End of training
Browse files- README.md +82 -196
- config.json +80 -0
- model.safetensors +3 -0
- runs/Oct11_23-46-06_p100-001/events.out.tfevents.1728683179.p100-001.3208272.0 +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,85 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
##
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/mit-b5
|
4 |
+
tags:
|
5 |
+
- vision
|
6 |
+
- image-segmentation
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: SegFormer_mit-b5_Final-Set4-Grayscale_On-the-fly-Augmented_batch8_lr0.0002
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# SegFormer_mit-b5_Final-Set4-Grayscale_On-the-fly-Augmented_batch8_lr0.0002
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the Hasano20/Final-Set4-Grayscale dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.6332
|
21 |
+
- Mean Iou: 0.2042
|
22 |
+
- Mean Accuracy: 0.3547
|
23 |
+
- Overall Accuracy: 0.5005
|
24 |
+
- Accuracy Background: 0.8894
|
25 |
+
- Accuracy Melt: 0.0
|
26 |
+
- Accuracy Substrate: 0.1746
|
27 |
+
- Iou Background: 0.4549
|
28 |
+
- Iou Melt: 0.0
|
29 |
+
- Iou Substrate: 0.1576
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 0.0002
|
49 |
+
- train_batch_size: 8
|
50 |
+
- eval_batch_size: 8
|
51 |
+
- seed: 42
|
52 |
+
- gradient_accumulation_steps: 4
|
53 |
+
- total_train_batch_size: 32
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: cosine
|
56 |
+
- lr_scheduler_warmup_steps: 100
|
57 |
+
- num_epochs: 25
|
58 |
+
- mixed_precision_training: Native AMP
|
59 |
+
|
60 |
+
### Training results
|
61 |
+
|
62 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate |
|
63 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:------------------:|:--------------:|:--------:|:-------------:|
|
64 |
+
| 0.0948 | 1.7699 | 50 | 3.2172 | 0.1562 | 0.3333 | 0.4687 | 1.0 | 0.0 | 0.0 | 0.4687 | 0.0 | 0.0 |
|
65 |
+
| 0.0735 | 3.5398 | 100 | 3.5520 | 0.1562 | 0.3333 | 0.4687 | 1.0 | 0.0 | 0.0 | 0.4687 | 0.0 | 0.0 |
|
66 |
+
| 0.064 | 5.3097 | 150 | 3.4135 | 0.1562 | 0.3333 | 0.4687 | 1.0 | 0.0 | 0.0 | 0.4687 | 0.0 | 0.0 |
|
67 |
+
| 0.062 | 7.0796 | 200 | 3.2473 | 0.1594 | 0.3297 | 0.4638 | 0.9688 | 0.0 | 0.0203 | 0.4585 | 0.0 | 0.0197 |
|
68 |
+
| 0.0672 | 8.8496 | 250 | 1.3897 | 0.1861 | 0.3555 | 0.5006 | 0.9884 | 0.0 | 0.0780 | 0.4812 | 0.0 | 0.0771 |
|
69 |
+
| 0.0423 | 10.6195 | 300 | 1.3204 | 0.1603 | 0.2938 | 0.4144 | 0.7495 | 0.0 | 0.1318 | 0.3750 | 0.0 | 0.1058 |
|
70 |
+
| 0.044 | 12.3894 | 350 | 1.2021 | 0.2482 | 0.3864 | 0.5467 | 0.8290 | 0.0 | 0.3303 | 0.4616 | 0.0 | 0.2829 |
|
71 |
+
| 0.0322 | 14.1593 | 400 | 1.5121 | 0.2118 | 0.3578 | 0.5052 | 0.8625 | 0.0 | 0.2108 | 0.4497 | 0.0 | 0.1858 |
|
72 |
+
| 0.0291 | 15.9292 | 450 | 1.6387 | 0.1855 | 0.3411 | 0.4808 | 0.9079 | 0.0 | 0.1155 | 0.4504 | 0.0 | 0.1059 |
|
73 |
+
| 0.0235 | 17.6991 | 500 | 1.6660 | 0.1874 | 0.3481 | 0.4906 | 0.9404 | 0.0 | 0.1040 | 0.4639 | 0.0 | 0.0982 |
|
74 |
+
| 0.0243 | 19.4690 | 550 | 1.5501 | 0.2051 | 0.3521 | 0.4970 | 0.8649 | 0.0 | 0.1913 | 0.4463 | 0.0 | 0.1690 |
|
75 |
+
| 0.0225 | 21.2389 | 600 | 1.7049 | 0.1982 | 0.3497 | 0.4934 | 0.8914 | 0.0 | 0.1578 | 0.4520 | 0.0 | 0.1427 |
|
76 |
+
| 0.0265 | 23.0088 | 650 | 1.6788 | 0.2008 | 0.3531 | 0.4982 | 0.8989 | 0.0 | 0.1606 | 0.4564 | 0.0 | 0.1461 |
|
77 |
+
| 0.0214 | 24.7788 | 700 | 1.6332 | 0.2042 | 0.3547 | 0.5005 | 0.8894 | 0.0 | 0.1746 | 0.4549 | 0.0 | 0.1576 |
|
78 |
+
|
79 |
+
|
80 |
+
### Framework versions
|
81 |
+
|
82 |
+
- Transformers 4.41.2
|
83 |
+
- Pytorch 2.0.1+cu117
|
84 |
+
- Datasets 2.19.2
|
85 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/mit-b5",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 768,
|
9 |
+
"depths": [
|
10 |
+
3,
|
11 |
+
6,
|
12 |
+
40,
|
13 |
+
3
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
64,
|
26 |
+
128,
|
27 |
+
320,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "background",
|
32 |
+
"1": "melt",
|
33 |
+
"2": "substrate"
|
34 |
+
},
|
35 |
+
"image_size": 224,
|
36 |
+
"initializer_range": 0.02,
|
37 |
+
"label2id": {
|
38 |
+
"background": 0,
|
39 |
+
"melt": 1,
|
40 |
+
"substrate": 2
|
41 |
+
},
|
42 |
+
"layer_norm_eps": 1e-06,
|
43 |
+
"mlp_ratios": [
|
44 |
+
4,
|
45 |
+
4,
|
46 |
+
4,
|
47 |
+
4
|
48 |
+
],
|
49 |
+
"model_type": "segformer",
|
50 |
+
"num_attention_heads": [
|
51 |
+
1,
|
52 |
+
2,
|
53 |
+
5,
|
54 |
+
8
|
55 |
+
],
|
56 |
+
"num_channels": 3,
|
57 |
+
"num_encoder_blocks": 4,
|
58 |
+
"patch_sizes": [
|
59 |
+
7,
|
60 |
+
3,
|
61 |
+
3,
|
62 |
+
3
|
63 |
+
],
|
64 |
+
"reshape_last_stage": true,
|
65 |
+
"semantic_loss_ignore_index": 255,
|
66 |
+
"sr_ratios": [
|
67 |
+
8,
|
68 |
+
4,
|
69 |
+
2,
|
70 |
+
1
|
71 |
+
],
|
72 |
+
"strides": [
|
73 |
+
4,
|
74 |
+
2,
|
75 |
+
2,
|
76 |
+
2
|
77 |
+
],
|
78 |
+
"torch_dtype": "float32",
|
79 |
+
"transformers_version": "4.41.2"
|
80 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da5918886bc52cce08d3afb488ed6157b5b1a9e9a084e4b301822ef9654c15b3
|
3 |
+
size 338531516
|
runs/Oct11_23-46-06_p100-001/events.out.tfevents.1728683179.p100-001.3208272.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d0db987918bb8e923c54faf487443b77e3b15c6b02548eab75fd33b5e0c6863
|
3 |
+
size 164413
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:765c184cae26f2d52703bafed5567fdf1577d3accaa9aa6ab166ba125bc707dd
|
3 |
+
size 5051
|