Hasano20 commited on
Commit
7ad81c4
1 Parent(s): 287cc12

End of training

Browse files
Files changed (4) hide show
  1. README.md +106 -196
  2. config.json +80 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md CHANGED
@@ -1,199 +1,109 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: other
3
+ base_model: nvidia/mit-b5
4
+ tags:
5
+ - vision
6
+ - image-segmentation
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: SegFormer_Clean_Set1_95images_mit-b5_RGB
10
+ results: []
11
  ---
12
 
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # SegFormer_Clean_Set1_95images_mit-b5_RGB
17
+
18
+ This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the Hasano20/Clean_Set1_95images dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.0210
21
+ - Mean Iou: 0.9721
22
+ - Mean Accuracy: 0.9816
23
+ - Overall Accuracy: 0.9941
24
+ - Accuracy Background: 0.9974
25
+ - Accuracy Melt: 0.9506
26
+ - Accuracy Substrate: 0.9969
27
+ - Iou Background: 0.9954
28
+ - Iou Melt: 0.9316
29
+ - Iou Substrate: 0.9891
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 0.0001
49
+ - train_batch_size: 4
50
+ - eval_batch_size: 4
51
+ - seed: 42
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - num_epochs: 50
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate |
59
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:------------------:|:--------------:|:--------:|:-------------:|
60
+ | 0.2459 | 1.1765 | 20 | 0.4048 | 0.5613 | 0.6310 | 0.8812 | 0.9733 | 0.0102 | 0.9096 | 0.8391 | 0.0100 | 0.8349 |
61
+ | 0.2421 | 2.3529 | 40 | 0.1840 | 0.6645 | 0.7118 | 0.9292 | 0.9969 | 0.1720 | 0.9666 | 0.9574 | 0.1475 | 0.8886 |
62
+ | 0.1511 | 3.5294 | 60 | 0.1347 | 0.6751 | 0.7154 | 0.9392 | 0.9909 | 0.1590 | 0.9963 | 0.9639 | 0.1570 | 0.9045 |
63
+ | 0.1449 | 4.7059 | 80 | 0.1350 | 0.7359 | 0.7793 | 0.9471 | 0.9937 | 0.3623 | 0.9819 | 0.9642 | 0.3221 | 0.9213 |
64
+ | 0.1276 | 5.8824 | 100 | 0.1006 | 0.8194 | 0.9138 | 0.9551 | 0.9823 | 0.8117 | 0.9474 | 0.9707 | 0.5605 | 0.9271 |
65
+ | 0.0638 | 7.0588 | 120 | 0.0916 | 0.8139 | 0.8438 | 0.9646 | 0.9964 | 0.5438 | 0.9913 | 0.9779 | 0.5208 | 0.9431 |
66
+ | 0.0535 | 8.2353 | 140 | 0.0695 | 0.8572 | 0.8769 | 0.9735 | 0.9969 | 0.6367 | 0.9971 | 0.9804 | 0.6316 | 0.9597 |
67
+ | 0.0346 | 9.4118 | 160 | 0.0435 | 0.9224 | 0.9384 | 0.9848 | 0.9962 | 0.8230 | 0.9959 | 0.9888 | 0.8039 | 0.9745 |
68
+ | 0.0393 | 10.5882 | 180 | 0.0376 | 0.9352 | 0.9642 | 0.9867 | 0.9970 | 0.9082 | 0.9873 | 0.9882 | 0.8376 | 0.9798 |
69
+ | 0.0294 | 11.7647 | 200 | 0.0448 | 0.9298 | 0.9746 | 0.9851 | 0.9932 | 0.9487 | 0.9818 | 0.9916 | 0.8253 | 0.9725 |
70
+ | 0.0387 | 12.9412 | 220 | 0.0409 | 0.9270 | 0.9488 | 0.9855 | 0.9970 | 0.8575 | 0.9918 | 0.9830 | 0.8157 | 0.9823 |
71
+ | 0.0435 | 14.1176 | 240 | 0.0353 | 0.9482 | 0.9685 | 0.9886 | 0.9891 | 0.9185 | 0.9980 | 0.9881 | 0.8749 | 0.9816 |
72
+ | 0.022 | 15.2941 | 260 | 0.0246 | 0.9587 | 0.9696 | 0.9915 | 0.9970 | 0.9152 | 0.9967 | 0.9931 | 0.8979 | 0.9853 |
73
+ | 0.0203 | 16.4706 | 280 | 0.0191 | 0.9698 | 0.9826 | 0.9934 | 0.9953 | 0.9557 | 0.9967 | 0.9935 | 0.9272 | 0.9887 |
74
+ | 0.0212 | 17.6471 | 300 | 0.0256 | 0.9604 | 0.9724 | 0.9917 | 0.9953 | 0.9243 | 0.9975 | 0.9933 | 0.9028 | 0.9851 |
75
+ | 0.0123 | 18.8235 | 320 | 0.0223 | 0.9638 | 0.9763 | 0.9924 | 0.9954 | 0.9363 | 0.9972 | 0.9938 | 0.9112 | 0.9864 |
76
+ | 0.0137 | 20.0 | 340 | 0.0292 | 0.9543 | 0.9720 | 0.9906 | 0.9933 | 0.9256 | 0.9969 | 0.9919 | 0.8867 | 0.9844 |
77
+ | 0.0092 | 21.1765 | 360 | 0.0171 | 0.9719 | 0.9797 | 0.9941 | 0.9977 | 0.9439 | 0.9974 | 0.9942 | 0.9312 | 0.9902 |
78
+ | 0.0094 | 22.3529 | 380 | 0.0178 | 0.9730 | 0.9829 | 0.9941 | 0.9984 | 0.9550 | 0.9952 | 0.9938 | 0.9352 | 0.9901 |
79
+ | 0.016 | 23.5294 | 400 | 0.0163 | 0.9760 | 0.9881 | 0.9946 | 0.9954 | 0.9721 | 0.9969 | 0.9944 | 0.9430 | 0.9907 |
80
+ | 0.0083 | 24.7059 | 420 | 0.0151 | 0.9784 | 0.9882 | 0.9952 | 0.9973 | 0.9707 | 0.9965 | 0.9952 | 0.9483 | 0.9916 |
81
+ | 0.0094 | 25.8824 | 440 | 0.0259 | 0.9626 | 0.9731 | 0.9925 | 0.9971 | 0.9248 | 0.9972 | 0.9952 | 0.9067 | 0.9858 |
82
+ | 0.0144 | 27.0588 | 460 | 0.0171 | 0.9743 | 0.9860 | 0.9945 | 0.9980 | 0.9648 | 0.9951 | 0.9948 | 0.9376 | 0.9905 |
83
+ | 0.0075 | 28.2353 | 480 | 0.0168 | 0.9733 | 0.9824 | 0.9943 | 0.9972 | 0.9528 | 0.9972 | 0.9949 | 0.9351 | 0.9900 |
84
+ | 0.0076 | 29.4118 | 500 | 0.0171 | 0.9756 | 0.9842 | 0.9947 | 0.9979 | 0.9580 | 0.9966 | 0.9951 | 0.9409 | 0.9907 |
85
+ | 0.0075 | 30.5882 | 520 | 0.0170 | 0.9748 | 0.9835 | 0.9946 | 0.9974 | 0.9560 | 0.9971 | 0.9954 | 0.9388 | 0.9901 |
86
+ | 0.0084 | 31.7647 | 540 | 0.0154 | 0.9783 | 0.9899 | 0.9952 | 0.9976 | 0.9770 | 0.9953 | 0.9954 | 0.9480 | 0.9914 |
87
+ | 0.0055 | 32.9412 | 560 | 0.0156 | 0.9777 | 0.9888 | 0.9951 | 0.9971 | 0.9730 | 0.9962 | 0.9953 | 0.9465 | 0.9913 |
88
+ | 0.009 | 34.1176 | 580 | 0.0166 | 0.9752 | 0.9856 | 0.9947 | 0.9972 | 0.9630 | 0.9965 | 0.9953 | 0.9400 | 0.9904 |
89
+ | 0.0055 | 35.2941 | 600 | 0.0176 | 0.9745 | 0.9835 | 0.9946 | 0.9972 | 0.9560 | 0.9974 | 0.9954 | 0.9378 | 0.9902 |
90
+ | 0.0069 | 36.4706 | 620 | 0.0180 | 0.9748 | 0.9832 | 0.9946 | 0.9974 | 0.9547 | 0.9974 | 0.9955 | 0.9388 | 0.9902 |
91
+ | 0.0051 | 37.6471 | 640 | 0.0181 | 0.9752 | 0.9843 | 0.9947 | 0.9975 | 0.9585 | 0.9968 | 0.9955 | 0.9397 | 0.9903 |
92
+ | 0.0071 | 38.8235 | 660 | 0.0201 | 0.9729 | 0.9847 | 0.9943 | 0.9968 | 0.9610 | 0.9963 | 0.9953 | 0.9337 | 0.9896 |
93
+ | 0.0058 | 40.0 | 680 | 0.0208 | 0.9720 | 0.9826 | 0.9941 | 0.9971 | 0.9540 | 0.9968 | 0.9954 | 0.9315 | 0.9892 |
94
+ | 0.0061 | 41.1765 | 700 | 0.0222 | 0.9699 | 0.9802 | 0.9937 | 0.9973 | 0.9467 | 0.9967 | 0.9954 | 0.9260 | 0.9883 |
95
+ | 0.0062 | 42.3529 | 720 | 0.0205 | 0.9720 | 0.9819 | 0.9941 | 0.9975 | 0.9516 | 0.9966 | 0.9953 | 0.9315 | 0.9891 |
96
+ | 0.004 | 43.5294 | 740 | 0.0193 | 0.9741 | 0.9835 | 0.9945 | 0.9973 | 0.9561 | 0.9969 | 0.9954 | 0.9371 | 0.9898 |
97
+ | 0.0065 | 44.7059 | 760 | 0.0195 | 0.9738 | 0.9842 | 0.9944 | 0.9971 | 0.9588 | 0.9967 | 0.9953 | 0.9363 | 0.9898 |
98
+ | 0.0044 | 45.8824 | 780 | 0.0201 | 0.9731 | 0.9830 | 0.9943 | 0.9971 | 0.9550 | 0.9969 | 0.9954 | 0.9344 | 0.9895 |
99
+ | 0.0073 | 47.0588 | 800 | 0.0210 | 0.9723 | 0.9818 | 0.9941 | 0.9972 | 0.9512 | 0.9971 | 0.9954 | 0.9323 | 0.9891 |
100
+ | 0.0049 | 48.2353 | 820 | 0.0209 | 0.9723 | 0.9822 | 0.9941 | 0.9974 | 0.9527 | 0.9966 | 0.9954 | 0.9322 | 0.9892 |
101
+ | 0.0069 | 49.4118 | 840 | 0.0210 | 0.9721 | 0.9816 | 0.9941 | 0.9974 | 0.9506 | 0.9969 | 0.9954 | 0.9316 | 0.9891 |
102
+
103
+
104
+ ### Framework versions
105
+
106
+ - Transformers 4.41.2
107
+ - Pytorch 2.0.1+cu117
108
+ - Datasets 2.19.2
109
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/mit-b5",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 768,
9
+ "depths": [
10
+ 3,
11
+ 6,
12
+ 40,
13
+ 3
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 64,
26
+ 128,
27
+ 320,
28
+ 512
29
+ ],
30
+ "id2label": {
31
+ "0": "background",
32
+ "1": "melt",
33
+ "2": "substrate"
34
+ },
35
+ "image_size": 224,
36
+ "initializer_range": 0.02,
37
+ "label2id": {
38
+ "background": 0,
39
+ "melt": 1,
40
+ "substrate": 2
41
+ },
42
+ "layer_norm_eps": 1e-06,
43
+ "mlp_ratios": [
44
+ 4,
45
+ 4,
46
+ 4,
47
+ 4
48
+ ],
49
+ "model_type": "segformer",
50
+ "num_attention_heads": [
51
+ 1,
52
+ 2,
53
+ 5,
54
+ 8
55
+ ],
56
+ "num_channels": 3,
57
+ "num_encoder_blocks": 4,
58
+ "patch_sizes": [
59
+ 7,
60
+ 3,
61
+ 3,
62
+ 3
63
+ ],
64
+ "reshape_last_stage": true,
65
+ "semantic_loss_ignore_index": 255,
66
+ "sr_ratios": [
67
+ 8,
68
+ 4,
69
+ 2,
70
+ 1
71
+ ],
72
+ "strides": [
73
+ 4,
74
+ 2,
75
+ 2,
76
+ 2
77
+ ],
78
+ "torch_dtype": "float32",
79
+ "transformers_version": "4.41.2"
80
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f419a3eb86893c6ad458800123a2740af109bc89de353cecb26acae79e4dfc4d
3
+ size 338531516
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70496fd041d2d8c4307f0229b6f82657f7af473a6d8921accf3250c2182a016f
3
+ size 4667