Hawk91 commited on
Commit
4afe909
1 Parent(s): b70962d

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1362.12 +/- 65.49
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd5517dc82ee01dcce6a723d594be0baca3586e906f74ee4a8a08bebb2dc7375
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdd7c276040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdd7c2760d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdd7c276160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdd7c2761f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fdd7c276280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fdd7c276310>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdd7c2763a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdd7c276430>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fdd7c2764c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdd7c276550>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdd7c2765e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdd7c276670>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fdd7c2707b0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1677147869244457505,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAN5p7j7M6Ri/OMUNP8JhEz9RgDA/nC8gwKtDDz4RhaS/aZIcPsezyD9w4R6/zytjP3mAvD+BOLG9KvF3P3LWfj1AOtM/d4mNQIdfbj5DekzAAZZpv0/uQ0BiOsU/BG4yPkaanL+2P/M+qOXOPop6QT/u7u0//EOzPxjJIb+73BY/WpxevzJM0L4DpgTA5Himv2vcjz/xT8++YUiRPm6EvD50xpc/P3ZHvwWrfz+A4QG/LnbLvwjaHT63rYq/KsrMP22nrD+WxTe837KRv/HufbozPlE/tj/zPqjlzj7BXKm/ZBOKP7wTIj/g38I+fnO7P/Ctdz9Zx9g/R79oP6GM1b/gdFE/FN6BP1jPjL/cAOU9fgAIvjRzFkAsrMm+GG/kPt3vND9LdLw/4cqFP1l1Tz6+s6q/5r46PW0Piz/9LmG8Rpqcv7Y/8z6o5c4+inpBP3/f3D5ui+M+Q44AP1IgSr1/2h+/5zOFP7HjH8AKZDy/w5Ubv585Rz8hCCA+u711PlyCvT9Zeyu9SFeJP7bhGj79RoO/tq7qvoq2nL/s+7E+o9iHP1b/ib2jyrQ+5uBnvzM+UT+2P/M+qOXOPsFcqb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACfA0e2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlkr1PQAAAABcl++/AAAAAJoLAL4AAAAAVszsPwAAAADAOAU+AAAAAAtx6j8AAAAATTOKPAAAAABvf+S/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLIJtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGFwDz4AAAAAXeT6vwAAAACISgc+AAAAAC0P7z8AAAAAVwYHvgAAAABzuvU/AAAAABI1Or0AAAAAFpv6vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ4LfDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICl4Re9AAAAANrN9r8AAAAAntotvQAAAADvX9w/AAAAANCiiD0AAAAA0I7tPwAAAAA+B6Y8AAAAAIglAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABtmYA1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALjYZuwAAAABFNfi/AAAAAK2Khr0AAAAAHnf6PwAAAAC8ZOM9AAAAAAPi4D8AAAAAncQKOwAAAAAsLgHAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJZw2HCXQdGMAWyUTegDjAF0lEdArL/YT7EYO3V9lChoBkdAlslhfjS5RWgHTegDaAhHQKzB4hcqvvB1fZQoaAZHQJJz09B8hLZoB03oA2gIR0Csxtq4H5aedX2UKGgGR0CX2ExY7q6faAdN6ANoCEdArMmL7oB7u3V9lChoBkdAkxKXo9s7+2gHTegDaAhHQKzRFOqvNeN1fZQoaAZHQJNIf1e0G/xoB03oA2gIR0Cs0xr3sXzldX2UKGgGR0CRM9x9G7SRaAdN6ANoCEdArNceHi3ocXV9lChoBkdAlMUf+GXXy2gHTegDaAhHQKzY+oBJZnt1fZQoaAZHQJekVbgTAWVoB03oA2gIR0Cs3kv4VRDUdX2UKGgGR0CN/wbkOqecaAdNmAJoCEdArN/9RrJr+HV9lChoBkdAlU3Hm3fAK2gHTegDaAhHQKzgVRQ79yd1fZQoaAZHQJTKJt+CsfdoB03oA2gIR0Cs54ZLRKHxdX2UKGgGR0CTLn7qptJnaAdN6ANoCEdArO9t4NZvDXV9lChoBkdAlYQ0EPlMiGgHTegDaAhHQKzxG6asp5N1fZQoaAZHQJDmqnxaxHJoB03oA2gIR0Cs8XMqaw2VdX2UKGgGR0CUKSVxCIDYaAdN6ANoCEdArPc6ElE7XHV9lChoBkdAlEiTT4L1EmgHTegDaAhHQKz8fjMmnfl1fZQoaAZHQJApWkKu0TloB03oA2gIR0Cs/jbYkE9udX2UKGgGR0CTWLCoCMgmaAdN6ANoCEdArP6R1mrbQHV9lChoBkdAk6SGjsUqQWgHTegDaAhHQK0FGYoAn2J1fZQoaAZHQJLCTSApazNoB03oA2gIR0CtDYNFKCg9dX2UKGgGR0CPXxzjFQ2uaAdN6ANoCEdArQ+Jcs189nV9lChoBkdAj76HjZL7GmgHTegDaAhHQK0P4F1SwW51fZQoaAZHQJA8L/6wdKdoB03oA2gIR0CtFclWfbsXdX2UKGgGR0CLfc+zMRpUaAdN6ANoCEdArRs8CRwIdHV9lChoBkdAjmVOi35N5GgHTegDaAhHQK0c6GX5WR11fZQoaAZHQJBwqb/ffoBoB03oA2gIR0CtHULEDQqqdX2UKGgGR0CTfYnRb8m8aAdN6ANoCEdArSN1wcYIjXV9lChoBkdAkQr7euV5bGgHTegDaAhHQK0rbe67NB51fZQoaAZHQJUI1QYUFjdoB03oA2gIR0CtLf876pHadX2UKGgGR0CSNKa2F36iaAdN6ANoCEdArS5WLJjlP3V9lChoBkdAkjcdH2AXmGgHTegDaAhHQK0z/sJIDo11fZQoaAZHQJUZmPGQ0XRoB03oA2gIR0CtOS446wMZdX2UKGgGR0CVB7mOU+s6aAdN6ANoCEdArTrh/ustCnV9lChoBkdAlH9gwTM7l2gHTegDaAhHQK07PGTcIqt1fZQoaAZHQJSEyF10T11oB03oA2gIR0CtQS8uzyBkdX2UKGgGR0CT3j8KG+K1aAdN6ANoCEdArUjNy/9Hc3V9lChoBkdAk6Q0lme18mgHTegDaAhHQK1LWvugHu91fZQoaAZHQJRm0nuy/sVoB03oA2gIR0CtS+NEPUaydX2UKGgGR0CVCHDZ13dLaAdN6ANoCEdArVIVwWFewHV9lChoBkdAlVd6qGUOeGgHTegDaAhHQK1XexD9fkZ1fZQoaAZHQJWKNfv4M4NoB03oA2gIR0CtWUAxSHdodX2UKGgGR0CTW9dznzQNaAdN6ANoCEdArVmfDej2z3V9lChoBkdAlH7yAH3UQWgHTegDaAhHQK1fbFjurp91fZQoaAZHQJScP16E8JVoB03oA2gIR0CtZl8M/hVEdX2UKGgGR0CSzPe8wpOOaAdN6ANoCEdArWkW+PBBRnV9lChoBkdAkUksfJV81GgHTegDaAhHQK1pnjLjght1fZQoaAZHQJFe+ltTDO1oB03oA2gIR0CtcG+tr9EUdX2UKGgGR0CSsFkXDWK/aAdN6ANoCEdArXXYq0+kg3V9lChoBkdAkjr1RceKbmgHTegDaAhHQK13kcjJMg51fZQoaAZHQI+U3L3bmEJoB03oA2gIR0Ctd+gW8AaOdX2UKGgGR0CUPvmZ3LV4aAdN6ANoCEdArX29wBHTZ3V9lChoBkdAlR9Dl5nlGWgHTegDaAhHQK2EPXGwRoR1fZQoaAZHQJWnc1JlJ6JoB03oA2gIR0CthubOeJ53dX2UKGgGR0CS2wCK77KraAdN6ANoCEdArYdzdadMCnV9lChoBkdAlcwPm1YyPGgHTegDaAhHQK2O2lN1yNp1fZQoaAZHQJQK0aUA1eloB03oA2gIR0CtlDspG4I9dX2UKGgGR0CRzJdEsrd4aAdN6ANoCEdArZXsHUtqYnV9lChoBkdAlPzmqcVgyGgHTegDaAhHQK2WSGpuMuR1fZQoaAZHQJXAJW1c+q1oB03oA2gIR0Ctm/9cjZ+QdX2UKGgGR0CWcBLwnYxtaAdN6ANoCEdAraHrJyQxOHV9lChoBkdAlHDCJTER8WgHTegDaAhHQK2kX/XoTwl1fZQoaAZHQJTB33Gn4whoB03oA2gIR0CtpPKuKXOXdX2UKGgGR0CUriMSK3uvaAdN6ANoCEdAraz00Ltu1nV9lChoBkdAk2GD8gpz92gHTegDaAhHQK2yH2OhkAh1fZQoaAZHQJShisT37DVoB03oA2gIR0Cts9U03wTedX2UKGgGR0CO4n8Sf16FaAdN6ANoCEdArbQqNyYG+3V9lChoBkdAlHhJobn5i2gHTegDaAhHQK256sAeaKF1fZQoaAZHQJBaNF8XvYxoB03oA2gIR0Ctv0tNahYedX2UKGgGR0CUmLmpVCHAaAdN6ANoCEdArcG5XXAdn3V9lChoBkdAke5IgieNDWgHTegDaAhHQK3CRLM9r451fZQoaAZHQI6IT5bhWHVoB03oA2gIR0Ctyyml67d0dX2UKGgGR0CSfU2KEWZaaAdN6ANoCEdArdCGI42jwnV9lChoBkdAkbiQlOXVsmgHTegDaAhHQK3SRej2zv91fZQoaAZHQJKgdTLns9loB03oA2gIR0Ct0qwCCBf8dX2UKGgGR0CQolgssg+yaAdN6ANoCEdArdh8tZmqYXV9lChoBkdAk58YZVGTcWgHTegDaAhHQK3dvbor4Fl1fZQoaAZHQJOcJVo6CDpoB03oA2gIR0Ct3/KPGQ0XdX2UKGgGR0CRp9VsUIszaAdN6ANoCEdAreB3Vf/m1nV9lChoBkdAkIb4hMajvmgHTegDaAhHQK3pfVS4vvl1fZQoaAZHQJK7LoV2zOZoB03oA2gIR0Ct7tXIuGsWdX2UKGgGR0CVKD3MY/FBaAdN6ANoCEdArfCA4VARkHV9lChoBkdAlEb5/smfG2gHTegDaAhHQK3w3fKISDh1fZQoaAZHQJL0J+QU5+9oB03oA2gIR0Ct9s4jjaPCdX2UKGgGR0CS2BOCXhOyaAdN6ANoCEdArfwc6DGtIXV9lChoBkdAkGj2oNutOmgHTegDaAhHQK3925byH211fZQoaAZHQJP5z0XgtOFoB03oA2gIR0Ct/mEZiuuBdX2UKGgGR0CTMfMOPNmlaAdN6ANoCEdArgdNx0dRznV9lChoBkdAlbG8SK3uu2gHTegDaAhHQK4NdgFX7tR1fZQoaAZHQJSIhof0VahoB03oA2gIR0CuDycBEKE4dX2UKGgGR0CV31UdaMaTaAdN6ANoCEdArg+E4zabnXV9lChoBkdAlOEsfigkC2gHTegDaAhHQK4VWJHAh0R1fZQoaAZHQI7VVWS2Yv5oB03oA2gIR0CuGsdTHbRGdX2UKGgGR0CQJ9o+OfdzaAdN6ANoCEdArhyDiXIEKXV9lChoBkdAkfgsgU1yemgHTegDaAhHQK4c3tsvZh91fZQoaAZHQJC3kbhm5DtoB03oA2gIR0CuJUtkFwDOdX2UKGgGR0CTY13Ytg8baAdN6ANoCEdArivJAWzninV9lChoBkdAlh8aesgdO2gHTegDaAhHQK4tcsWfseJ1fZQoaAZHQJTUf1/Ue+5oB03oA2gIR0CuLch+4LCvdX2UKGgGR0CUnuSsbNr1aAdN6ANoCEdArjONxVAAyXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:794887977ec813115b4c17873267d28084279a59c8c508e16a99b8efc71ef6b2
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:774ee07b0077982aaa60ee64f8eba54d99aea48c6837b2d492cf48f00cd2ea65
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdd7c276040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdd7c2760d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdd7c276160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdd7c2761f0>", "_build": "<function ActorCriticPolicy._build at 0x7fdd7c276280>", "forward": "<function ActorCriticPolicy.forward at 0x7fdd7c276310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdd7c2763a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdd7c276430>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdd7c2764c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdd7c276550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdd7c2765e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdd7c276670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdd7c2707b0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677147869244457505, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAN5p7j7M6Ri/OMUNP8JhEz9RgDA/nC8gwKtDDz4RhaS/aZIcPsezyD9w4R6/zytjP3mAvD+BOLG9KvF3P3LWfj1AOtM/d4mNQIdfbj5DekzAAZZpv0/uQ0BiOsU/BG4yPkaanL+2P/M+qOXOPop6QT/u7u0//EOzPxjJIb+73BY/WpxevzJM0L4DpgTA5Himv2vcjz/xT8++YUiRPm6EvD50xpc/P3ZHvwWrfz+A4QG/LnbLvwjaHT63rYq/KsrMP22nrD+WxTe837KRv/HufbozPlE/tj/zPqjlzj7BXKm/ZBOKP7wTIj/g38I+fnO7P/Ctdz9Zx9g/R79oP6GM1b/gdFE/FN6BP1jPjL/cAOU9fgAIvjRzFkAsrMm+GG/kPt3vND9LdLw/4cqFP1l1Tz6+s6q/5r46PW0Piz/9LmG8Rpqcv7Y/8z6o5c4+inpBP3/f3D5ui+M+Q44AP1IgSr1/2h+/5zOFP7HjH8AKZDy/w5Ubv585Rz8hCCA+u711PlyCvT9Zeyu9SFeJP7bhGj79RoO/tq7qvoq2nL/s+7E+o9iHP1b/ib2jyrQ+5uBnvzM+UT+2P/M+qOXOPsFcqb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACfA0e2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlkr1PQAAAABcl++/AAAAAJoLAL4AAAAAVszsPwAAAADAOAU+AAAAAAtx6j8AAAAATTOKPAAAAABvf+S/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLIJtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGFwDz4AAAAAXeT6vwAAAACISgc+AAAAAC0P7z8AAAAAVwYHvgAAAABzuvU/AAAAABI1Or0AAAAAFpv6vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ4LfDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICl4Re9AAAAANrN9r8AAAAAntotvQAAAADvX9w/AAAAANCiiD0AAAAA0I7tPwAAAAA+B6Y8AAAAAIglAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABtmYA1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALjYZuwAAAABFNfi/AAAAAK2Khr0AAAAAHnf6PwAAAAC8ZOM9AAAAAAPi4D8AAAAAncQKOwAAAAAsLgHAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJZw2HCXQdGMAWyUTegDjAF0lEdArL/YT7EYO3V9lChoBkdAlslhfjS5RWgHTegDaAhHQKzB4hcqvvB1fZQoaAZHQJJz09B8hLZoB03oA2gIR0Csxtq4H5aedX2UKGgGR0CX2ExY7q6faAdN6ANoCEdArMmL7oB7u3V9lChoBkdAkxKXo9s7+2gHTegDaAhHQKzRFOqvNeN1fZQoaAZHQJNIf1e0G/xoB03oA2gIR0Cs0xr3sXzldX2UKGgGR0CRM9x9G7SRaAdN6ANoCEdArNceHi3ocXV9lChoBkdAlMUf+GXXy2gHTegDaAhHQKzY+oBJZnt1fZQoaAZHQJekVbgTAWVoB03oA2gIR0Cs3kv4VRDUdX2UKGgGR0CN/wbkOqecaAdNmAJoCEdArN/9RrJr+HV9lChoBkdAlU3Hm3fAK2gHTegDaAhHQKzgVRQ79yd1fZQoaAZHQJTKJt+CsfdoB03oA2gIR0Cs54ZLRKHxdX2UKGgGR0CTLn7qptJnaAdN6ANoCEdArO9t4NZvDXV9lChoBkdAlYQ0EPlMiGgHTegDaAhHQKzxG6asp5N1fZQoaAZHQJDmqnxaxHJoB03oA2gIR0Cs8XMqaw2VdX2UKGgGR0CUKSVxCIDYaAdN6ANoCEdArPc6ElE7XHV9lChoBkdAlEiTT4L1EmgHTegDaAhHQKz8fjMmnfl1fZQoaAZHQJApWkKu0TloB03oA2gIR0Cs/jbYkE9udX2UKGgGR0CTWLCoCMgmaAdN6ANoCEdArP6R1mrbQHV9lChoBkdAk6SGjsUqQWgHTegDaAhHQK0FGYoAn2J1fZQoaAZHQJLCTSApazNoB03oA2gIR0CtDYNFKCg9dX2UKGgGR0CPXxzjFQ2uaAdN6ANoCEdArQ+Jcs189nV9lChoBkdAj76HjZL7GmgHTegDaAhHQK0P4F1SwW51fZQoaAZHQJA8L/6wdKdoB03oA2gIR0CtFclWfbsXdX2UKGgGR0CLfc+zMRpUaAdN6ANoCEdArRs8CRwIdHV9lChoBkdAjmVOi35N5GgHTegDaAhHQK0c6GX5WR11fZQoaAZHQJBwqb/ffoBoB03oA2gIR0CtHULEDQqqdX2UKGgGR0CTfYnRb8m8aAdN6ANoCEdArSN1wcYIjXV9lChoBkdAkQr7euV5bGgHTegDaAhHQK0rbe67NB51fZQoaAZHQJUI1QYUFjdoB03oA2gIR0CtLf876pHadX2UKGgGR0CSNKa2F36iaAdN6ANoCEdArS5WLJjlP3V9lChoBkdAkjcdH2AXmGgHTegDaAhHQK0z/sJIDo11fZQoaAZHQJUZmPGQ0XRoB03oA2gIR0CtOS446wMZdX2UKGgGR0CVB7mOU+s6aAdN6ANoCEdArTrh/ustCnV9lChoBkdAlH9gwTM7l2gHTegDaAhHQK07PGTcIqt1fZQoaAZHQJSEyF10T11oB03oA2gIR0CtQS8uzyBkdX2UKGgGR0CT3j8KG+K1aAdN6ANoCEdArUjNy/9Hc3V9lChoBkdAk6Q0lme18mgHTegDaAhHQK1LWvugHu91fZQoaAZHQJRm0nuy/sVoB03oA2gIR0CtS+NEPUaydX2UKGgGR0CVCHDZ13dLaAdN6ANoCEdArVIVwWFewHV9lChoBkdAlVd6qGUOeGgHTegDaAhHQK1XexD9fkZ1fZQoaAZHQJWKNfv4M4NoB03oA2gIR0CtWUAxSHdodX2UKGgGR0CTW9dznzQNaAdN6ANoCEdArVmfDej2z3V9lChoBkdAlH7yAH3UQWgHTegDaAhHQK1fbFjurp91fZQoaAZHQJScP16E8JVoB03oA2gIR0CtZl8M/hVEdX2UKGgGR0CSzPe8wpOOaAdN6ANoCEdArWkW+PBBRnV9lChoBkdAkUksfJV81GgHTegDaAhHQK1pnjLjght1fZQoaAZHQJFe+ltTDO1oB03oA2gIR0CtcG+tr9EUdX2UKGgGR0CSsFkXDWK/aAdN6ANoCEdArXXYq0+kg3V9lChoBkdAkjr1RceKbmgHTegDaAhHQK13kcjJMg51fZQoaAZHQI+U3L3bmEJoB03oA2gIR0Ctd+gW8AaOdX2UKGgGR0CUPvmZ3LV4aAdN6ANoCEdArX29wBHTZ3V9lChoBkdAlR9Dl5nlGWgHTegDaAhHQK2EPXGwRoR1fZQoaAZHQJWnc1JlJ6JoB03oA2gIR0CthubOeJ53dX2UKGgGR0CS2wCK77KraAdN6ANoCEdArYdzdadMCnV9lChoBkdAlcwPm1YyPGgHTegDaAhHQK2O2lN1yNp1fZQoaAZHQJQK0aUA1eloB03oA2gIR0CtlDspG4I9dX2UKGgGR0CRzJdEsrd4aAdN6ANoCEdArZXsHUtqYnV9lChoBkdAlPzmqcVgyGgHTegDaAhHQK2WSGpuMuR1fZQoaAZHQJXAJW1c+q1oB03oA2gIR0Ctm/9cjZ+QdX2UKGgGR0CWcBLwnYxtaAdN6ANoCEdAraHrJyQxOHV9lChoBkdAlHDCJTER8WgHTegDaAhHQK2kX/XoTwl1fZQoaAZHQJTB33Gn4whoB03oA2gIR0CtpPKuKXOXdX2UKGgGR0CUriMSK3uvaAdN6ANoCEdAraz00Ltu1nV9lChoBkdAk2GD8gpz92gHTegDaAhHQK2yH2OhkAh1fZQoaAZHQJShisT37DVoB03oA2gIR0Cts9U03wTedX2UKGgGR0CO4n8Sf16FaAdN6ANoCEdArbQqNyYG+3V9lChoBkdAlHhJobn5i2gHTegDaAhHQK256sAeaKF1fZQoaAZHQJBaNF8XvYxoB03oA2gIR0Ctv0tNahYedX2UKGgGR0CUmLmpVCHAaAdN6ANoCEdArcG5XXAdn3V9lChoBkdAke5IgieNDWgHTegDaAhHQK3CRLM9r451fZQoaAZHQI6IT5bhWHVoB03oA2gIR0Ctyyml67d0dX2UKGgGR0CSfU2KEWZaaAdN6ANoCEdArdCGI42jwnV9lChoBkdAkbiQlOXVsmgHTegDaAhHQK3SRej2zv91fZQoaAZHQJKgdTLns9loB03oA2gIR0Ct0qwCCBf8dX2UKGgGR0CQolgssg+yaAdN6ANoCEdArdh8tZmqYXV9lChoBkdAk58YZVGTcWgHTegDaAhHQK3dvbor4Fl1fZQoaAZHQJOcJVo6CDpoB03oA2gIR0Ct3/KPGQ0XdX2UKGgGR0CRp9VsUIszaAdN6ANoCEdAreB3Vf/m1nV9lChoBkdAkIb4hMajvmgHTegDaAhHQK3pfVS4vvl1fZQoaAZHQJK7LoV2zOZoB03oA2gIR0Ct7tXIuGsWdX2UKGgGR0CVKD3MY/FBaAdN6ANoCEdArfCA4VARkHV9lChoBkdAlEb5/smfG2gHTegDaAhHQK3w3fKISDh1fZQoaAZHQJL0J+QU5+9oB03oA2gIR0Ct9s4jjaPCdX2UKGgGR0CS2BOCXhOyaAdN6ANoCEdArfwc6DGtIXV9lChoBkdAkGj2oNutOmgHTegDaAhHQK3925byH211fZQoaAZHQJP5z0XgtOFoB03oA2gIR0Ct/mEZiuuBdX2UKGgGR0CTMfMOPNmlaAdN6ANoCEdArgdNx0dRznV9lChoBkdAlbG8SK3uu2gHTegDaAhHQK4NdgFX7tR1fZQoaAZHQJSIhof0VahoB03oA2gIR0CuDycBEKE4dX2UKGgGR0CV31UdaMaTaAdN6ANoCEdArg+E4zabnXV9lChoBkdAlOEsfigkC2gHTegDaAhHQK4VWJHAh0R1fZQoaAZHQI7VVWS2Yv5oB03oA2gIR0CuGsdTHbRGdX2UKGgGR0CQJ9o+OfdzaAdN6ANoCEdArhyDiXIEKXV9lChoBkdAkfgsgU1yemgHTegDaAhHQK4c3tsvZh91fZQoaAZHQJC3kbhm5DtoB03oA2gIR0CuJUtkFwDOdX2UKGgGR0CTY13Ytg8baAdN6ANoCEdArivJAWzninV9lChoBkdAlh8aesgdO2gHTegDaAhHQK4tcsWfseJ1fZQoaAZHQJTUf1/Ue+5oB03oA2gIR0CuLch+4LCvdX2UKGgGR0CUnuSsbNr1aAdN6ANoCEdArjONxVAAyXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31ead27fd33dc3f313d6ce028bd14873ed7755b0ac96026615d31bc12627f6bc
3
+ size 1076004
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1362.1206577591408, "std_reward": 65.48743838060429, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-23T11:38:13.391252"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a62a6612ecd80d1e8ec56a448c69afe55719b46b56bbb08cd2748620a385510
3
+ size 2136