HasinMDG commited on
Commit
e3a928d
1 Parent(s): 5640616

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,376 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:2054
10
+ - loss:ContrastiveLoss
11
+ base_model: intfloat/multilingual-e5-large
12
+ datasets: []
13
+ widget:
14
+ - source_sentence: 2021 parliament elections
15
+ sentences:
16
+ - Wolaita people
17
+ - 2023 General Elections
18
+ - government forces
19
+ - source_sentence: Atiku Abubakar
20
+ sentences:
21
+ - president of Nigeria
22
+ - military juntas
23
+ - Federal Government
24
+ - source_sentence: Election
25
+ sentences:
26
+ - Tomorrow's election in Nigeria
27
+ - Election
28
+ - Public hospital
29
+ - source_sentence: Ethiopian government
30
+ sentences:
31
+ - President E.D Mnangagwa
32
+ - Sanction on Ethiopia
33
+ - Dino Melaye
34
+ - source_sentence: International community
35
+ sentences:
36
+ - Real-time vote tallying technology
37
+ - Western interference in Ethiopia
38
+ - International community
39
+ pipeline_tag: sentence-similarity
40
+ ---
41
+
42
+ # SentenceTransformer based on intfloat/multilingual-e5-large
43
+
44
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
45
+
46
+ ## Model Details
47
+
48
+ ### Model Description
49
+ - **Model Type:** Sentence Transformer
50
+ - **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision ab10c1a7f42e74530fe7ae5be82e6d4f11a719eb -->
51
+ - **Maximum Sequence Length:** 512 tokens
52
+ - **Output Dimensionality:** 1024 tokens
53
+ - **Similarity Function:** Cosine Similarity
54
+ <!-- - **Training Dataset:** Unknown -->
55
+ <!-- - **Language:** Unknown -->
56
+ <!-- - **License:** Unknown -->
57
+
58
+ ### Model Sources
59
+
60
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
61
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
62
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
63
+
64
+ ### Full Model Architecture
65
+
66
+ ```
67
+ SentenceTransformer(
68
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
69
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
70
+ (2): Normalize()
71
+ )
72
+ ```
73
+
74
+ ## Usage
75
+
76
+ ### Direct Usage (Sentence Transformers)
77
+
78
+ First install the Sentence Transformers library:
79
+
80
+ ```bash
81
+ pip install -U sentence-transformers
82
+ ```
83
+
84
+ Then you can load this model and run inference.
85
+ ```python
86
+ from sentence_transformers import SentenceTransformer
87
+
88
+ # Download from the 🤗 Hub
89
+ model = SentenceTransformer("sentence_transformers_model_id")
90
+ # Run inference
91
+ sentences = [
92
+ 'International community',
93
+ 'International community',
94
+ 'Western interference in Ethiopia',
95
+ ]
96
+ embeddings = model.encode(sentences)
97
+ print(embeddings.shape)
98
+ # [3, 1024]
99
+
100
+ # Get the similarity scores for the embeddings
101
+ similarities = model.similarity(embeddings, embeddings)
102
+ print(similarities.shape)
103
+ # [3, 3]
104
+ ```
105
+
106
+ <!--
107
+ ### Direct Usage (Transformers)
108
+
109
+ <details><summary>Click to see the direct usage in Transformers</summary>
110
+
111
+ </details>
112
+ -->
113
+
114
+ <!--
115
+ ### Downstream Usage (Sentence Transformers)
116
+
117
+ You can finetune this model on your own dataset.
118
+
119
+ <details><summary>Click to expand</summary>
120
+
121
+ </details>
122
+ -->
123
+
124
+ <!--
125
+ ### Out-of-Scope Use
126
+
127
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
128
+ -->
129
+
130
+ <!--
131
+ ## Bias, Risks and Limitations
132
+
133
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
134
+ -->
135
+
136
+ <!--
137
+ ### Recommendations
138
+
139
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
140
+ -->
141
+
142
+ ## Training Details
143
+
144
+ ### Training Dataset
145
+
146
+ #### Unnamed Dataset
147
+
148
+
149
+ * Size: 2,054 training samples
150
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
151
+ * Approximate statistics based on the first 1000 samples:
152
+ | | sentence1 | sentence2 | label |
153
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
154
+ | type | string | string | int |
155
+ | details | <ul><li>min: 3 tokens</li><li>mean: 5.74 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.86 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>0: ~60.20%</li><li>1: ~39.80%</li></ul> |
156
+ * Samples:
157
+ | sentence1 | sentence2 | label |
158
+ |:-----------------------------------------------|:------------------------------------|:---------------|
159
+ | <code>Nigerian people</code> | <code>Nigerian people</code> | <code>1</code> |
160
+ | <code>EFF</code> | <code>EFF</code> | <code>1</code> |
161
+ | <code>Public strikes and demonstrations</code> | <code>violent demonstrations</code> | <code>0</code> |
162
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
163
+ ```json
164
+ {
165
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
166
+ "margin": 0.5,
167
+ "size_average": true
168
+ }
169
+ ```
170
+
171
+ ### Evaluation Dataset
172
+
173
+ #### Unnamed Dataset
174
+
175
+
176
+ * Size: 514 evaluation samples
177
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
178
+ * Approximate statistics based on the first 1000 samples:
179
+ | | sentence1 | sentence2 | label |
180
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
181
+ | type | string | string | int |
182
+ | details | <ul><li>min: 3 tokens</li><li>mean: 5.74 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.93 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>0: ~59.92%</li><li>1: ~40.08%</li></ul> |
183
+ * Samples:
184
+ | sentence1 | sentence2 | label |
185
+ |:------------------------------------------|:------------------------------------------|:---------------|
186
+ | <code>military base in Namibia</code> | <code>US military bases in Africa</code> | <code>0</code> |
187
+ | <code>Putin's authoritarian regime</code> | <code>Putin's authoritarian regime</code> | <code>1</code> |
188
+ | <code>Election Day</code> | <code>Elections</code> | <code>1</code> |
189
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
190
+ ```json
191
+ {
192
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
193
+ "margin": 0.5,
194
+ "size_average": true
195
+ }
196
+ ```
197
+
198
+ ### Training Hyperparameters
199
+
200
+ #### All Hyperparameters
201
+ <details><summary>Click to expand</summary>
202
+
203
+ - `overwrite_output_dir`: False
204
+ - `do_predict`: False
205
+ - `eval_strategy`: no
206
+ - `prediction_loss_only`: True
207
+ - `per_device_train_batch_size`: 8
208
+ - `per_device_eval_batch_size`: 8
209
+ - `per_gpu_train_batch_size`: None
210
+ - `per_gpu_eval_batch_size`: None
211
+ - `gradient_accumulation_steps`: 1
212
+ - `eval_accumulation_steps`: None
213
+ - `learning_rate`: 5e-05
214
+ - `weight_decay`: 0.0
215
+ - `adam_beta1`: 0.9
216
+ - `adam_beta2`: 0.999
217
+ - `adam_epsilon`: 1e-08
218
+ - `max_grad_norm`: 1.0
219
+ - `num_train_epochs`: 3.0
220
+ - `max_steps`: -1
221
+ - `lr_scheduler_type`: linear
222
+ - `lr_scheduler_kwargs`: {}
223
+ - `warmup_ratio`: 0.0
224
+ - `warmup_steps`: 0
225
+ - `log_level`: passive
226
+ - `log_level_replica`: warning
227
+ - `log_on_each_node`: True
228
+ - `logging_nan_inf_filter`: True
229
+ - `save_safetensors`: True
230
+ - `save_on_each_node`: False
231
+ - `save_only_model`: False
232
+ - `restore_callback_states_from_checkpoint`: False
233
+ - `no_cuda`: False
234
+ - `use_cpu`: False
235
+ - `use_mps_device`: False
236
+ - `seed`: 42
237
+ - `data_seed`: None
238
+ - `jit_mode_eval`: False
239
+ - `use_ipex`: False
240
+ - `bf16`: False
241
+ - `fp16`: False
242
+ - `fp16_opt_level`: O1
243
+ - `half_precision_backend`: auto
244
+ - `bf16_full_eval`: False
245
+ - `fp16_full_eval`: False
246
+ - `tf32`: None
247
+ - `local_rank`: 0
248
+ - `ddp_backend`: None
249
+ - `tpu_num_cores`: None
250
+ - `tpu_metrics_debug`: False
251
+ - `debug`: []
252
+ - `dataloader_drop_last`: False
253
+ - `dataloader_num_workers`: 0
254
+ - `dataloader_prefetch_factor`: None
255
+ - `past_index`: -1
256
+ - `disable_tqdm`: False
257
+ - `remove_unused_columns`: True
258
+ - `label_names`: None
259
+ - `load_best_model_at_end`: False
260
+ - `ignore_data_skip`: False
261
+ - `fsdp`: []
262
+ - `fsdp_min_num_params`: 0
263
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
264
+ - `fsdp_transformer_layer_cls_to_wrap`: None
265
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
266
+ - `deepspeed`: None
267
+ - `label_smoothing_factor`: 0.0
268
+ - `optim`: adamw_torch
269
+ - `optim_args`: None
270
+ - `adafactor`: False
271
+ - `group_by_length`: False
272
+ - `length_column_name`: length
273
+ - `ddp_find_unused_parameters`: None
274
+ - `ddp_bucket_cap_mb`: None
275
+ - `ddp_broadcast_buffers`: False
276
+ - `dataloader_pin_memory`: True
277
+ - `dataloader_persistent_workers`: False
278
+ - `skip_memory_metrics`: True
279
+ - `use_legacy_prediction_loop`: False
280
+ - `push_to_hub`: False
281
+ - `resume_from_checkpoint`: None
282
+ - `hub_model_id`: None
283
+ - `hub_strategy`: every_save
284
+ - `hub_private_repo`: False
285
+ - `hub_always_push`: False
286
+ - `gradient_checkpointing`: False
287
+ - `gradient_checkpointing_kwargs`: None
288
+ - `include_inputs_for_metrics`: False
289
+ - `eval_do_concat_batches`: True
290
+ - `fp16_backend`: auto
291
+ - `push_to_hub_model_id`: None
292
+ - `push_to_hub_organization`: None
293
+ - `mp_parameters`:
294
+ - `auto_find_batch_size`: False
295
+ - `full_determinism`: False
296
+ - `torchdynamo`: None
297
+ - `ray_scope`: last
298
+ - `ddp_timeout`: 1800
299
+ - `torch_compile`: False
300
+ - `torch_compile_backend`: None
301
+ - `torch_compile_mode`: None
302
+ - `dispatch_batches`: None
303
+ - `split_batches`: None
304
+ - `include_tokens_per_second`: False
305
+ - `include_num_input_tokens_seen`: False
306
+ - `neftune_noise_alpha`: None
307
+ - `optim_target_modules`: None
308
+ - `batch_eval_metrics`: False
309
+ - `batch_sampler`: batch_sampler
310
+ - `multi_dataset_batch_sampler`: proportional
311
+
312
+ </details>
313
+
314
+ ### Training Logs
315
+ | Epoch | Step | Training Loss |
316
+ |:------:|:----:|:-------------:|
317
+ | 1.9455 | 500 | 0.0161 |
318
+
319
+
320
+ ### Framework Versions
321
+ - Python: 3.10.13
322
+ - Sentence Transformers: 3.0.1
323
+ - Transformers: 4.41.2
324
+ - PyTorch: 2.1.2
325
+ - Accelerate: 0.30.1
326
+ - Datasets: 2.19.2
327
+ - Tokenizers: 0.19.1
328
+
329
+ ## Citation
330
+
331
+ ### BibTeX
332
+
333
+ #### Sentence Transformers
334
+ ```bibtex
335
+ @inproceedings{reimers-2019-sentence-bert,
336
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
337
+ author = "Reimers, Nils and Gurevych, Iryna",
338
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
339
+ month = "11",
340
+ year = "2019",
341
+ publisher = "Association for Computational Linguistics",
342
+ url = "https://arxiv.org/abs/1908.10084",
343
+ }
344
+ ```
345
+
346
+ #### ContrastiveLoss
347
+ ```bibtex
348
+ @inproceedings{hadsell2006dimensionality,
349
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
350
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
351
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
352
+ year={2006},
353
+ volume={2},
354
+ number={},
355
+ pages={1735-1742},
356
+ doi={10.1109/CVPR.2006.100}
357
+ }
358
+ ```
359
+
360
+ <!--
361
+ ## Glossary
362
+
363
+ *Clearly define terms in order to be accessible across audiences.*
364
+ -->
365
+
366
+ <!--
367
+ ## Model Card Authors
368
+
369
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
370
+ -->
371
+
372
+ <!--
373
+ ## Model Card Contact
374
+
375
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
376
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/kaggle/input/ned-e5-large-multilingual",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.42.4",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.0.0+cpu"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:822b9263647fb4318aea16e74c2428797d23d132b7b5df1b973e93cdf7961490
3
+ size 2239607176
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "stride": 0,
57
+ "tokenizer_class": "XLMRobertaTokenizer",
58
+ "truncation_side": "right",
59
+ "truncation_strategy": "longest_first",
60
+ "unk_token": "<unk>"
61
+ }