HelgeKn commited on
Commit
06b60c5
·
1 Parent(s): 8e1c17e

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: 'The Alavas worked themselves to the bone in the last period , and English
12
+ and San Emeterio ( 65-75 ) had already made it clear that they were not going
13
+ to let anyone take away what they had earned during the first thirty minutes . '
14
+ - text: 'To break the uncomfortable silence , Haney began to talk . '
15
+ - text: 'For the treatment of non-small cell lung cancer , the effects of Alimta were
16
+ compared with those of docetaxel ( another anticancer medicine ) in one study
17
+ involving 571 patients with locally advanced or metastatic disease who had received
18
+ chemotherapy in the past . '
19
+ - text: 'As we all know , a few minutes before the end of the game ( that their team
20
+ had already won ) , both players deliberately wasted time which made the referee
21
+ show the second yellow card to both of them . '
22
+ - text: 'In contrast , patients whose cancer was affecting squamous cells had shorter
23
+ survival times if they received Alimta . '
24
+ pipeline_tag: text-classification
25
+ inference: true
26
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
27
+ ---
28
+
29
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
30
+
31
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
32
+
33
+ The model has been trained using an efficient few-shot learning technique that involves:
34
+
35
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
36
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
37
+
38
+ ## Model Details
39
+
40
+ ### Model Description
41
+ - **Model Type:** SetFit
42
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
43
+ - **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
44
+ - **Maximum Sequence Length:** 512 tokens
45
+ - **Number of Classes:** 7 classes
46
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
47
+ <!-- - **Language:** Unknown -->
48
+ <!-- - **License:** Unknown -->
49
+
50
+ ### Model Sources
51
+
52
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
53
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
54
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
55
+
56
+ ### Model Labels
57
+ | Label | Examples |
58
+ |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
59
+ | 6 | <ul><li>'3 -RRB- Republican congressional representatives , because of their belief in a minimalist state , are less willing to engage in local benefit-seeking than are Democratic members of Congress . '</li><li>'That is the way the system works . '</li><li>'Duck swarms . '</li></ul> |
60
+ | 2 | <ul><li>'It explains how the Committee for Medicinal Products for Veterinary Use ( CVMP ) assessed the studies performed , to reach their recommendations on how to use the medicine . '</li><li>'Tricks such as those of Alonso and Ramos before the Ajax demonstrate wittiness but not the will to get remove of a sanction . '</li><li>'The next day , Sunday , the hangover reminded Haney where he had been the night before . '</li></ul> |
61
+ | 3 | <ul><li>'If it is , it will be treated as an operator , if it is not , it will be treated as a user function . '</li><li>'Back in the chase car , we drove around some more , got stuck in a ditch , enlisted the aid of a local farmer to get out the trailer hitch and pull us out of the ditch . '</li><li>"It was the most exercise we 'd had all morning and it was followed by our driving immediately to the nearest watering hole . "</li></ul> |
62
+ | 5 | <ul><li>'The discovery of a strange bacteria that can use arsenic as one of its nutrients widens the scope for finding new forms of life on Earth and possibly beyond . '</li><li>'I felt the temblor begin and glanced at the table next to mine , smiled that guilty smile and we both mouthed the words , `` Earth-quake ! `` together . '</li><li>'Already two major pharmaceutical companies , the Squibb unit of Bristol-Myers Squibb Co. and Hoffmann-La Roche Inc. , are collaborating with gene hunters to turn the anticipated cascade of discoveries into predictive tests and , maybe , new therapies . '</li></ul> |
63
+ | 0 | <ul><li>'Prior to 1932 , the pattern was nearly the opposite . '</li><li>'A minor contrast to Costa Rica , comparing the 22 players called by both countries for the friendly game today , at 3:05 pm at the National Stadium in San Jose . '</li><li>'Never in my life have I been so frightened . '</li></ul> |
64
+ | 4 | <ul><li>'`` To ring for even one service at this tower , we have to scrape , `` says Mr. Hammond , a retired water-authority worker . `` '</li><li>'It is a passion that usually stays in the tower , however . '</li><li>'One writer , signing his letter as `` Red-blooded , balanced male , `` remarked on the `` frequency of women fainting in peals , `` and suggested that they `` settle back into their traditional role of making tea at meetings . `` '</li></ul> |
65
+ | 1 | <ul><li>'Bribe by bribe , Mr. Sternberg and his co-author , Matthew C. Harrison Jr. , lead us along the path Wedtech traveled , from its inception as a small manufacturing company to the status of full-fledged defense contractor , entrusted with the task of producing vital equipment for the Army and Navy . '</li><li>"kalgebra 's console is useful as a calculator . "</li><li>'Then a wild thought ran circles through his clouded brain . '</li></ul> |
66
+
67
+ ## Uses
68
+
69
+ ### Direct Use for Inference
70
+
71
+ First install the SetFit library:
72
+
73
+ ```bash
74
+ pip install setfit
75
+ ```
76
+
77
+ Then you can load this model and run inference.
78
+
79
+ ```python
80
+ from setfit import SetFitModel
81
+
82
+ # Download from the 🤗 Hub
83
+ model = SetFitModel.from_pretrained("HelgeKn/SemEval-multi-class-10")
84
+ # Run inference
85
+ preds = model("To break the uncomfortable silence , Haney began to talk . ")
86
+ ```
87
+
88
+ <!--
89
+ ### Downstream Use
90
+
91
+ *List how someone could finetune this model on their own dataset.*
92
+ -->
93
+
94
+ <!--
95
+ ### Out-of-Scope Use
96
+
97
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
98
+ -->
99
+
100
+ <!--
101
+ ## Bias, Risks and Limitations
102
+
103
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
104
+ -->
105
+
106
+ <!--
107
+ ### Recommendations
108
+
109
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
110
+ -->
111
+
112
+ ## Training Details
113
+
114
+ ### Training Set Metrics
115
+ | Training set | Min | Median | Max |
116
+ |:-------------|:----|:--------|:----|
117
+ | Word count | 4 | 28.1286 | 74 |
118
+
119
+ | Label | Training Sample Count |
120
+ |:------|:----------------------|
121
+ | 0 | 10 |
122
+ | 1 | 10 |
123
+ | 2 | 10 |
124
+ | 3 | 10 |
125
+ | 4 | 10 |
126
+ | 5 | 10 |
127
+ | 6 | 10 |
128
+
129
+ ### Training Hyperparameters
130
+ - batch_size: (16, 16)
131
+ - num_epochs: (2, 2)
132
+ - max_steps: -1
133
+ - sampling_strategy: oversampling
134
+ - num_iterations: 20
135
+ - body_learning_rate: (2e-05, 2e-05)
136
+ - head_learning_rate: 2e-05
137
+ - loss: CosineSimilarityLoss
138
+ - distance_metric: cosine_distance
139
+ - margin: 0.25
140
+ - end_to_end: False
141
+ - use_amp: False
142
+ - warmup_proportion: 0.1
143
+ - seed: 42
144
+ - eval_max_steps: -1
145
+ - load_best_model_at_end: False
146
+
147
+ ### Training Results
148
+ | Epoch | Step | Training Loss | Validation Loss |
149
+ |:------:|:----:|:-------------:|:---------------:|
150
+ | 0.0057 | 1 | 0.2488 | - |
151
+ | 0.2857 | 50 | 0.2041 | - |
152
+ | 0.5714 | 100 | 0.1094 | - |
153
+ | 0.8571 | 150 | 0.0478 | - |
154
+ | 1.1429 | 200 | 0.0378 | - |
155
+ | 1.4286 | 250 | 0.0089 | - |
156
+ | 1.7143 | 300 | 0.0036 | - |
157
+ | 2.0 | 350 | 0.0029 | - |
158
+
159
+ ### Framework Versions
160
+ - Python: 3.9.13
161
+ - SetFit: 1.0.1
162
+ - Sentence Transformers: 2.2.2
163
+ - Transformers: 4.36.0
164
+ - PyTorch: 2.1.1+cpu
165
+ - Datasets: 2.15.0
166
+ - Tokenizers: 0.15.0
167
+
168
+ ## Citation
169
+
170
+ ### BibTeX
171
+ ```bibtex
172
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
173
+ doi = {10.48550/ARXIV.2209.11055},
174
+ url = {https://arxiv.org/abs/2209.11055},
175
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
176
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
177
+ title = {Efficient Few-Shot Learning Without Prompts},
178
+ publisher = {arXiv},
179
+ year = {2022},
180
+ copyright = {Creative Commons Attribution 4.0 International}
181
+ }
182
+ ```
183
+
184
+ <!--
185
+ ## Glossary
186
+
187
+ *Clearly define terms in order to be accessible across audiences.*
188
+ -->
189
+
190
+ <!--
191
+ ## Model Card Authors
192
+
193
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
194
+ -->
195
+
196
+ <!--
197
+ ## Model Card Contact
198
+
199
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
200
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "C:\\Users\\Man_f/.cache\\torch\\sentence_transformers\\sentence-transformers_paraphrase-mpnet-base-v2\\",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.36.0",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bd5029d1f23fea8850ae320a8e38904b14ba8358fbebd1e25f2c4889bc2fd24
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d856b2340b1104a46c6c688468f8de1f2784a2b00ceeb1c1f3b520ae484acb4a
3
+ size 23052
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff