm_factor = math.sqrt(attn.attention_head_size)
|
| 309 |
+
q_scaling = 1.0 / norm_factor
|
| 310 |
+
mask = None
|
| 311 |
+
if not default_net().plugin_config.remove_input_padding:
|
| 312 |
+
N = shape(x, 1)
|
| 313 |
+
B = shape(x, 0)
|
| 314 |
+
seq_len_2d = concat([1, N])
|
| 315 |
+
max_position_embeddings = 4096
|
| 316 |
+
# create position ids
|
| 317 |
+
position_ids_buffer = constant(np.expand_dims(np.arange(max_position_embeddings).astype(np.int32), 0))
|
| 318 |
+
tmp_position_ids = slice(position_ids_buffer, starts=[0, 0], sizes=seq_len_2d)
|
| 319 |
+
tmp_position_ids = expand(tmp_position_ids, concat([B, N])) # BxL
|
| 320 |
+
tmp_input_lengths = unsqueeze(input_lengths, 1) # Bx1
|
| 321 |
+
tmp_input_lengths = expand(tmp_input_lengths, concat([B, N])) # BxL
|
| 322 |
+
mask = tmp_position_ids < tmp_input_lengths # BxL
|
| 323 |
+
mask = mask.cast("int32")
|
| 324 |
+
|
| 325 |
+
if default_net().plugin_config.bert_attention_plugin:
|
| 326 |
+
qkv = concat([query, key, value], dim=-1)
|
| 327 |
+
# TRT plugin mode
|
| 328 |
+
assert input_lengths is not None
|
| 329 |
+
if default_net().plugin_config.remove_input_padding:
|
| 330 |
+
qkv = qkv.view(concat([-1, 3 * inner_dim]))
|
| 331 |
+
max_input_length = constant(
|
| 332 |
+
np.zeros(
|
| 333 |
+
[
|
| 334 |
+
2048,
|
| 335 |
+
],
|
| 336 |
+
dtype=np.int32,
|
| 337 |
+
)
|
| 338 |
+
)
|
| 339 |
+
else:
|
| 340 |
+
max_input_length = None
|
| 341 |
+
context = bert_attention(
|
| 342 |
+
qkv,
|
| 343 |
+
input_lengths,
|
| 344 |
+
attn.num_attention_heads,
|
| 345 |
+
attn.attention_head_size,
|
| 346 |
+
q_scaling=q_scaling,
|
| 347 |
+
max_input_length=max_input_length,
|
| 348 |
+
)
|
| 349 |
+
else:
|
| 350 |
+
assert not default_net().plugin_config.remove_input_padding
|
| 351 |
+
|
| 352 |
+
def transpose_for_scores(x):
|
| 353 |
+
new_x_shape = concat([shape(x, 0), shape(x, 1), attn.num_attention_heads, attn.attention_head_size])
|
| 354 |
+
|
| 355 |
+
y = x.view(new_x_shape)
|
| 356 |
+
y = y.transpose(1, 2)
|
| 357 |
+
return y
|
| 358 |
+
|
| 359 |
+
def transpose_for_scores_k(x):
|
| 360 |
+
new_x_shape = concat([shape(x, 0), shape(x, 1), attn.num_attention_heads, attn.attention_head_size])
|
| 361 |
+
|
| 362 |
+
y = x.view(new_x_shape)
|
| 363 |
+
y = y.permute([0, 2, 3, 1])
|
| 364 |
+
return y
|
| 365 |
+
|
| 366 |
+
query = transpose_for_scores(query)
|
| 367 |
+
key = transpose_for_scores_k(key)
|
| 368 |
+
value = transpose_for_scores(value)
|
| 369 |
+
|
| 370 |
+
attention_scores = matmul(query, key, use_fp32_acc=False)
|
| 371 |
+
|
| 372 |
+
if mask is not None:
|
| 373 |
+
attention_mask = expand_mask(mask, shape(query, 2))
|
| 374 |
+
attention_mask = cast(attention_mask, attention_scores.dtype)
|
| 375 |
+
attention_scores = attention_scores + attention_mask
|
| 376 |
+
|
| 377 |
+
attention_probs = softmax(attention_scores, dim=-1)
|
| 378 |
+
|
| 379 |
+
context = matmul(attention_probs, value, use_fp32_acc=False).transpose(1, 2)
|
| 380 |
+
context = context.view(concat([shape(context, 0), shape(context, 1), attn.attention_hidden_size]))
|
| 381 |
+
context = attn.to_out(context)
|
| 382 |
+
if mask is not None:
|
| 383 |
+
mask = mask.view(concat([shape(mask, 0), shape(mask, 1), 1]))
|
| 384 |
+
mask = expand_dims_like(mask, context)
|
| 385 |
+
mask = cast(mask, context.dtype)
|
| 386 |
+
context = context * mask
|
| 387 |
+
return context
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
# DiT Block
|
| 391 |
+
class DiTBlock(Module):
|
| 392 |
+
def __init__(self, dim, heads, dim_head, ff_mult=2, dropout=0.1):
|
| 393 |
+
super().__init__()
|
| 394 |
+
|
| 395 |
+
self.attn_norm = AdaLayerNormZero(dim)
|
| 396 |
+
self.attn = Attention(
|
| 397 |
+
processor=AttnProcessor(),
|
| 398 |
+
dim=dim,
|
| 399 |
+
heads=heads,
|
| 400 |
+
dim_head=dim_head,
|
| 401 |
+
dropout=dropout,
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
self.ff_norm = LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 405 |
+
self.ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout)
|
| 406 |
+
|
| 407 |
+
def forward(
|
| 408 |
+
self, x, t, rope_cos, rope_sin, input_lengths, scale=1.0, rope=ModuleNotFoundError
|
| 409 |
+
): # x: noised input, t: time embedding
|
| 410 |
+
# pre-norm & modulation for attention input
|
| 411 |
+
norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t)
|
| 412 |
+
# attention
|
| 413 |
+
# norm ----> (2,1226,1024)
|
| 414 |
+
attn_output = self.attn(x=norm, rope_cos=rope_cos, rope_sin=rope_sin, input_lengths=input_lengths, scale=scale)
|
| 415 |
+
|
| 416 |
+
# process attention output for input x
|
| 417 |
+
if default_net().plugin_config.remove_input_padding:
|
| 418 |
+
x = x + gate_msa * attn_output
|
| 419 |
+
else:
|
| 420 |
+
x = x + unsqueeze(gate_msa, 1) * attn_output
|
| 421 |
+
ones = constant(np.ones(1, dtype=np.float32)).cast(x.dtype)
|
| 422 |
+
if default_net().plugin_config.remove_input_padding:
|
| 423 |
+
norm = self.ff_norm(x) * (ones + scale_mlp) + shift_mlp
|
| 424 |
+
else:
|
| 425 |
+
norm = self.ff_norm(x) * (ones + unsqueeze(scale_mlp, 1)) + unsqueeze(shift_mlp, 1)
|
| 426 |
+
# norm = self.ff_norm(x) * (ones + scale_mlp) + shift_mlp
|
| 427 |
+
ff_output = self.ff(norm)
|
| 428 |
+
if default_net().plugin_config.remove_input_padding:
|
| 429 |
+
x = x + gate_mlp * ff_output
|
| 430 |
+
else:
|
| 431 |
+
x = x + unsqueeze(gate_mlp, 1) * ff_output
|
| 432 |
+
|
| 433 |
+
return x
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
class TimestepEmbedding(Module):
|
| 437 |
+
def __init__(self, dim, freq_embed_dim=256, dtype=None):
|
| 438 |
+
super().__init__()
|
| 439 |
+
# self.time_embed = SinusPositionEmbedding(freq_embed_dim)
|
| 440 |
+
self.mlp1 = Linear(freq_embed_dim, dim, bias=True, dtype=dtype)
|
| 441 |
+
self.mlp2 = Linear(dim, dim, bias=True, dtype=dtype)
|
| 442 |
+
|
| 443 |
+
def forward(self, timestep):
|
| 444 |
+
t_freq = self.mlp1(timestep)
|
| 445 |
+
t_freq = silu(t_freq)
|
| 446 |
+
t_emb = self.mlp2(t_freq)
|
| 447 |
+
return t_emb
|
2flow/requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
conv-stft
|
| 2 |
+
vocos
|
| 3 |
+
safetensors
|
| 4 |
+
tensorrt_llm
|
| 5 |
+
onnxscript
|
2flow/scripts/build.sh
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
docker build -t tired:lastest .
|
| 2 |
+
|
2flow/scripts/f5/build_engine.sh
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
trtllm-build \
|
| 2 |
+
--checkpoint_dir ./models/pre_engine/tts \
|
| 3 |
+
--max_batch_size 8 \
|
| 4 |
+
--output_dir ./models/engine/tts \
|
| 5 |
+
--remove_input_padding "disable"
|
2flow/scripts/f5/fix_lib.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import shutil
|
| 2 |
+
import tensorrt_llm
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
|
| 5 |
+
trtllm_path = Path(tensorrt_llm.__file__).parent
|
| 6 |
+
target_dir = trtllm_path / "models"
|
| 7 |
+
|
| 8 |
+
print(f"TensorRT-LLM path: {trtllm_path}")
|
| 9 |
+
print(f"Target models directory: {target_dir}")
|
| 10 |
+
|
| 11 |
+
target_dir.mkdir(parents=True, exist_ok=True)
|
| 12 |
+
|
| 13 |
+
patch_dir = Path("./patch")
|
| 14 |
+
|
| 15 |
+
patch_files = list(patch_dir.glob('*'))
|
| 16 |
+
if patch_files:
|
| 17 |
+
print(f"Copying {len(patch_files)} patch file(s) to tensorrt_llm/models")
|
| 18 |
+
|
| 19 |
+
for patch_file in patch_files:
|
| 20 |
+
target_path = target_dir / patch_file.name
|
| 21 |
+
if patch_file.is_file():
|
| 22 |
+
shutil.copy2(patch_file, target_path)
|
| 23 |
+
print(f" Copied: {patch_file.name}")
|
| 24 |
+
elif patch_file.is_dir():
|
| 25 |
+
if target_path.exists():
|
| 26 |
+
shutil.rmtree(target_path)
|
| 27 |
+
shutil.copytree(patch_file, target_path)
|
| 28 |
+
print(f" Copied directory: {patch_file.name}")
|
| 29 |
+
|
| 30 |
+
print(f"✓ Patch files copied successfully")
|
| 31 |
+
else:
|
| 32 |
+
print(f"⚠ No patch files found in {patch_dir}")
|
2flow/scripts/f5/pre_build_engine.sh
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
python3 -m utils.tts.convert_checkpoint \
|
| 2 |
+
--timm_ckpt ./models/downloads/F5TTS_v1_Base/model_1250000.safetensors \
|
| 3 |
+
--output_dir ./models/pre_engine/tts \
|
| 4 |
+
--model_name F5TTS_v1_Base
|
2flow/scripts/init.sh
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
docker run -it --rm \
|
| 2 |
+
--gpus all \
|
| 3 |
+
-v /mnt/hoang.dinh/code/2flow:/workspace/2flow \
|
| 4 |
+
-w /workspace/2flow \
|
| 5 |
+
tired:lastest \
|
| 6 |
+
bash
|
2flow/scripts/vocoder/build_engine.sh
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
bash scripts/vocoder/export_vocos_trt.sh \
|
| 2 |
+
./models/pre_engine/tts/vocos_vocoder.onnx \
|
| 3 |
+
./models/engine/tts/vocos_vocoder.plan
|
2flow/scripts/vocoder/export_vocos_trt.sh
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
TRTEXEC="/usr/src/tensorrt/bin/trtexec"
|
| 17 |
+
|
| 18 |
+
ONNX_PATH=$1
|
| 19 |
+
ENGINE_PATH=$2
|
| 20 |
+
echo "ONNX_PATH: $ONNX_PATH"
|
| 21 |
+
echo "ENGINE_PATH: $ENGINE_PATH"
|
| 22 |
+
PRECISION="fp32"
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
MIN_BATCH_SIZE=1
|
| 26 |
+
OPT_BATCH_SIZE=1
|
| 27 |
+
MAX_BATCH_SIZE=8
|
| 28 |
+
|
| 29 |
+
MIN_INPUT_LENGTH=1
|
| 30 |
+
OPT_INPUT_LENGTH=1000
|
| 31 |
+
MAX_INPUT_LENGTH=3000
|
| 32 |
+
|
| 33 |
+
MEL_MIN_SHAPE="${MIN_BATCH_SIZE}x100x${MIN_INPUT_LENGTH}"
|
| 34 |
+
MEL_OPT_SHAPE="${OPT_BATCH_SIZE}x100x${OPT_INPUT_LENGTH}"
|
| 35 |
+
MEL_MAX_SHAPE="${MAX_BATCH_SIZE}x100x${MAX_INPUT_LENGTH}"
|
| 36 |
+
|
| 37 |
+
${TRTEXEC} \
|
| 38 |
+
--minShapes="mel:${MEL_MIN_SHAPE}" \
|
| 39 |
+
--optShapes="mel:${MEL_OPT_SHAPE}" \
|
| 40 |
+
--maxShapes="mel:${MEL_MAX_SHAPE}" \
|
| 41 |
+
--onnx=${ONNX_PATH} \
|
| 42 |
+
--saveEngine=${ENGINE_PATH}
|
| 43 |
+
|
2flow/scripts/vocoder/pre_build_engine.sh
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
python3 -m utils.tts.export_vocoder_to_onnx \
|
| 2 |
+
--vocoder vocos \
|
| 3 |
+
--output-path ./models/pre_engine/tts/vocos_vocoder.onnx
|
2flow/services/triton/f5_tts_triton_server/f5_tts/1/f5_tts_trtllm.py
ADDED
|
@@ -0,0 +1,486 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import os
|
| 3 |
+
import time
|
| 4 |
+
from functools import wraps
|
| 5 |
+
from typing import List, Optional
|
| 6 |
+
|
| 7 |
+
import safetensors.torch
|
| 8 |
+
import tensorrt as trt
|
| 9 |
+
import tensorrt_llm
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
from tensorrt_llm._utils import str_dtype_to_torch, trt_dtype_to_torch
|
| 14 |
+
from tensorrt_llm.logger import logger
|
| 15 |
+
from tensorrt_llm.runtime.session import Session
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def remove_tensor_padding(input_tensor, input_tensor_lengths=None):
|
| 19 |
+
# Audio tensor case: batch, seq_len, feature_len
|
| 20 |
+
# position_ids case: batch, seq_len
|
| 21 |
+
assert input_tensor_lengths is not None, "input_tensor_lengths must be provided for 3D input_tensor"
|
| 22 |
+
|
| 23 |
+
# Initialize a list to collect valid sequences
|
| 24 |
+
valid_sequences = []
|
| 25 |
+
|
| 26 |
+
for i in range(input_tensor.shape[0]):
|
| 27 |
+
valid_length = input_tensor_lengths[i]
|
| 28 |
+
valid_sequences.append(input_tensor[i, :valid_length])
|
| 29 |
+
|
| 30 |
+
# Concatenate all valid sequences along the batch dimension
|
| 31 |
+
output_tensor = torch.cat(valid_sequences, dim=0).contiguous()
|
| 32 |
+
return output_tensor
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
# class TextEmbedding(nn.Module):
|
| 36 |
+
# def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2, precompute_max_pos=4096):
|
| 37 |
+
# super().__init__()
|
| 38 |
+
# self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
|
| 39 |
+
# self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, precompute_max_pos), persistent=False)
|
| 40 |
+
# self.text_blocks = nn.Sequential(*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)])
|
| 41 |
+
|
| 42 |
+
# def forward(self, text):
|
| 43 |
+
# # only keep tensors with value not -1
|
| 44 |
+
# text_mask = text != -1
|
| 45 |
+
# text_pad_cut_off_index = text_mask.sum(dim=1).max()
|
| 46 |
+
|
| 47 |
+
# text = text[:, :text_pad_cut_off_index]
|
| 48 |
+
# text = self.text_embed(text)
|
| 49 |
+
# text = text + self.freqs_cis[: text.shape[1], :]
|
| 50 |
+
# for block in self.text_blocks:
|
| 51 |
+
# text = block(text)
|
| 52 |
+
# # padding text to the original length
|
| 53 |
+
# # text shape: B,seq_len,C
|
| 54 |
+
# # pad at the second dimension
|
| 55 |
+
# text = F.pad(text, (0, 0, 0, text_mask.shape[1] - text.shape[1], 0, 0), value=0)
|
| 56 |
+
# return text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class TextEmbedding(nn.Module):
|
| 60 |
+
def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2, precompute_max_pos=4096):
|
| 61 |
+
super().__init__()
|
| 62 |
+
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
|
| 63 |
+
self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, precompute_max_pos), persistent=False)
|
| 64 |
+
self.text_blocks = nn.Sequential(*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)])
|
| 65 |
+
|
| 66 |
+
def forward(self, text):
|
| 67 |
+
# only keep tensors with value not -1
|
| 68 |
+
text_mask = text != -1
|
| 69 |
+
text_pad_cut_off_index = text_mask.sum(dim=1).max()
|
| 70 |
+
|
| 71 |
+
text_mask_cutoff = text == 0
|
| 72 |
+
text = text[:, :text_pad_cut_off_index]
|
| 73 |
+
text = self.text_embed(text)
|
| 74 |
+
text = text + self.freqs_cis[:text.shape[1], :]
|
| 75 |
+
text = text.masked_fill(text_mask_cutoff.unsqueeze(-1).expand(-1, -1, text.size(-1)), 0.0)
|
| 76 |
+
for block in self.text_blocks:
|
| 77 |
+
text = block(text)
|
| 78 |
+
text = text.masked_fill(text_mask_cutoff.unsqueeze(-1).expand(-1, -1, text.size(-1)), 0.0)
|
| 79 |
+
|
| 80 |
+
# padding text back to original length
|
| 81 |
+
text = F.pad(text, (0, 0, 0, text_mask.shape[1] - text.shape[1], 0, 0), value=0)
|
| 82 |
+
|
| 83 |
+
return text
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class GRN(nn.Module):
|
| 87 |
+
def __init__(self, dim):
|
| 88 |
+
super().__init__()
|
| 89 |
+
self.gamma = nn.Parameter(torch.zeros(1, 1, dim))
|
| 90 |
+
self.beta = nn.Parameter(torch.zeros(1, 1, dim))
|
| 91 |
+
|
| 92 |
+
def forward(self, x):
|
| 93 |
+
Gx = torch.norm(x, p=2, dim=1, keepdim=True)
|
| 94 |
+
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
|
| 95 |
+
return self.gamma * (x * Nx) + self.beta + x
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class ConvNeXtV2Block(nn.Module):
|
| 99 |
+
def __init__(
|
| 100 |
+
self,
|
| 101 |
+
dim: int,
|
| 102 |
+
intermediate_dim: int,
|
| 103 |
+
dilation: int = 1,
|
| 104 |
+
):
|
| 105 |
+
super().__init__()
|
| 106 |
+
padding = (dilation * (7 - 1)) // 2
|
| 107 |
+
self.dwconv = nn.Conv1d(
|
| 108 |
+
dim, dim, kernel_size=7, padding=padding, groups=dim, dilation=dilation
|
| 109 |
+
) # depthwise conv
|
| 110 |
+
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
| 111 |
+
self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers
|
| 112 |
+
self.act = nn.GELU()
|
| 113 |
+
self.grn = GRN(intermediate_dim)
|
| 114 |
+
self.pwconv2 = nn.Linear(intermediate_dim, dim)
|
| 115 |
+
|
| 116 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 117 |
+
residual = x
|
| 118 |
+
x = x.transpose(1, 2) # b n d -> b d n
|
| 119 |
+
x = self.dwconv(x)
|
| 120 |
+
x = x.transpose(1, 2) # b d n -> b n d
|
| 121 |
+
x = self.norm(x)
|
| 122 |
+
x = self.pwconv1(x)
|
| 123 |
+
x = self.act(x)
|
| 124 |
+
x = self.grn(x)
|
| 125 |
+
x = self.pwconv2(x)
|
| 126 |
+
return residual + x
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, theta_rescale_factor=1.0):
|
| 130 |
+
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
| 131 |
+
# has some connection to NTK literature
|
| 132 |
+
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
| 133 |
+
# https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py
|
| 134 |
+
theta *= theta_rescale_factor ** (dim / (dim - 2))
|
| 135 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
| 136 |
+
t = torch.arange(end, device=freqs.device) # type: ignore
|
| 137 |
+
freqs = torch.outer(t, freqs).float() # type: ignore
|
| 138 |
+
freqs_cos = torch.cos(freqs) # real part
|
| 139 |
+
freqs_sin = torch.sin(freqs) # imaginary part
|
| 140 |
+
return torch.cat([freqs_cos, freqs_sin], dim=-1)
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def load_checkpoint(ckpt_path, use_ema=True):
|
| 144 |
+
# Load checkpoint based on file extension
|
| 145 |
+
if ckpt_path.endswith('.safetensors'):
|
| 146 |
+
print(f"Loading safetensors checkpoint from {ckpt_path}")
|
| 147 |
+
checkpoint = safetensors.torch.load_file(ckpt_path)
|
| 148 |
+
# For safetensors, keys are already flattened, check structure
|
| 149 |
+
if use_ema:
|
| 150 |
+
# Check if keys contain ema_model_state_dict prefix
|
| 151 |
+
if any(k.startswith("ema_model_state_dict.") for k in checkpoint.keys()):
|
| 152 |
+
dict_state = {
|
| 153 |
+
k.replace("ema_model_state_dict.", "").replace("ema_model.", ""): v
|
| 154 |
+
for k, v in checkpoint.items()
|
| 155 |
+
if k.startswith("ema_model_state_dict.") and "initted" not in k and "step" not in k
|
| 156 |
+
}
|
| 157 |
+
# Check if keys contain ema_model prefix directly
|
| 158 |
+
elif any(k.startswith("ema_model.") for k in checkpoint.keys()):
|
| 159 |
+
dict_state = {
|
| 160 |
+
k.replace("ema_model.", ""): v
|
| 161 |
+
for k, v in checkpoint.items()
|
| 162 |
+
if k.startswith("ema_model.") and "initted" not in k and "step" not in k
|
| 163 |
+
}
|
| 164 |
+
else:
|
| 165 |
+
# Keys are already in the expected format
|
| 166 |
+
dict_state = checkpoint
|
| 167 |
+
else:
|
| 168 |
+
dict_state = checkpoint
|
| 169 |
+
else:
|
| 170 |
+
print(f"Loading PyTorch checkpoint from {ckpt_path}")
|
| 171 |
+
checkpoint = torch.load(ckpt_path, weights_only=True)
|
| 172 |
+
if use_ema:
|
| 173 |
+
checkpoint["model_state_dict"] = {
|
| 174 |
+
k.replace("ema_model.", ""): v
|
| 175 |
+
for k, v in checkpoint["ema_model_state_dict"].items()
|
| 176 |
+
if k not in ["initted", "step"]
|
| 177 |
+
}
|
| 178 |
+
dict_state = checkpoint["model_state_dict"]
|
| 179 |
+
|
| 180 |
+
text_embed_dict = {}
|
| 181 |
+
for key in dict_state.keys():
|
| 182 |
+
# transformer.text_embed.text_embed.weight -> text_embed.weight
|
| 183 |
+
if "text_embed" in key:
|
| 184 |
+
text_embed_dict[key.replace("transformer.text_embed.", "")] = dict_state[key]
|
| 185 |
+
return text_embed_dict
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
class F5TTS(object):
|
| 189 |
+
def __init__(
|
| 190 |
+
self,
|
| 191 |
+
config,
|
| 192 |
+
debug_mode=True,
|
| 193 |
+
stream: Optional[torch.cuda.Stream] = None,
|
| 194 |
+
tllm_model_dir: Optional[str] = None,
|
| 195 |
+
model_path: Optional[str] = None,
|
| 196 |
+
vocab_size: Optional[int] = None,
|
| 197 |
+
):
|
| 198 |
+
self.dtype = config["pretrained_config"]["dtype"]
|
| 199 |
+
|
| 200 |
+
rank = tensorrt_llm.mpi_rank()
|
| 201 |
+
world_size = config["pretrained_config"]["mapping"]["world_size"]
|
| 202 |
+
cp_size = config["pretrained_config"]["mapping"]["cp_size"]
|
| 203 |
+
tp_size = config["pretrained_config"]["mapping"]["tp_size"]
|
| 204 |
+
pp_size = config["pretrained_config"]["mapping"]["pp_size"]
|
| 205 |
+
assert pp_size == 1
|
| 206 |
+
self.mapping = tensorrt_llm.Mapping(
|
| 207 |
+
world_size=world_size, rank=rank, cp_size=cp_size, tp_size=tp_size, pp_size=1, gpus_per_node=1
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
local_rank = rank % self.mapping.gpus_per_node
|
| 211 |
+
self.device = torch.device(f"cuda:{local_rank}")
|
| 212 |
+
|
| 213 |
+
torch.cuda.set_device(self.device)
|
| 214 |
+
|
| 215 |
+
self.stream = stream
|
| 216 |
+
if self.stream is None:
|
| 217 |
+
self.stream = torch.cuda.Stream(self.device)
|
| 218 |
+
torch.cuda.set_stream(self.stream)
|
| 219 |
+
|
| 220 |
+
engine_file = os.path.join(tllm_model_dir, f"rank{rank}.engine")
|
| 221 |
+
logger.info(f"Loading engine from {engine_file}")
|
| 222 |
+
with open(engine_file, "rb") as f:
|
| 223 |
+
engine_buffer = f.read()
|
| 224 |
+
|
| 225 |
+
assert engine_buffer is not None
|
| 226 |
+
|
| 227 |
+
self.session = Session.from_serialized_engine(engine_buffer)
|
| 228 |
+
|
| 229 |
+
self.debug_mode = debug_mode
|
| 230 |
+
|
| 231 |
+
self.inputs = {}
|
| 232 |
+
self.outputs = {}
|
| 233 |
+
self.buffer_allocated = False
|
| 234 |
+
|
| 235 |
+
expected_tensor_names = ["noise", "cond", "time", "rope_cos", "rope_sin", "input_lengths", "denoised"]
|
| 236 |
+
|
| 237 |
+
found_tensor_names = [self.session.engine.get_tensor_name(i) for i in range(self.session.engine.num_io_tensors)]
|
| 238 |
+
if not self.debug_mode and set(expected_tensor_names) != set(found_tensor_names):
|
| 239 |
+
logger.error(
|
| 240 |
+
f"The following expected tensors are not found: {set(expected_tensor_names).difference(set(found_tensor_names))}"
|
| 241 |
+
)
|
| 242 |
+
logger.error(
|
| 243 |
+
f"Those tensors in engine are not expected: {set(found_tensor_names).difference(set(expected_tensor_names))}"
|
| 244 |
+
)
|
| 245 |
+
logger.error(f"Expected tensor names: {expected_tensor_names}")
|
| 246 |
+
logger.error(f"Found tensor names: {found_tensor_names}")
|
| 247 |
+
raise RuntimeError("Tensor names in engine are not the same as expected.")
|
| 248 |
+
if self.debug_mode:
|
| 249 |
+
self.debug_tensors = list(set(found_tensor_names) - set(expected_tensor_names))
|
| 250 |
+
|
| 251 |
+
self.max_mel_len = 4096
|
| 252 |
+
self.text_embedding = TextEmbedding(
|
| 253 |
+
text_num_embeds=vocab_size, text_dim=512, conv_layers=4, precompute_max_pos=self.max_mel_len
|
| 254 |
+
).to(self.device)
|
| 255 |
+
self.text_embedding.load_state_dict(load_checkpoint(model_path), strict=True)
|
| 256 |
+
|
| 257 |
+
self.target_audio_sample_rate = 24000
|
| 258 |
+
self.target_rms = 0.15 # target rms for audio
|
| 259 |
+
self.n_fft = 1024
|
| 260 |
+
self.win_length = 1024
|
| 261 |
+
self.hop_length = 256
|
| 262 |
+
self.n_mel_channels = 100
|
| 263 |
+
# self.max_mel_len = 3000
|
| 264 |
+
self.head_dim = 64
|
| 265 |
+
self.base_rescale_factor = 1.0
|
| 266 |
+
self.interpolation_factor = 1.0
|
| 267 |
+
base = 10000.0 * self.base_rescale_factor ** (self.head_dim / (self.head_dim - 2))
|
| 268 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.head_dim, 2).float() / self.head_dim))
|
| 269 |
+
freqs = torch.outer(torch.arange(self.max_mel_len, dtype=torch.float32), inv_freq) / self.interpolation_factor
|
| 270 |
+
self.freqs = freqs.repeat_interleave(2, dim=-1).unsqueeze(0)
|
| 271 |
+
self.rope_cos = self.freqs.cos().half()
|
| 272 |
+
self.rope_sin = self.freqs.sin().half()
|
| 273 |
+
self.nfe_steps = 16
|
| 274 |
+
t = torch.linspace(0, 1, self.nfe_steps + 1, dtype=torch.float32)
|
| 275 |
+
time_step = t + (-1.0) * (torch.cos(torch.pi * 0.5 * t) - 1 + t)
|
| 276 |
+
delta_t = torch.diff(time_step)
|
| 277 |
+
# WAR: hard coding 256 here
|
| 278 |
+
tmp_dim = 256
|
| 279 |
+
time_expand = torch.zeros((1, self.nfe_steps, tmp_dim), dtype=torch.float32)
|
| 280 |
+
half_dim = tmp_dim // 2
|
| 281 |
+
emb_factor = math.log(10000) / (half_dim - 1)
|
| 282 |
+
emb_factor = 1000.0 * torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb_factor)
|
| 283 |
+
for i in range(self.nfe_steps):
|
| 284 |
+
emb = time_step[i] * emb_factor
|
| 285 |
+
time_expand[:, i, :] = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
| 286 |
+
self.time_expand = time_expand.to(self.device)
|
| 287 |
+
self.delta_t = torch.cat((delta_t, delta_t), dim=0).contiguous().to(self.device)
|
| 288 |
+
|
| 289 |
+
def _tensor_dtype(self, name):
|
| 290 |
+
# return torch dtype given tensor name for convenience
|
| 291 |
+
dtype = trt_dtype_to_torch(self.session.engine.get_tensor_dtype(name))
|
| 292 |
+
return dtype
|
| 293 |
+
|
| 294 |
+
def _setup(self, batch_size, seq_len):
|
| 295 |
+
for i in range(self.session.engine.num_io_tensors):
|
| 296 |
+
name = self.session.engine.get_tensor_name(i)
|
| 297 |
+
if self.session.engine.get_tensor_mode(name) == trt.TensorIOMode.OUTPUT:
|
| 298 |
+
shape = list(self.session.engine.get_tensor_shape(name))
|
| 299 |
+
shape[0] = batch_size
|
| 300 |
+
shape[1] = seq_len
|
| 301 |
+
self.outputs[name] = torch.empty(shape, dtype=self._tensor_dtype(name), device=self.device)
|
| 302 |
+
|
| 303 |
+
self.buffer_allocated = True
|
| 304 |
+
|
| 305 |
+
def cuda_stream_guard(func):
|
| 306 |
+
"""Sync external stream and set current stream to the one bound to the session. Reset on exit."""
|
| 307 |
+
|
| 308 |
+
@wraps(func)
|
| 309 |
+
def wrapper(self, *args, **kwargs):
|
| 310 |
+
external_stream = torch.cuda.current_stream()
|
| 311 |
+
if external_stream != self.stream:
|
| 312 |
+
external_stream.synchronize()
|
| 313 |
+
torch.cuda.set_stream(self.stream)
|
| 314 |
+
ret = func(self, *args, **kwargs)
|
| 315 |
+
if external_stream != self.stream:
|
| 316 |
+
self.stream.synchronize()
|
| 317 |
+
torch.cuda.set_stream(external_stream)
|
| 318 |
+
return ret
|
| 319 |
+
|
| 320 |
+
return wrapper
|
| 321 |
+
|
| 322 |
+
@cuda_stream_guard
|
| 323 |
+
def forward(
|
| 324 |
+
self,
|
| 325 |
+
noise: torch.Tensor,
|
| 326 |
+
cond: torch.Tensor,
|
| 327 |
+
time_expand: torch.Tensor,
|
| 328 |
+
rope_cos: torch.Tensor,
|
| 329 |
+
rope_sin: torch.Tensor,
|
| 330 |
+
input_lengths: torch.Tensor,
|
| 331 |
+
delta_t: torch.Tensor,
|
| 332 |
+
use_perf: bool = False,
|
| 333 |
+
):
|
| 334 |
+
if use_perf:
|
| 335 |
+
torch.cuda.nvtx.range_push("flow matching")
|
| 336 |
+
cfg_strength = 2.0
|
| 337 |
+
batch_size = noise.shape[0]
|
| 338 |
+
half_batch = batch_size // 2
|
| 339 |
+
noise_half = noise[:half_batch] # Store the initial half of noise
|
| 340 |
+
|
| 341 |
+
input_type = str_dtype_to_torch(self.dtype)
|
| 342 |
+
|
| 343 |
+
# Keep a copy of the initial tensors
|
| 344 |
+
cond = cond.to(input_type)
|
| 345 |
+
rope_cos = rope_cos.to(input_type)
|
| 346 |
+
rope_sin = rope_sin.to(input_type)
|
| 347 |
+
input_lengths = input_lengths.to(str_dtype_to_torch("int32"))
|
| 348 |
+
|
| 349 |
+
# Instead of iteratively updating noise within a single model context,
|
| 350 |
+
# we'll do a single forward pass for each iteration with fresh context setup
|
| 351 |
+
for i in range(self.nfe_steps):
|
| 352 |
+
# Re-setup the buffers for clean execution
|
| 353 |
+
self._setup(batch_size, noise.shape[1])
|
| 354 |
+
if not self.buffer_allocated:
|
| 355 |
+
raise RuntimeError("Buffer not allocated, please call setup first!")
|
| 356 |
+
|
| 357 |
+
# Re-create combined noises for this iteration
|
| 358 |
+
current_noise = torch.cat([noise_half, noise_half], dim=0).to(input_type)
|
| 359 |
+
|
| 360 |
+
# Get time step for this iteration
|
| 361 |
+
current_time = time_expand[:, i].to(input_type)
|
| 362 |
+
|
| 363 |
+
# Create fresh input dictionary for this iteration
|
| 364 |
+
current_inputs = {
|
| 365 |
+
"noise": current_noise,
|
| 366 |
+
"cond": cond,
|
| 367 |
+
"time": current_time,
|
| 368 |
+
"rope_cos": rope_cos,
|
| 369 |
+
"rope_sin": rope_sin,
|
| 370 |
+
"input_lengths": input_lengths,
|
| 371 |
+
}
|
| 372 |
+
|
| 373 |
+
# Update inputs and set shapes
|
| 374 |
+
self.inputs.clear() # Clear previous inputs
|
| 375 |
+
self.inputs.update(**current_inputs)
|
| 376 |
+
self.session.set_shapes(self.inputs)
|
| 377 |
+
|
| 378 |
+
if use_perf:
|
| 379 |
+
torch.cuda.nvtx.range_push(f"execute {i}")
|
| 380 |
+
ok = self.session.run(self.inputs, self.outputs, self.stream.cuda_stream)
|
| 381 |
+
assert ok, "Failed to execute model"
|
| 382 |
+
# self.session.context.execute_async_v3(self.stream.cuda_stream)
|
| 383 |
+
if use_perf:
|
| 384 |
+
torch.cuda.nvtx.range_pop()
|
| 385 |
+
# Process results
|
| 386 |
+
t_scale = delta_t[i].unsqueeze(0).to(input_type)
|
| 387 |
+
|
| 388 |
+
# Extract predictions
|
| 389 |
+
pred_cond = self.outputs["denoised"][:half_batch]
|
| 390 |
+
pred_uncond = self.outputs["denoised"][half_batch:]
|
| 391 |
+
|
| 392 |
+
# Apply classifier-free guidance with safeguards
|
| 393 |
+
guidance = pred_cond + (pred_cond - pred_uncond) * cfg_strength
|
| 394 |
+
# Calculate update for noise
|
| 395 |
+
noise_half = noise_half + guidance * t_scale
|
| 396 |
+
if use_perf:
|
| 397 |
+
torch.cuda.nvtx.range_pop()
|
| 398 |
+
return noise_half
|
| 399 |
+
|
| 400 |
+
def sample(
|
| 401 |
+
self,
|
| 402 |
+
text_pad_sequence: torch.Tensor,
|
| 403 |
+
ref_mel_batch: torch.Tensor,
|
| 404 |
+
ref_mel_len_batch: torch.Tensor,
|
| 405 |
+
estimated_reference_target_mel_len: List[int],
|
| 406 |
+
remove_input_padding: bool = False,
|
| 407 |
+
use_perf: bool = False,
|
| 408 |
+
):
|
| 409 |
+
if use_perf:
|
| 410 |
+
torch.cuda.nvtx.range_push("text embedding")
|
| 411 |
+
batch = text_pad_sequence.shape[0]
|
| 412 |
+
max_seq_len = ref_mel_batch.shape[1]
|
| 413 |
+
|
| 414 |
+
text_pad_sequence_drop = torch.cat(
|
| 415 |
+
(text_pad_sequence, torch.zeros((1, text_pad_sequence.shape[1]), dtype=torch.int32).to(self.device)), dim=0
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
text_embedding_drop_list = []
|
| 419 |
+
for i in range(batch + 1):
|
| 420 |
+
text_embedding_drop_list.append(self.text_embedding(text_pad_sequence_drop[i].unsqueeze(0).to(self.device)))
|
| 421 |
+
text_embedding_drop_condition = torch.cat(text_embedding_drop_list, dim=0)
|
| 422 |
+
|
| 423 |
+
text_embedding = text_embedding_drop_condition[:-1]
|
| 424 |
+
# text_embedding_drop B,T,C batch should be the same
|
| 425 |
+
text_embedding_drop = text_embedding_drop_condition[-1].unsqueeze(0).repeat(batch, 1, 1)
|
| 426 |
+
|
| 427 |
+
noise = torch.randn_like(ref_mel_batch).to(self.device)
|
| 428 |
+
rope_cos = self.rope_cos[:, :max_seq_len, :].float().repeat(batch, 1, 1)
|
| 429 |
+
rope_sin = self.rope_sin[:, :max_seq_len, :].float().repeat(batch, 1, 1)
|
| 430 |
+
|
| 431 |
+
cat_mel_text = torch.cat((ref_mel_batch, text_embedding), dim=-1)
|
| 432 |
+
cat_mel_text_drop = torch.cat(
|
| 433 |
+
(
|
| 434 |
+
torch.zeros((batch, max_seq_len, self.n_mel_channels), dtype=torch.float32).to(self.device),
|
| 435 |
+
text_embedding_drop,
|
| 436 |
+
),
|
| 437 |
+
dim=-1,
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
time_expand = self.time_expand.repeat(2 * batch, 1, 1).contiguous()
|
| 441 |
+
|
| 442 |
+
# Convert estimated_reference_target_mel_len to tensor
|
| 443 |
+
input_lengths = torch.tensor(estimated_reference_target_mel_len, dtype=torch.int32)
|
| 444 |
+
|
| 445 |
+
# combine above along the batch dimension
|
| 446 |
+
inputs = {
|
| 447 |
+
"noise": torch.cat((noise, noise), dim=0).contiguous(),
|
| 448 |
+
"cond": torch.cat((cat_mel_text, cat_mel_text_drop), dim=0).contiguous(),
|
| 449 |
+
"time_expand": time_expand,
|
| 450 |
+
"rope_cos": torch.cat((rope_cos, rope_cos), dim=0).contiguous(),
|
| 451 |
+
"rope_sin": torch.cat((rope_sin, rope_sin), dim=0).contiguous(),
|
| 452 |
+
"input_lengths": torch.cat((input_lengths, input_lengths), dim=0).contiguous(),
|
| 453 |
+
"delta_t": self.delta_t,
|
| 454 |
+
}
|
| 455 |
+
if use_perf and remove_input_padding:
|
| 456 |
+
torch.cuda.nvtx.range_push("remove input padding")
|
| 457 |
+
if remove_input_padding:
|
| 458 |
+
max_seq_len = inputs["cond"].shape[1]
|
| 459 |
+
inputs["noise"] = remove_tensor_padding(inputs["noise"], inputs["input_lengths"])
|
| 460 |
+
inputs["cond"] = remove_tensor_padding(inputs["cond"], inputs["input_lengths"])
|
| 461 |
+
# for time_expand, convert from B,D to B,T,D by repeat
|
| 462 |
+
inputs["time_expand"] = inputs["time_expand"].unsqueeze(1).repeat(1, max_seq_len, 1, 1)
|
| 463 |
+
inputs["time_expand"] = remove_tensor_padding(inputs["time_expand"], inputs["input_lengths"])
|
| 464 |
+
inputs["rope_cos"] = remove_tensor_padding(inputs["rope_cos"], inputs["input_lengths"])
|
| 465 |
+
inputs["rope_sin"] = remove_tensor_padding(inputs["rope_sin"], inputs["input_lengths"])
|
| 466 |
+
if use_perf and remove_input_padding:
|
| 467 |
+
torch.cuda.nvtx.range_pop()
|
| 468 |
+
for key in inputs:
|
| 469 |
+
inputs[key] = inputs[key].to(self.device)
|
| 470 |
+
if use_perf:
|
| 471 |
+
torch.cuda.nvtx.range_pop()
|
| 472 |
+
start_time = time.time()
|
| 473 |
+
denoised = self.forward(**inputs, use_perf=use_perf)
|
| 474 |
+
cost_time = time.time() - start_time
|
| 475 |
+
if use_perf and remove_input_padding:
|
| 476 |
+
torch.cuda.nvtx.range_push("remove input padding output")
|
| 477 |
+
if remove_input_padding:
|
| 478 |
+
denoised_list = []
|
| 479 |
+
start_idx = 0
|
| 480 |
+
for i in range(batch):
|
| 481 |
+
denoised_list.append(denoised[start_idx : start_idx + inputs["input_lengths"][i]])
|
| 482 |
+
start_idx += inputs["input_lengths"][i]
|
| 483 |
+
if use_perf and remove_input_padding:
|
| 484 |
+
torch.cuda.nvtx.range_pop()
|
| 485 |
+
return denoised_list, cost_time
|
| 486 |
+
return denoised, cost_time
|
2flow/services/triton/f5_tts_triton_server/f5_tts/1/model.py
ADDED
|
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Redistribution and use in source and binary forms, with or without
|
| 4 |
+
# modification, are permitted provided that the following conditions
|
| 5 |
+
# are met:
|
| 6 |
+
# * Redistributions of source code must retain the above copyright
|
| 7 |
+
# notice, this list of conditions and the following disclaimer.
|
| 8 |
+
# * Redistributions in binary form must reproduce the above copyright
|
| 9 |
+
# notice, this list of conditions and the following disclaimer in the
|
| 10 |
+
# documentation and/or other materials provided with the distribution.
|
| 11 |
+
# * Neither the name of NVIDIA CORPORATION nor the names of its
|
| 12 |
+
# contributors may be used to endorse or promote products derived
|
| 13 |
+
# from this software without specific prior written permission.
|
| 14 |
+
#
|
| 15 |
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
| 16 |
+
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| 17 |
+
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
| 18 |
+
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
| 19 |
+
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
| 20 |
+
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
| 21 |
+
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
| 22 |
+
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
| 23 |
+
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| 24 |
+
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| 25 |
+
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| 26 |
+
import json
|
| 27 |
+
import os
|
| 28 |
+
|
| 29 |
+
import jieba
|
| 30 |
+
import torch
|
| 31 |
+
import torch.nn.functional as F
|
| 32 |
+
import torchaudio
|
| 33 |
+
import triton_python_backend_utils as pb_utils
|
| 34 |
+
from f5_tts_trtllm import F5TTS
|
| 35 |
+
from pypinyin import Style, lazy_pinyin
|
| 36 |
+
from torch.nn.utils.rnn import pad_sequence
|
| 37 |
+
from torch.utils.dlpack import from_dlpack, to_dlpack
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def get_tokenizer(vocab_file_path: str):
|
| 41 |
+
"""
|
| 42 |
+
tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file
|
| 43 |
+
- "char" for char-wise tokenizer, need .txt vocab_file
|
| 44 |
+
- "byte" for utf-8 tokenizer
|
| 45 |
+
- "custom" if you're directly passing in a path to the vocab.txt you want to use
|
| 46 |
+
vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols
|
| 47 |
+
- if use "char", derived from unfiltered character & symbol counts of custom dataset
|
| 48 |
+
- if use "byte", set to 256 (unicode byte range)
|
| 49 |
+
"""
|
| 50 |
+
with open(vocab_file_path, "r", encoding="utf-8") as f:
|
| 51 |
+
vocab_char_map = {}
|
| 52 |
+
for i, char in enumerate(f):
|
| 53 |
+
vocab_char_map[char[:-1]] = i
|
| 54 |
+
vocab_size = len(vocab_char_map)
|
| 55 |
+
return vocab_char_map, vocab_size
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def convert_char_to_pinyin(reference_target_texts_list, polyphone=True):
|
| 59 |
+
final_reference_target_texts_list = []
|
| 60 |
+
custom_trans = str.maketrans(
|
| 61 |
+
{";": ",", "“": '"', "”": '"', "‘": "'", "’": "'"}
|
| 62 |
+
) # add custom trans here, to address oov
|
| 63 |
+
|
| 64 |
+
def is_chinese(c):
|
| 65 |
+
return "\u3100" <= c <= "\u9fff" # common chinese characters
|
| 66 |
+
|
| 67 |
+
for text in reference_target_texts_list:
|
| 68 |
+
char_list = []
|
| 69 |
+
text = text.translate(custom_trans)
|
| 70 |
+
for seg in jieba.cut(text):
|
| 71 |
+
seg_byte_len = len(bytes(seg, "UTF-8"))
|
| 72 |
+
if seg_byte_len == len(seg): # if pure alphabets and symbols
|
| 73 |
+
if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"":
|
| 74 |
+
char_list.append(" ")
|
| 75 |
+
char_list.extend(seg)
|
| 76 |
+
elif polyphone and seg_byte_len == 3 * len(seg): # if pure east asian characters
|
| 77 |
+
seg_ = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True)
|
| 78 |
+
for i, c in enumerate(seg):
|
| 79 |
+
if is_chinese(c):
|
| 80 |
+
char_list.append(" ")
|
| 81 |
+
char_list.append(seg_[i])
|
| 82 |
+
else: # if mixed characters, alphabets and symbols
|
| 83 |
+
for c in seg:
|
| 84 |
+
if ord(c) < 256:
|
| 85 |
+
char_list.extend(c)
|
| 86 |
+
elif is_chinese(c):
|
| 87 |
+
char_list.append(" ")
|
| 88 |
+
char_list.extend(lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True))
|
| 89 |
+
else:
|
| 90 |
+
char_list.append(c)
|
| 91 |
+
final_reference_target_texts_list.append(char_list)
|
| 92 |
+
|
| 93 |
+
return final_reference_target_texts_list
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def list_str_to_idx(
|
| 97 |
+
text: list[str] | list[list[str]],
|
| 98 |
+
vocab_char_map: dict[str, int], # {char: idx}
|
| 99 |
+
padding_value=-1,
|
| 100 |
+
): # noqa: F722
|
| 101 |
+
list_idx_tensors = [torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text] # pinyin or char style
|
| 102 |
+
return list_idx_tensors
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
class TritonPythonModel:
|
| 106 |
+
def initialize(self, args):
|
| 107 |
+
self.use_perf = True
|
| 108 |
+
self.device = torch.device("cuda")
|
| 109 |
+
self.target_audio_sample_rate = 24000
|
| 110 |
+
self.target_rms = 0.15 # target rms for audio
|
| 111 |
+
self.n_fft = 1024
|
| 112 |
+
self.win_length = 1024
|
| 113 |
+
self.hop_length = 256
|
| 114 |
+
self.n_mel_channels = 100
|
| 115 |
+
self.max_mel_len = 3000
|
| 116 |
+
self.head_dim = 64
|
| 117 |
+
|
| 118 |
+
parameters = json.loads(args["model_config"])["parameters"]
|
| 119 |
+
for key, value in parameters.items():
|
| 120 |
+
parameters[key] = value["string_value"]
|
| 121 |
+
|
| 122 |
+
self.vocab_char_map, self.vocab_size = get_tokenizer(parameters["vocab_file"])
|
| 123 |
+
self.reference_sample_rate = int(parameters["reference_audio_sample_rate"])
|
| 124 |
+
self.resampler = torchaudio.transforms.Resample(self.reference_sample_rate, self.target_audio_sample_rate)
|
| 125 |
+
|
| 126 |
+
self.tllm_model_dir = parameters["tllm_model_dir"]
|
| 127 |
+
config_file = os.path.join(self.tllm_model_dir, "config.json")
|
| 128 |
+
with open(config_file) as f:
|
| 129 |
+
config = json.load(f)
|
| 130 |
+
self.model = F5TTS(
|
| 131 |
+
config,
|
| 132 |
+
debug_mode=False,
|
| 133 |
+
tllm_model_dir=self.tllm_model_dir,
|
| 134 |
+
model_path=parameters["model_path"],
|
| 135 |
+
vocab_size=self.vocab_size,
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
self.vocoder = parameters["vocoder"]
|
| 139 |
+
assert self.vocoder in ["vocos", "bigvgan"]
|
| 140 |
+
if self.vocoder == "vocos":
|
| 141 |
+
self.mel_stft = torchaudio.transforms.MelSpectrogram(
|
| 142 |
+
sample_rate=self.target_audio_sample_rate,
|
| 143 |
+
n_fft=self.n_fft,
|
| 144 |
+
win_length=self.win_length,
|
| 145 |
+
hop_length=self.hop_length,
|
| 146 |
+
n_mels=self.n_mel_channels,
|
| 147 |
+
power=1,
|
| 148 |
+
center=True,
|
| 149 |
+
normalized=False,
|
| 150 |
+
norm=None,
|
| 151 |
+
).to(self.device)
|
| 152 |
+
self.compute_mel_fn = self.get_vocos_mel_spectrogram
|
| 153 |
+
elif self.vocoder == "bigvgan":
|
| 154 |
+
self.compute_mel_fn = self.get_bigvgan_mel_spectrogram
|
| 155 |
+
|
| 156 |
+
def get_vocos_mel_spectrogram(self, waveform):
|
| 157 |
+
mel = self.mel_stft(waveform)
|
| 158 |
+
mel = mel.clamp(min=1e-5).log()
|
| 159 |
+
return mel.transpose(1, 2)
|
| 160 |
+
|
| 161 |
+
def forward_vocoder(self, mel):
|
| 162 |
+
mel = mel.to(torch.float32).contiguous().cpu()
|
| 163 |
+
input_tensor_0 = pb_utils.Tensor.from_dlpack("mel", to_dlpack(mel))
|
| 164 |
+
|
| 165 |
+
inference_request = pb_utils.InferenceRequest(
|
| 166 |
+
model_name="vocoder", requested_output_names=["waveform"], inputs=[input_tensor_0]
|
| 167 |
+
)
|
| 168 |
+
inference_response = inference_request.exec()
|
| 169 |
+
if inference_response.has_error():
|
| 170 |
+
raise pb_utils.TritonModelException(inference_response.error().message())
|
| 171 |
+
else:
|
| 172 |
+
waveform = pb_utils.get_output_tensor_by_name(inference_response, "waveform")
|
| 173 |
+
waveform = torch.utils.dlpack.from_dlpack(waveform.to_dlpack()).cpu()
|
| 174 |
+
|
| 175 |
+
return waveform
|
| 176 |
+
|
| 177 |
+
def execute(self, requests):
|
| 178 |
+
(
|
| 179 |
+
reference_text_list,
|
| 180 |
+
target_text_list,
|
| 181 |
+
reference_target_texts_list,
|
| 182 |
+
estimated_reference_target_mel_len,
|
| 183 |
+
reference_mel_len,
|
| 184 |
+
) = [], [], [], [], []
|
| 185 |
+
mel_features_list = []
|
| 186 |
+
if self.use_perf:
|
| 187 |
+
torch.cuda.nvtx.range_push("preprocess")
|
| 188 |
+
for request in requests:
|
| 189 |
+
wav_tensor = pb_utils.get_input_tensor_by_name(request, "reference_wav")
|
| 190 |
+
wav_lens = pb_utils.get_input_tensor_by_name(request, "reference_wav_len")
|
| 191 |
+
|
| 192 |
+
reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy()
|
| 193 |
+
reference_text = reference_text[0][0].decode("utf-8")
|
| 194 |
+
reference_text_list.append(reference_text)
|
| 195 |
+
target_text = pb_utils.get_input_tensor_by_name(request, "target_text").as_numpy()
|
| 196 |
+
target_text = target_text[0][0].decode("utf-8")
|
| 197 |
+
target_text_list.append(target_text)
|
| 198 |
+
|
| 199 |
+
text = reference_text + target_text
|
| 200 |
+
reference_target_texts_list.append(text)
|
| 201 |
+
|
| 202 |
+
wav = from_dlpack(wav_tensor.to_dlpack())
|
| 203 |
+
wav_len = from_dlpack(wav_lens.to_dlpack())
|
| 204 |
+
wav_len = wav_len.squeeze()
|
| 205 |
+
assert wav.shape[0] == 1, "Only support batch size 1 for now."
|
| 206 |
+
wav = wav[:, :wav_len]
|
| 207 |
+
|
| 208 |
+
ref_rms = torch.sqrt(torch.mean(torch.square(wav)))
|
| 209 |
+
if ref_rms < self.target_rms:
|
| 210 |
+
wav = wav * self.target_rms / ref_rms
|
| 211 |
+
if self.reference_sample_rate != self.target_audio_sample_rate:
|
| 212 |
+
wav = self.resampler(wav)
|
| 213 |
+
wav = wav.to(self.device)
|
| 214 |
+
if self.use_perf:
|
| 215 |
+
torch.cuda.nvtx.range_push("compute_mel")
|
| 216 |
+
mel_features = self.compute_mel_fn(wav)
|
| 217 |
+
if self.use_perf:
|
| 218 |
+
torch.cuda.nvtx.range_pop()
|
| 219 |
+
mel_features_list.append(mel_features)
|
| 220 |
+
|
| 221 |
+
reference_mel_len.append(mel_features.shape[1])
|
| 222 |
+
estimated_reference_target_mel_len.append(
|
| 223 |
+
int(
|
| 224 |
+
mel_features.shape[1] * (1 + len(target_text.encode("utf-8")) / len(reference_text.encode("utf-8")))
|
| 225 |
+
)
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
max_seq_len = min(max(estimated_reference_target_mel_len), self.max_mel_len)
|
| 229 |
+
|
| 230 |
+
batch = len(requests)
|
| 231 |
+
mel_features = torch.zeros((batch, max_seq_len, self.n_mel_channels), dtype=torch.float16).to(self.device)
|
| 232 |
+
for i, mel in enumerate(mel_features_list):
|
| 233 |
+
mel_features[i, : mel.shape[1], :] = mel
|
| 234 |
+
|
| 235 |
+
reference_mel_len_tensor = torch.LongTensor(reference_mel_len).to(self.device)
|
| 236 |
+
|
| 237 |
+
pinyin_list = convert_char_to_pinyin(reference_target_texts_list, polyphone=True)
|
| 238 |
+
text_pad_sequence = list_str_to_idx(pinyin_list, self.vocab_char_map)
|
| 239 |
+
|
| 240 |
+
for i, item in enumerate(text_pad_sequence):
|
| 241 |
+
text_pad_sequence[i] = F.pad(
|
| 242 |
+
item, (0, estimated_reference_target_mel_len[i] - len(item)), mode="constant", value=-1
|
| 243 |
+
)
|
| 244 |
+
text_pad_sequence[i] += 1 # WAR: 0 is reserved for padding token, hard coding in F5-TTS
|
| 245 |
+
text_pad_sequence = pad_sequence(text_pad_sequence, padding_value=-1, batch_first=True).to(self.device)
|
| 246 |
+
text_pad_sequence = F.pad(
|
| 247 |
+
text_pad_sequence, (0, max_seq_len - text_pad_sequence.shape[1]), mode="constant", value=-1
|
| 248 |
+
)
|
| 249 |
+
if self.use_perf:
|
| 250 |
+
torch.cuda.nvtx.range_pop()
|
| 251 |
+
|
| 252 |
+
denoised, cost_time = self.model.sample(
|
| 253 |
+
text_pad_sequence,
|
| 254 |
+
mel_features,
|
| 255 |
+
reference_mel_len_tensor,
|
| 256 |
+
estimated_reference_target_mel_len,
|
| 257 |
+
remove_input_padding=False,
|
| 258 |
+
use_perf=self.use_perf,
|
| 259 |
+
)
|
| 260 |
+
if self.use_perf:
|
| 261 |
+
torch.cuda.nvtx.range_push("vocoder")
|
| 262 |
+
|
| 263 |
+
responses = []
|
| 264 |
+
for i in range(batch):
|
| 265 |
+
ref_me_len = reference_mel_len[i]
|
| 266 |
+
estimated_mel_len = estimated_reference_target_mel_len[i]
|
| 267 |
+
denoised_one_item = denoised[i, ref_me_len:estimated_mel_len, :].unsqueeze(0).transpose(1, 2)
|
| 268 |
+
audio = self.forward_vocoder(denoised_one_item)
|
| 269 |
+
rms = torch.sqrt(torch.mean(torch.square(audio)))
|
| 270 |
+
if rms < self.target_rms:
|
| 271 |
+
audio = audio * self.target_rms / rms
|
| 272 |
+
|
| 273 |
+
audio = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(audio))
|
| 274 |
+
inference_response = pb_utils.InferenceResponse(output_tensors=[audio])
|
| 275 |
+
responses.append(inference_response)
|
| 276 |
+
if self.use_perf:
|
| 277 |
+
torch.cuda.nvtx.range_pop()
|
| 278 |
+
return responses
|
2flow/services/triton/f5_tts_triton_server/f5_tts/config.pbtxt
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
name: "f5_tts"
|
| 16 |
+
backend: "python"
|
| 17 |
+
max_batch_size: 4
|
| 18 |
+
dynamic_batching {
|
| 19 |
+
max_queue_delay_microseconds: 1000
|
| 20 |
+
}
|
| 21 |
+
parameters [
|
| 22 |
+
{
|
| 23 |
+
key: "vocab_file"
|
| 24 |
+
value: { string_value: "${vocab}"}
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
key: "model_path",
|
| 28 |
+
value: {string_value:"${model}"}
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
key: "tllm_model_dir",
|
| 32 |
+
value: {string_value:"${trtllm}"}
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
key: "reference_audio_sample_rate",
|
| 36 |
+
value: {string_value:"24000"}
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
key: "vocoder",
|
| 40 |
+
value: {string_value:"${vocoder}"}
|
| 41 |
+
}
|
| 42 |
+
]
|
| 43 |
+
|
| 44 |
+
input [
|
| 45 |
+
{
|
| 46 |
+
name: "reference_wav"
|
| 47 |
+
data_type: TYPE_FP32
|
| 48 |
+
dims: [-1]
|
| 49 |
+
optional: True
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
name: "reference_wav_len"
|
| 53 |
+
data_type: TYPE_INT32
|
| 54 |
+
dims: [1]
|
| 55 |
+
optional: True
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
name: "reference_text"
|
| 59 |
+
data_type: TYPE_STRING
|
| 60 |
+
dims: [1]
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
name: "target_text"
|
| 64 |
+
data_type: TYPE_STRING
|
| 65 |
+
dims: [1]
|
| 66 |
+
}
|
| 67 |
+
]
|
| 68 |
+
output [
|
| 69 |
+
{
|
| 70 |
+
name: "waveform"
|
| 71 |
+
data_type: TYPE_FP32
|
| 72 |
+
dims: [ -1 ]
|
| 73 |
+
}
|
| 74 |
+
]
|
| 75 |
+
|
| 76 |
+
instance_group [
|
| 77 |
+
{
|
| 78 |
+
count: 1
|
| 79 |
+
kind: KIND_GPU
|
| 80 |
+
}
|
| 81 |
+
]
|
2flow/services/triton/f5_tts_triton_server/vocoder/1/.gitkeep
ADDED
|
File without changes
|
2flow/services/triton/f5_tts_triton_server/vocoder/config.pbtxt
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: "vocoder"
|
| 2 |
+
backend: "tensorrt"
|
| 3 |
+
default_model_filename: "vocoder.plan"
|
| 4 |
+
max_batch_size: 4
|
| 5 |
+
|
| 6 |
+
input [
|
| 7 |
+
{
|
| 8 |
+
name: "mel"
|
| 9 |
+
data_type: TYPE_FP32
|
| 10 |
+
dims: [ 100, -1 ]
|
| 11 |
+
}
|
| 12 |
+
]
|
| 13 |
+
|
| 14 |
+
output [
|
| 15 |
+
{
|
| 16 |
+
name: "waveform"
|
| 17 |
+
data_type: TYPE_FP32
|
| 18 |
+
dims: [ -1 ]
|
| 19 |
+
}
|
| 20 |
+
]
|
| 21 |
+
|
| 22 |
+
dynamic_batching {
|
| 23 |
+
preferred_batch_size: [1, 2, 4]
|
| 24 |
+
max_queue_delay_microseconds: 1
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
instance_group [
|
| 28 |
+
{
|
| 29 |
+
count: 1
|
| 30 |
+
kind: KIND_GPU
|
| 31 |
+
}
|
| 32 |
+
]
|
2flow/utils/tts/__pycache__/convert_checkpoint.cpython-310.pyc
ADDED
|
Binary file (20.5 kB). View file
|
|
|
2flow/utils/tts/__pycache__/convert_checkpoint.cpython-312.pyc
ADDED
|
Binary file (27.8 kB). View file
|
|
|
2flow/utils/tts/__pycache__/export_vocoder_to_onnx.cpython-312.pyc
ADDED
|
Binary file (6.35 kB). View file
|
|
|
2flow/utils/tts/convert_checkpoint.py
ADDED
|
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import json
|
| 3 |
+
import os
|
| 4 |
+
import re
|
| 5 |
+
import time
|
| 6 |
+
import traceback
|
| 7 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 8 |
+
|
| 9 |
+
import safetensors.torch
|
| 10 |
+
import torch
|
| 11 |
+
from tensorrt_llm import str_dtype_to_torch
|
| 12 |
+
from tensorrt_llm.mapping import Mapping
|
| 13 |
+
from tensorrt_llm.models.convert_utils import split, split_matrix_tp
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def split_q_tp(v, n_head, n_hidden, tensor_parallel, rank):
|
| 17 |
+
split_v = split(v, tensor_parallel, rank, dim=1)
|
| 18 |
+
return split_v.contiguous()
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def split_q_bias_tp(v, n_head, n_hidden, tensor_parallel, rank):
|
| 22 |
+
split_v = split(v, tensor_parallel, rank, dim=0)
|
| 23 |
+
return split_v.contiguous()
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
FACEBOOK_DIT_NAME_MAPPING = {
|
| 27 |
+
"^time_embed.time_mlp.0.weight$": "time_embed.mlp1.weight",
|
| 28 |
+
"^time_embed.time_mlp.0.bias$": "time_embed.mlp1.bias",
|
| 29 |
+
"^time_embed.time_mlp.2.weight$": "time_embed.mlp2.weight",
|
| 30 |
+
"^time_embed.time_mlp.2.bias$": "time_embed.mlp2.bias",
|
| 31 |
+
"^input_embed.conv_pos_embed.conv1d.0.weight$": "input_embed.conv_pos_embed.conv1d1.weight",
|
| 32 |
+
"^input_embed.conv_pos_embed.conv1d.0.bias$": "input_embed.conv_pos_embed.conv1d1.bias",
|
| 33 |
+
"^input_embed.conv_pos_embed.conv1d.2.weight$": "input_embed.conv_pos_embed.conv1d2.weight",
|
| 34 |
+
"^input_embed.conv_pos_embed.conv1d.2.bias$": "input_embed.conv_pos_embed.conv1d2.bias",
|
| 35 |
+
"^transformer_blocks.0.attn.to_out.0.weight$": "transformer_blocks.0.attn.to_out.weight",
|
| 36 |
+
"^transformer_blocks.0.attn.to_out.0.bias$": "transformer_blocks.0.attn.to_out.bias",
|
| 37 |
+
"^transformer_blocks.1.attn.to_out.0.weight$": "transformer_blocks.1.attn.to_out.weight",
|
| 38 |
+
"^transformer_blocks.1.attn.to_out.0.bias$": "transformer_blocks.1.attn.to_out.bias",
|
| 39 |
+
"^transformer_blocks.2.attn.to_out.0.weight$": "transformer_blocks.2.attn.to_out.weight",
|
| 40 |
+
"^transformer_blocks.2.attn.to_out.0.bias$": "transformer_blocks.2.attn.to_out.bias",
|
| 41 |
+
"^transformer_blocks.3.attn.to_out.0.weight$": "transformer_blocks.3.attn.to_out.weight",
|
| 42 |
+
"^transformer_blocks.3.attn.to_out.0.bias$": "transformer_blocks.3.attn.to_out.bias",
|
| 43 |
+
"^transformer_blocks.4.attn.to_out.0.weight$": "transformer_blocks.4.attn.to_out.weight",
|
| 44 |
+
"^transformer_blocks.4.attn.to_out.0.bias$": "transformer_blocks.4.attn.to_out.bias",
|
| 45 |
+
"^transformer_blocks.5.attn.to_out.0.weight$": "transformer_blocks.5.attn.to_out.weight",
|
| 46 |
+
"^transformer_blocks.5.attn.to_out.0.bias$": "transformer_blocks.5.attn.to_out.bias",
|
| 47 |
+
"^transformer_blocks.6.attn.to_out.0.weight$": "transformer_blocks.6.attn.to_out.weight",
|
| 48 |
+
"^transformer_blocks.6.attn.to_out.0.bias$": "transformer_blocks.6.attn.to_out.bias",
|
| 49 |
+
"^transformer_blocks.7.attn.to_out.0.weight$": "transformer_blocks.7.attn.to_out.weight",
|
| 50 |
+
"^transformer_blocks.7.attn.to_out.0.bias$": "transformer_blocks.7.attn.to_out.bias",
|
| 51 |
+
"^transformer_blocks.8.attn.to_out.0.weight$": "transformer_blocks.8.attn.to_out.weight",
|
| 52 |
+
"^transformer_blocks.8.attn.to_out.0.bias$": "transformer_blocks.8.attn.to_out.bias",
|
| 53 |
+
"^transformer_blocks.9.attn.to_out.0.weight$": "transformer_blocks.9.attn.to_out.weight",
|
| 54 |
+
"^transformer_blocks.9.attn.to_out.0.bias$": "transformer_blocks.9.attn.to_out.bias",
|
| 55 |
+
"^transformer_blocks.10.attn.to_out.0.weight$": "transformer_blocks.10.attn.to_out.weight",
|
| 56 |
+
"^transformer_blocks.10.attn.to_out.0.bias$": "transformer_blocks.10.attn.to_out.bias",
|
| 57 |
+
"^transformer_blocks.11.attn.to_out.0.weight$": "transformer_blocks.11.attn.to_out.weight",
|
| 58 |
+
"^transformer_blocks.11.attn.to_out.0.bias$": "transformer_blocks.11.attn.to_out.bias",
|
| 59 |
+
"^transformer_blocks.12.attn.to_out.0.weight$": "transformer_blocks.12.attn.to_out.weight",
|
| 60 |
+
"^transformer_blocks.12.attn.to_out.0.bias$": "transformer_blocks.12.attn.to_out.bias",
|
| 61 |
+
"^transformer_blocks.13.attn.to_out.0.weight$": "transformer_blocks.13.attn.to_out.weight",
|
| 62 |
+
"^transformer_blocks.13.attn.to_out.0.bias$": "transformer_blocks.13.attn.to_out.bias",
|
| 63 |
+
"^transformer_blocks.14.attn.to_out.0.weight$": "transformer_blocks.14.attn.to_out.weight",
|
| 64 |
+
"^transformer_blocks.14.attn.to_out.0.bias$": "transformer_blocks.14.attn.to_out.bias",
|
| 65 |
+
"^transformer_blocks.15.attn.to_out.0.weight$": "transformer_blocks.15.attn.to_out.weight",
|
| 66 |
+
"^transformer_blocks.15.attn.to_out.0.bias$": "transformer_blocks.15.attn.to_out.bias",
|
| 67 |
+
"^transformer_blocks.16.attn.to_out.0.weight$": "transformer_blocks.16.attn.to_out.weight",
|
| 68 |
+
"^transformer_blocks.16.attn.to_out.0.bias$": "transformer_blocks.16.attn.to_out.bias",
|
| 69 |
+
"^transformer_blocks.17.attn.to_out.0.weight$": "transformer_blocks.17.attn.to_out.weight",
|
| 70 |
+
"^transformer_blocks.17.attn.to_out.0.bias$": "transformer_blocks.17.attn.to_out.bias",
|
| 71 |
+
"^transformer_blocks.18.attn.to_out.0.weight$": "transformer_blocks.18.attn.to_out.weight",
|
| 72 |
+
"^transformer_blocks.18.attn.to_out.0.bias$": "transformer_blocks.18.attn.to_out.bias",
|
| 73 |
+
"^transformer_blocks.19.attn.to_out.0.weight$": "transformer_blocks.19.attn.to_out.weight",
|
| 74 |
+
"^transformer_blocks.19.attn.to_out.0.bias$": "transformer_blocks.19.attn.to_out.bias",
|
| 75 |
+
"^transformer_blocks.20.attn.to_out.0.weight$": "transformer_blocks.20.attn.to_out.weight",
|
| 76 |
+
"^transformer_blocks.20.attn.to_out.0.bias$": "transformer_blocks.20.attn.to_out.bias",
|
| 77 |
+
"^transformer_blocks.21.attn.to_out.0.weight$": "transformer_blocks.21.attn.to_out.weight",
|
| 78 |
+
"^transformer_blocks.21.attn.to_out.0.bias$": "transformer_blocks.21.attn.to_out.bias",
|
| 79 |
+
"^transformer_blocks.0.ff.ff.0.0.weight$": "transformer_blocks.0.ff.project_in.weight",
|
| 80 |
+
"^transformer_blocks.0.ff.ff.0.0.bias$": "transformer_blocks.0.ff.project_in.bias",
|
| 81 |
+
"^transformer_blocks.0.ff.ff.2.weight$": "transformer_blocks.0.ff.ff.weight",
|
| 82 |
+
"^transformer_blocks.0.ff.ff.2.bias$": "transformer_blocks.0.ff.ff.bias",
|
| 83 |
+
"^transformer_blocks.1.ff.ff.0.0.weight$": "transformer_blocks.1.ff.project_in.weight",
|
| 84 |
+
"^transformer_blocks.1.ff.ff.0.0.bias$": "transformer_blocks.1.ff.project_in.bias",
|
| 85 |
+
"^transformer_blocks.1.ff.ff.2.weight$": "transformer_blocks.1.ff.ff.weight",
|
| 86 |
+
"^transformer_blocks.1.ff.ff.2.bias$": "transformer_blocks.1.ff.ff.bias",
|
| 87 |
+
"^transformer_blocks.2.ff.ff.0.0.weight$": "transformer_blocks.2.ff.project_in.weight",
|
| 88 |
+
"^transformer_blocks.2.ff.ff.0.0.bias$": "transformer_blocks.2.ff.project_in.bias",
|
| 89 |
+
"^transformer_blocks.2.ff.ff.2.weight$": "transformer_blocks.2.ff.ff.weight",
|
| 90 |
+
"^transformer_blocks.2.ff.ff.2.bias$": "transformer_blocks.2.ff.ff.bias",
|
| 91 |
+
"^transformer_blocks.3.ff.ff.0.0.weight$": "transformer_blocks.3.ff.project_in.weight",
|
| 92 |
+
"^transformer_blocks.3.ff.ff.0.0.bias$": "transformer_blocks.3.ff.project_in.bias",
|
| 93 |
+
"^transformer_blocks.3.ff.ff.2.weight$": "transformer_blocks.3.ff.ff.weight",
|
| 94 |
+
"^transformer_blocks.3.ff.ff.2.bias$": "transformer_blocks.3.ff.ff.bias",
|
| 95 |
+
"^transformer_blocks.4.ff.ff.0.0.weight$": "transformer_blocks.4.ff.project_in.weight",
|
| 96 |
+
"^transformer_blocks.4.ff.ff.0.0.bias$": "transformer_blocks.4.ff.project_in.bias",
|
| 97 |
+
"^transformer_blocks.4.ff.ff.2.weight$": "transformer_blocks.4.ff.ff.weight",
|
| 98 |
+
"^transformer_blocks.4.ff.ff.2.bias$": "transformer_blocks.4.ff.ff.bias",
|
| 99 |
+
"^transformer_blocks.5.ff.ff.0.0.weight$": "transformer_blocks.5.ff.project_in.weight",
|
| 100 |
+
"^transformer_blocks.5.ff.ff.0.0.bias$": "transformer_blocks.5.ff.project_in.bias",
|
| 101 |
+
"^transformer_blocks.5.ff.ff.2.weight$": "transformer_blocks.5.ff.ff.weight",
|
| 102 |
+
"^transformer_blocks.5.ff.ff.2.bias$": "transformer_blocks.5.ff.ff.bias",
|
| 103 |
+
"^transformer_blocks.6.ff.ff.0.0.weight$": "transformer_blocks.6.ff.project_in.weight",
|
| 104 |
+
"^transformer_blocks.6.ff.ff.0.0.bias$": "transformer_blocks.6.ff.project_in.bias",
|
| 105 |
+
"^transformer_blocks.6.ff.ff.2.weight$": "transformer_blocks.6.ff.ff.weight",
|
| 106 |
+
"^transformer_blocks.6.ff.ff.2.bias$": "transformer_blocks.6.ff.ff.bias",
|
| 107 |
+
"^transformer_blocks.7.ff.ff.0.0.weight$": "transformer_blocks.7.ff.project_in.weight",
|
| 108 |
+
"^transformer_blocks.7.ff.ff.0.0.bias$": "transformer_blocks.7.ff.project_in.bias",
|
| 109 |
+
"^transformer_blocks.7.ff.ff.2.weight$": "transformer_blocks.7.ff.ff.weight",
|
| 110 |
+
"^transformer_blocks.7.ff.ff.2.bias$": "transformer_blocks.7.ff.ff.bias",
|
| 111 |
+
"^transformer_blocks.8.ff.ff.0.0.weight$": "transformer_blocks.8.ff.project_in.weight",
|
| 112 |
+
"^transformer_blocks.8.ff.ff.0.0.bias$": "transformer_blocks.8.ff.project_in.bias",
|
| 113 |
+
"^transformer_blocks.8.ff.ff.2.weight$": "transformer_blocks.8.ff.ff.weight",
|
| 114 |
+
"^transformer_blocks.8.ff.ff.2.bias$": "transformer_blocks.8.ff.ff.bias",
|
| 115 |
+
"^transformer_blocks.9.ff.ff.0.0.weight$": "transformer_blocks.9.ff.project_in.weight",
|
| 116 |
+
"^transformer_blocks.9.ff.ff.0.0.bias$": "transformer_blocks.9.ff.project_in.bias",
|
| 117 |
+
"^transformer_blocks.9.ff.ff.2.weight$": "transformer_blocks.9.ff.ff.weight",
|
| 118 |
+
"^transformer_blocks.9.ff.ff.2.bias$": "transformer_blocks.9.ff.ff.bias",
|
| 119 |
+
"^transformer_blocks.10.ff.ff.0.0.weight$": "transformer_blocks.10.ff.project_in.weight",
|
| 120 |
+
"^transformer_blocks.10.ff.ff.0.0.bias$": "transformer_blocks.10.ff.project_in.bias",
|
| 121 |
+
"^transformer_blocks.10.ff.ff.2.weight$": "transformer_blocks.10.ff.ff.weight",
|
| 122 |
+
"^transformer_blocks.10.ff.ff.2.bias$": "transformer_blocks.10.ff.ff.bias",
|
| 123 |
+
"^transformer_blocks.11.ff.ff.0.0.weight$": "transformer_blocks.11.ff.project_in.weight",
|
| 124 |
+
"^transformer_blocks.11.ff.ff.0.0.bias$": "transformer_blocks.11.ff.project_in.bias",
|
| 125 |
+
"^transformer_blocks.11.ff.ff.2.weight$": "transformer_blocks.11.ff.ff.weight",
|
| 126 |
+
"^transformer_blocks.11.ff.ff.2.bias$": "transformer_blocks.11.ff.ff.bias",
|
| 127 |
+
"^transformer_blocks.12.ff.ff.0.0.weight$": "transformer_blocks.12.ff.project_in.weight",
|
| 128 |
+
"^transformer_blocks.12.ff.ff.0.0.bias$": "transformer_blocks.12.ff.project_in.bias",
|
| 129 |
+
"^transformer_blocks.12.ff.ff.2.weight$": "transformer_blocks.12.ff.ff.weight",
|
| 130 |
+
"^transformer_blocks.12.ff.ff.2.bias$": "transformer_blocks.12.ff.ff.bias",
|
| 131 |
+
"^transformer_blocks.13.ff.ff.0.0.weight$": "transformer_blocks.13.ff.project_in.weight",
|
| 132 |
+
"^transformer_blocks.13.ff.ff.0.0.bias$": "transformer_blocks.13.ff.project_in.bias",
|
| 133 |
+
"^transformer_blocks.13.ff.ff.2.weight$": "transformer_blocks.13.ff.ff.weight",
|
| 134 |
+
"^transformer_blocks.13.ff.ff.2.bias$": "transformer_blocks.13.ff.ff.bias",
|
| 135 |
+
"^transformer_blocks.14.ff.ff.0.0.weight$": "transformer_blocks.14.ff.project_in.weight",
|
| 136 |
+
"^transformer_blocks.14.ff.ff.0.0.bias$": "transformer_blocks.14.ff.project_in.bias",
|
| 137 |
+
"^transformer_blocks.14.ff.ff.2.weight$": "transformer_blocks.14.ff.ff.weight",
|
| 138 |
+
"^transformer_blocks.14.ff.ff.2.bias$": "transformer_blocks.14.ff.ff.bias",
|
| 139 |
+
"^transformer_blocks.15.ff.ff.0.0.weight$": "transformer_blocks.15.ff.project_in.weight",
|
| 140 |
+
"^transformer_blocks.15.ff.ff.0.0.bias$": "transformer_blocks.15.ff.project_in.bias",
|
| 141 |
+
"^transformer_blocks.15.ff.ff.2.weight$": "transformer_blocks.15.ff.ff.weight",
|
| 142 |
+
"^transformer_blocks.15.ff.ff.2.bias$": "transformer_blocks.15.ff.ff.bias",
|
| 143 |
+
"^transformer_blocks.16.ff.ff.0.0.weight$": "transformer_blocks.16.ff.project_in.weight",
|
| 144 |
+
"^transformer_blocks.16.ff.ff.0.0.bias$": "transformer_blocks.16.ff.project_in.bias",
|
| 145 |
+
"^transformer_blocks.16.ff.ff.2.weight$": "transformer_blocks.16.ff.ff.weight",
|
| 146 |
+
"^transformer_blocks.16.ff.ff.2.bias$": "transformer_blocks.16.ff.ff.bias",
|
| 147 |
+
"^transformer_blocks.17.ff.ff.0.0.weight$": "transformer_blocks.17.ff.project_in.weight",
|
| 148 |
+
"^transformer_blocks.17.ff.ff.0.0.bias$": "transformer_blocks.17.ff.project_in.bias",
|
| 149 |
+
"^transformer_blocks.17.ff.ff.2.weight$": "transformer_blocks.17.ff.ff.weight",
|
| 150 |
+
"^transformer_blocks.17.ff.ff.2.bias$": "transformer_blocks.17.ff.ff.bias",
|
| 151 |
+
"^transformer_blocks.18.ff.ff.0.0.weight$": "transformer_blocks.18.ff.project_in.weight",
|
| 152 |
+
"^transformer_blocks.18.ff.ff.0.0.bias$": "transformer_blocks.18.ff.project_in.bias",
|
| 153 |
+
"^transformer_blocks.18.ff.ff.2.weight$": "transformer_blocks.18.ff.ff.weight",
|
| 154 |
+
"^transformer_blocks.18.ff.ff.2.bias$": "transformer_blocks.18.ff.ff.bias",
|
| 155 |
+
"^transformer_blocks.19.ff.ff.0.0.weight$": "transformer_blocks.19.ff.project_in.weight",
|
| 156 |
+
"^transformer_blocks.19.ff.ff.0.0.bias$": "transformer_blocks.19.ff.project_in.bias",
|
| 157 |
+
"^transformer_blocks.19.ff.ff.2.weight$": "transformer_blocks.19.ff.ff.weight",
|
| 158 |
+
"^transformer_blocks.19.ff.ff.2.bias$": "transformer_blocks.19.ff.ff.bias",
|
| 159 |
+
"^transformer_blocks.20.ff.ff.0.0.weight$": "transformer_blocks.20.ff.project_in.weight",
|
| 160 |
+
"^transformer_blocks.20.ff.ff.0.0.bias$": "transformer_blocks.20.ff.project_in.bias",
|
| 161 |
+
"^transformer_blocks.20.ff.ff.2.weight$": "transformer_blocks.20.ff.ff.weight",
|
| 162 |
+
"^transformer_blocks.20.ff.ff.2.bias$": "transformer_blocks.20.ff.ff.bias",
|
| 163 |
+
"^transformer_blocks.21.ff.ff.0.0.weight$": "transformer_blocks.21.ff.project_in.weight",
|
| 164 |
+
"^transformer_blocks.21.ff.ff.0.0.bias$": "transformer_blocks.21.ff.project_in.bias",
|
| 165 |
+
"^transformer_blocks.21.ff.ff.2.weight$": "transformer_blocks.21.ff.ff.weight",
|
| 166 |
+
"^transformer_blocks.21.ff.ff.2.bias$": "transformer_blocks.21.ff.ff.bias",
|
| 167 |
+
}
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def parse_arguments():
|
| 171 |
+
parser = argparse.ArgumentParser()
|
| 172 |
+
parser.add_argument(
|
| 173 |
+
"--model_name",
|
| 174 |
+
type=str,
|
| 175 |
+
default="F5TTS_Base",
|
| 176 |
+
choices=[
|
| 177 |
+
"F5TTS_Base",
|
| 178 |
+
"F5TTS_v1_Base",
|
| 179 |
+
],
|
| 180 |
+
) # TODO: support F5TTS_v1_Base
|
| 181 |
+
parser.add_argument("--timm_ckpt", type=str, default="./ckpts/model_1200000.pt")
|
| 182 |
+
parser.add_argument(
|
| 183 |
+
"--output_dir", type=str, default="./tllm_checkpoint", help="The path to save the TensorRT-LLM checkpoint"
|
| 184 |
+
)
|
| 185 |
+
parser.add_argument("--hidden_size", type=int, default=1024, help="The hidden size of DiT")
|
| 186 |
+
parser.add_argument("--depth", type=int, default=22, help="The number of DiTBlock layers")
|
| 187 |
+
parser.add_argument("--num_heads", type=int, default=16, help="The number of heads of attention module")
|
| 188 |
+
parser.add_argument("--cfg_scale", type=float, default=4.0)
|
| 189 |
+
parser.add_argument("--tp_size", type=int, default=1, help="N-way tensor parallelism size")
|
| 190 |
+
parser.add_argument("--cp_size", type=int, default=1, help="Context parallelism size")
|
| 191 |
+
parser.add_argument("--pp_size", type=int, default=1, help="N-way pipeline parallelism size")
|
| 192 |
+
parser.add_argument("--dtype", type=str, default="float16", choices=["float32", "bfloat16", "float16"])
|
| 193 |
+
parser.add_argument("--fp8_linear", action="store_true", help="Whether use FP8 for linear layers")
|
| 194 |
+
parser.add_argument(
|
| 195 |
+
"--workers", type=int, default=1, help="The number of workers for converting checkpoint in parallel"
|
| 196 |
+
)
|
| 197 |
+
args = parser.parse_args()
|
| 198 |
+
return args
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def convert_timm_dit(args, mapping, dtype="float32"):
|
| 202 |
+
weights = {}
|
| 203 |
+
tik = time.time()
|
| 204 |
+
torch_dtype = str_dtype_to_torch(dtype)
|
| 205 |
+
tensor_parallel = mapping.tp_size
|
| 206 |
+
|
| 207 |
+
# Load checkpoint based on file extension
|
| 208 |
+
if args.timm_ckpt.endswith('.safetensors'):
|
| 209 |
+
print(f"Loading safetensors checkpoint from {args.timm_ckpt}")
|
| 210 |
+
model_params = safetensors.torch.load_file(args.timm_ckpt)
|
| 211 |
+
# For safetensors, check if we need to extract from a nested dict
|
| 212 |
+
if any(k.startswith("ema_model.transformer") for k in model_params.keys()):
|
| 213 |
+
model_params = {
|
| 214 |
+
k: v for k, v in model_params.items() if k.startswith("ema_model.transformer")
|
| 215 |
+
}
|
| 216 |
+
elif any(k.startswith("ema_model_state_dict.ema_model.transformer") for k in model_params.keys()):
|
| 217 |
+
model_params = {
|
| 218 |
+
k.replace("ema_model_state_dict.", ""): v
|
| 219 |
+
for k, v in model_params.items()
|
| 220 |
+
if k.startswith("ema_model_state_dict.ema_model.transformer")
|
| 221 |
+
}
|
| 222 |
+
else:
|
| 223 |
+
print(f"Loading PyTorch checkpoint from {args.timm_ckpt}")
|
| 224 |
+
checkpoint = torch.load(args.timm_ckpt)
|
| 225 |
+
model_params = dict(checkpoint)
|
| 226 |
+
model_params = {
|
| 227 |
+
k: v for k, v in model_params["ema_model_state_dict"].items() if k.startswith("ema_model.transformer")
|
| 228 |
+
}
|
| 229 |
+
|
| 230 |
+
prefix = "ema_model.transformer."
|
| 231 |
+
model_params = {key[len(prefix) :] if key.startswith(prefix) else key: value for key, value in model_params.items()}
|
| 232 |
+
|
| 233 |
+
timm_to_trtllm_name = FACEBOOK_DIT_NAME_MAPPING
|
| 234 |
+
|
| 235 |
+
def get_trtllm_name(timm_name):
|
| 236 |
+
for k, v in timm_to_trtllm_name.items():
|
| 237 |
+
m = re.match(k, timm_name)
|
| 238 |
+
if m is not None:
|
| 239 |
+
if "*" in v:
|
| 240 |
+
v = v.replace("*", m.groups()[0])
|
| 241 |
+
return v
|
| 242 |
+
return timm_name
|
| 243 |
+
|
| 244 |
+
weights = dict()
|
| 245 |
+
for name, param in model_params.items():
|
| 246 |
+
if name == "input_embed.conv_pos_embed.conv1d.0.weight" or name == "input_embed.conv_pos_embed.conv1d.2.weight":
|
| 247 |
+
weights[get_trtllm_name(name)] = param.contiguous().to(torch_dtype).unsqueeze(-1)
|
| 248 |
+
else:
|
| 249 |
+
weights[get_trtllm_name(name)] = param.contiguous().to(torch_dtype)
|
| 250 |
+
|
| 251 |
+
assert len(weights) == len(model_params)
|
| 252 |
+
|
| 253 |
+
# new_prefix = 'f5_transformer.'
|
| 254 |
+
new_prefix = ""
|
| 255 |
+
weights = {new_prefix + key: value for key, value in weights.items()}
|
| 256 |
+
import math
|
| 257 |
+
|
| 258 |
+
scale_factor = math.pow(64, -0.25)
|
| 259 |
+
for k, v in weights.items():
|
| 260 |
+
if re.match("^transformer_blocks.*.attn.to_k.weight$", k):
|
| 261 |
+
weights[k] *= scale_factor
|
| 262 |
+
weights[k] = split_q_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank)
|
| 263 |
+
|
| 264 |
+
elif re.match("^transformer_blocks.*.attn.to_k.bias$", k):
|
| 265 |
+
weights[k] *= scale_factor
|
| 266 |
+
weights[k] = split_q_bias_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank)
|
| 267 |
+
|
| 268 |
+
elif re.match("^transformer_blocks.*.attn.to_q.weight$", k):
|
| 269 |
+
weights[k] = split_q_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank)
|
| 270 |
+
weights[k] *= scale_factor
|
| 271 |
+
|
| 272 |
+
elif re.match("^transformer_blocks.*.attn.to_q.bias$", k):
|
| 273 |
+
weights[k] = split_q_bias_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank)
|
| 274 |
+
weights[k] *= scale_factor
|
| 275 |
+
|
| 276 |
+
elif re.match("^transformer_blocks.*.attn.to_v.weight$", k):
|
| 277 |
+
weights[k] = split_q_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank)
|
| 278 |
+
|
| 279 |
+
elif re.match("^transformer_blocks.*.attn.to_v.bias$", k):
|
| 280 |
+
weights[k] = split_q_bias_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank)
|
| 281 |
+
|
| 282 |
+
elif re.match("^transformer_blocks.*.attn.to_out.weight$", k):
|
| 283 |
+
weights[k] = split_matrix_tp(v, tensor_parallel, mapping.tp_rank, dim=1)
|
| 284 |
+
|
| 285 |
+
tok = time.time()
|
| 286 |
+
t = time.strftime("%H:%M:%S", time.gmtime(tok - tik))
|
| 287 |
+
print(f"Weights loaded. Total time: {t}")
|
| 288 |
+
return weights
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
def save_config(args):
|
| 292 |
+
if not os.path.exists(args.output_dir):
|
| 293 |
+
os.makedirs(args.output_dir)
|
| 294 |
+
config = {
|
| 295 |
+
"architecture": "F5TTS",
|
| 296 |
+
"dtype": args.dtype,
|
| 297 |
+
"hidden_size": 1024,
|
| 298 |
+
"num_hidden_layers": 22,
|
| 299 |
+
"num_attention_heads": 16,
|
| 300 |
+
"dim_head": 64,
|
| 301 |
+
"dropout": 0.1,
|
| 302 |
+
"ff_mult": 2,
|
| 303 |
+
"mel_dim": 100,
|
| 304 |
+
"text_num_embeds": 256,
|
| 305 |
+
"text_dim": 512,
|
| 306 |
+
"conv_layers": 4,
|
| 307 |
+
"long_skip_connection": False,
|
| 308 |
+
"mapping": {
|
| 309 |
+
"world_size": args.cp_size * args.tp_size * args.pp_size,
|
| 310 |
+
"cp_size": args.cp_size,
|
| 311 |
+
"tp_size": args.tp_size,
|
| 312 |
+
"pp_size": args.pp_size,
|
| 313 |
+
},
|
| 314 |
+
}
|
| 315 |
+
if args.fp8_linear:
|
| 316 |
+
config["quantization"] = {
|
| 317 |
+
"quant_algo": "FP8",
|
| 318 |
+
# TODO: add support for exclude modules.
|
| 319 |
+
# 'exclude_modules': "*final_layer*",
|
| 320 |
+
}
|
| 321 |
+
|
| 322 |
+
with open(os.path.join(args.output_dir, "config.json"), "w") as f:
|
| 323 |
+
json.dump(config, f, indent=4)
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
def covert_and_save(args, rank):
|
| 327 |
+
if rank == 0:
|
| 328 |
+
save_config(args)
|
| 329 |
+
|
| 330 |
+
mapping = Mapping(
|
| 331 |
+
world_size=args.cp_size * args.tp_size * args.pp_size,
|
| 332 |
+
rank=rank,
|
| 333 |
+
cp_size=args.cp_size,
|
| 334 |
+
tp_size=args.tp_size,
|
| 335 |
+
pp_size=args.pp_size,
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
weights = convert_timm_dit(args, mapping, dtype=args.dtype)
|
| 339 |
+
|
| 340 |
+
safetensors.torch.save_file(weights, os.path.join(args.output_dir, f"rank{rank}.safetensors"))
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
def execute(workers, func, args):
|
| 344 |
+
if workers == 1:
|
| 345 |
+
for rank, f in enumerate(func):
|
| 346 |
+
f(args, rank)
|
| 347 |
+
else:
|
| 348 |
+
with ThreadPoolExecutor(max_workers=workers) as p:
|
| 349 |
+
futures = [p.submit(f, args, rank) for rank, f in enumerate(func)]
|
| 350 |
+
exceptions = []
|
| 351 |
+
for future in as_completed(futures):
|
| 352 |
+
try:
|
| 353 |
+
future.result()
|
| 354 |
+
except Exception as e:
|
| 355 |
+
traceback.print_exc()
|
| 356 |
+
exceptions.append(e)
|
| 357 |
+
assert len(exceptions) == 0, "Checkpoint conversion failed, please check error log."
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
def main():
|
| 361 |
+
args = parse_arguments()
|
| 362 |
+
world_size = args.cp_size * args.tp_size * args.pp_size
|
| 363 |
+
|
| 364 |
+
assert args.pp_size == 1, "PP is not supported yet."
|
| 365 |
+
|
| 366 |
+
tik = time.time()
|
| 367 |
+
if args.timm_ckpt is None:
|
| 368 |
+
return
|
| 369 |
+
print("start execute")
|
| 370 |
+
execute(args.workers, [covert_and_save] * world_size, args)
|
| 371 |
+
|
| 372 |
+
tok = time.time()
|
| 373 |
+
t = time.strftime("%H:%M:%S", time.gmtime(tok - tik))
|
| 374 |
+
print(f"Total time of converting checkpoints: {t}")
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
if __name__ == "__main__":
|
| 378 |
+
main()
|
2flow/utils/tts/export_vocoder_to_onnx.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
import torch.nn as nn
|
| 19 |
+
from conv_stft import STFT
|
| 20 |
+
from huggingface_hub import hf_hub_download
|
| 21 |
+
from vocos import Vocos
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
opset_version = 17
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def get_args():
|
| 28 |
+
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
| 29 |
+
parser.add_argument(
|
| 30 |
+
"--vocoder",
|
| 31 |
+
type=str,
|
| 32 |
+
default="vocos",
|
| 33 |
+
choices=["vocos", "bigvgan"],
|
| 34 |
+
help="Vocoder to export",
|
| 35 |
+
)
|
| 36 |
+
parser.add_argument(
|
| 37 |
+
"--output-path",
|
| 38 |
+
type=str,
|
| 39 |
+
default="./vocos_vocoder.onnx",
|
| 40 |
+
help="Output path",
|
| 41 |
+
)
|
| 42 |
+
return parser.parse_args()
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class ISTFTHead(nn.Module):
|
| 46 |
+
def __init__(self, n_fft: int, hop_length: int):
|
| 47 |
+
super().__init__()
|
| 48 |
+
self.out = None
|
| 49 |
+
self.stft = STFT(fft_len=n_fft, win_hop=hop_length, win_len=n_fft)
|
| 50 |
+
|
| 51 |
+
def forward(self, x: torch.Tensor):
|
| 52 |
+
x = self.out(x).transpose(1, 2)
|
| 53 |
+
mag, p = x.chunk(2, dim=1)
|
| 54 |
+
mag = torch.exp(mag)
|
| 55 |
+
mag = torch.clip(mag, max=1e2)
|
| 56 |
+
real = mag * torch.cos(p)
|
| 57 |
+
imag = mag * torch.sin(p)
|
| 58 |
+
audio = self.stft.inverse(input1=real, input2=imag, input_type="realimag")
|
| 59 |
+
return audio
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class VocosVocoder(nn.Module):
|
| 63 |
+
def __init__(self, vocos_vocoder):
|
| 64 |
+
super(VocosVocoder, self).__init__()
|
| 65 |
+
self.vocos_vocoder = vocos_vocoder
|
| 66 |
+
istft_head_out = self.vocos_vocoder.head.out
|
| 67 |
+
n_fft = self.vocos_vocoder.head.istft.n_fft
|
| 68 |
+
hop_length = self.vocos_vocoder.head.istft.hop_length
|
| 69 |
+
istft_head_for_export = ISTFTHead(n_fft, hop_length)
|
| 70 |
+
istft_head_for_export.out = istft_head_out
|
| 71 |
+
self.vocos_vocoder.head = istft_head_for_export
|
| 72 |
+
|
| 73 |
+
def forward(self, mel):
|
| 74 |
+
waveform = self.vocos_vocoder.decode(mel)
|
| 75 |
+
return waveform
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def export_VocosVocoder(vocos_vocoder, output_path, verbose):
|
| 79 |
+
vocos_vocoder = VocosVocoder(vocos_vocoder).cuda()
|
| 80 |
+
vocos_vocoder.eval()
|
| 81 |
+
|
| 82 |
+
dummy_batch_size = 8
|
| 83 |
+
dummy_input_length = 500
|
| 84 |
+
|
| 85 |
+
dummy_mel = torch.randn(dummy_batch_size, 100, dummy_input_length).cuda()
|
| 86 |
+
|
| 87 |
+
with torch.no_grad():
|
| 88 |
+
dummy_waveform = vocos_vocoder(mel=dummy_mel)
|
| 89 |
+
print(dummy_waveform.shape)
|
| 90 |
+
|
| 91 |
+
dummy_input = dummy_mel
|
| 92 |
+
|
| 93 |
+
torch.onnx.export(
|
| 94 |
+
vocos_vocoder,
|
| 95 |
+
dummy_input,
|
| 96 |
+
output_path,
|
| 97 |
+
opset_version=opset_version,
|
| 98 |
+
do_constant_folding=True,
|
| 99 |
+
input_names=["mel"],
|
| 100 |
+
output_names=["waveform"],
|
| 101 |
+
dynamic_axes={
|
| 102 |
+
"mel": {0: "batch_size", 2: "input_length"},
|
| 103 |
+
"waveform": {0: "batch_size", 1: "output_length"},
|
| 104 |
+
},
|
| 105 |
+
verbose=verbose,
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
print("Exported to {}".format(output_path))
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def load_vocoder(vocoder_name="vocos", is_local=False, local_path="", device="cpu", hf_cache_dir=None):
|
| 112 |
+
if vocoder_name == "vocos":
|
| 113 |
+
# vocoder = Vocos.from_pretrained("charactr/vocos-mel-24khz").to(device)
|
| 114 |
+
if is_local:
|
| 115 |
+
print(f"Load vocos from local path {local_path}")
|
| 116 |
+
config_path = f"{local_path}/config.yaml"
|
| 117 |
+
model_path = f"{local_path}/pytorch_model.bin"
|
| 118 |
+
else:
|
| 119 |
+
print("Download Vocos from huggingface charactr/vocos-mel-24khz")
|
| 120 |
+
repo_id = "charactr/vocos-mel-24khz"
|
| 121 |
+
config_path = hf_hub_download(repo_id=repo_id, cache_dir=hf_cache_dir, filename="config.yaml")
|
| 122 |
+
model_path = hf_hub_download(repo_id=repo_id, cache_dir=hf_cache_dir, filename="pytorch_model.bin")
|
| 123 |
+
vocoder = Vocos.from_hparams(config_path)
|
| 124 |
+
state_dict = torch.load(model_path, map_location="cpu", weights_only=True)
|
| 125 |
+
vocoder.load_state_dict(state_dict)
|
| 126 |
+
vocoder = vocoder.eval().to(device)
|
| 127 |
+
elif vocoder_name == "bigvgan":
|
| 128 |
+
raise NotImplementedError("BigVGAN is not supported yet")
|
| 129 |
+
vocoder.remove_weight_norm()
|
| 130 |
+
vocoder = vocoder.eval().to(device)
|
| 131 |
+
return vocoder
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
if __name__ == "__main__":
|
| 135 |
+
args = get_args()
|
| 136 |
+
vocoder = load_vocoder(vocoder_name=args.vocoder, device="cpu", hf_cache_dir=None)
|
| 137 |
+
if args.vocoder == "vocos":
|
| 138 |
+
export_VocosVocoder(vocoder, args.output_path, verbose=False)
|