HelloSec commited on
Commit
29c6266
·
1 Parent(s): 093e4b1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -0
README.md CHANGED
@@ -1,3 +1,109 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+ # BootLeggerAI
5
+ A python based chat bot for coders
6
+
7
+ BootLegger AI is a Python script that uses deep learning, neural networking, and natural language processing to create a chatbot that can help users with their programming needs. The chatbot can understand natural language and generate appropriate responses based on the user's input.
8
+
9
+ (A → E, E → I, I → O, O → U, U → A)
10
+
11
+ ## Instructions for Use
12
+
13
+ 1. Install the necessary libraries: Tensorflow and Numpy. You can do this using pip or any package manager of your choice.
14
+
15
+ 2. Copy the code in the BootLegger2.0.py file into your Python editor of choice.
16
+
17
+ 3. Run the code in your Python environment.
18
+
19
+ 4. The chatbot will start running and prompt the user to enter their request.
20
+
21
+ 5. Enter your request, and the chatbot will generate a response based on the predicted output.
22
+
23
+ 6. If you encounter any issues, please see the Troubleshooting section below.
24
+
25
+ ## Detailed instructions
26
+
27
+ 1. Install Required Libraries: Before running the script, make sure you have installed all the required libraries. This script requires `tensorflow` and `numpy`. You can install them via pip or conda:
28
+
29
+ ```
30
+ pip install tensorflow numpy
31
+ ```
32
+
33
+ 2. Prepare Input and Output Data: The script takes in an array of input data and an array of output data. Each element of the input array should be a string that represents a programming task you want help with. The output array should contain the corresponding output for each input task.
34
+
35
+ For example, you can create a numpy array for the input and output data like this:
36
+
37
+ ```
38
+ import numpy as np
39
+
40
+ # Define input and output data
41
+ input_data = np.array(['create a python script', 'build a program', 'generate a code'])
42
+ output_data = np.array([['create', 'python', 'script'], ['build', 'program'], ['generate', 'code']])
43
+ ```
44
+
45
+ 3. Tokenize Input Data: To use the input data with the model, we need to tokenize it first. Tokenization is the process of converting text into numerical values. The function `tokenize_input` in the script takes in the input data and returns the tokenizer object, the tokenized input sequence, the maximum length of the input sequence, and the vocabulary size.
46
+
47
+ You can tokenize the input data like this:
48
+
49
+ ```
50
+ from bootlegger_ai import tokenize_input
51
+
52
+ tokenizer, input_seq, max_len, vocab_size = tokenize_input(input_data)
53
+ ```
54
+
55
+ 4. Define the Neural Network Model: The next step is to define the neural network model. The function `define_model` in the script takes in the vocabulary size and maximum length of the input sequence and returns the model object.
56
+
57
+ You can define the model like this:
58
+
59
+ ```
60
+ from bootlegger_ai import define_model
61
+
62
+ model = define_model(vocab_size, max_len)
63
+ ```
64
+
65
+ 5. Train the Neural Network Model: After defining the model, we need to train it with the input and output data. The function `train_model` in the script takes in the model object, input sequence, output data, and number of epochs to train the model. It returns the trained model object.
66
+
67
+ You can train the model like this:
68
+
69
+ ```
70
+ from bootlegger_ai import train_model
71
+
72
+ model = train_model(model, input_seq, output_data)
73
+ ```
74
+
75
+ 6. Test the Model: After training the model, we can test it on new input data. The function `test_model` in the script takes in the model object, test data, tokenizer object, and maximum length of the input sequence. It returns the predictions for the test data.
76
+
77
+ You can test the model like this:
78
+
79
+ ```
80
+ from bootlegger_ai import test_model
81
+
82
+ test_data = np.array(['I want to create a new website'])
83
+ predictions = test_model(model, test_data, tokenizer, max_len)
84
+ ```
85
+
86
+ 7. Generate Response: Finally, we can generate a response based on the predicted output. The function `generate_response` in the script takes in the predictions and tokenizer object and returns a response string.
87
+
88
+ You can generate a response like this:
89
+
90
+ ```
91
+ from bootlegger_ai import generate_response
92
+
93
+ response = generate_response(predictions, tokenizer)
94
+ print(response)
95
+ ```
96
+
97
+ And that's it! By following these steps, you can use the BootLegger AI script to generate responses to programming-related requests.
98
+
99
+ ## Developed By
100
+
101
+ This script was developed by Adam Rivers and Hello Security LLC.
102
+
103
+ ## Troubleshooting
104
+
105
+ If the chatbot is not generating appropriate responses, please ensure that the input data is relevant to the context of programming.
106
+
107
+ Additionally, you can try retraining the neural network model by modifying the input and output data in the script.
108
+
109
+ If you encounter any other issues, please feel free to reach out for assistance.