HarrisDePerceptron
commited on
Commit
•
1c3f04a
1
Parent(s):
8fbea0e
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: ''
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
#
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [DrishtiSharma/wav2vec2-large-xls-r-300m-hi-d3](https://huggingface.co/DrishtiSharma/wav2vec2-large-xls-r-300m-hi-d3) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.5443
|
20 |
+
- Wer: 0.7030
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.000388
|
40 |
+
- train_batch_size: 8
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 16
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 750
|
48 |
+
- num_epochs: 100.0
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
55 |
+
| 10.7052 | 1.96 | 100 | 3.4683 | 1.0 |
|
56 |
+
| 3.2395 | 3.92 | 200 | 3.1489 | 1.0 |
|
57 |
+
| 2.9951 | 5.88 | 300 | 2.9823 | 1.0007 |
|
58 |
+
| 2.3574 | 7.84 | 400 | 1.2614 | 0.7598 |
|
59 |
+
| 1.7287 | 9.8 | 500 | 1.1817 | 0.7421 |
|
60 |
+
| 1.6144 | 11.76 | 600 | 1.1315 | 0.7321 |
|
61 |
+
| 1.5598 | 13.73 | 700 | 1.2322 | 0.7550 |
|
62 |
+
| 1.5418 | 15.69 | 800 | 1.2721 | 0.7819 |
|
63 |
+
| 1.4578 | 17.65 | 900 | 1.1710 | 0.7531 |
|
64 |
+
| 1.4311 | 19.61 | 1000 | 1.2042 | 0.7491 |
|
65 |
+
| 1.3483 | 21.57 | 1100 | 1.1702 | 0.7465 |
|
66 |
+
| 1.3078 | 23.53 | 1200 | 1.1963 | 0.7421 |
|
67 |
+
| 1.2576 | 25.49 | 1300 | 1.1501 | 0.7280 |
|
68 |
+
| 1.2173 | 27.45 | 1400 | 1.2526 | 0.7299 |
|
69 |
+
| 1.2217 | 29.41 | 1500 | 1.2479 | 0.7310 |
|
70 |
+
| 1.1536 | 31.37 | 1600 | 1.2567 | 0.7432 |
|
71 |
+
| 1.0939 | 33.33 | 1700 | 1.2801 | 0.7247 |
|
72 |
+
| 1.0745 | 35.29 | 1800 | 1.2340 | 0.7151 |
|
73 |
+
| 1.0454 | 37.25 | 1900 | 1.2372 | 0.7151 |
|
74 |
+
| 1.0101 | 39.22 | 2000 | 1.2461 | 0.7376 |
|
75 |
+
| 0.9833 | 41.18 | 2100 | 1.2553 | 0.7269 |
|
76 |
+
| 0.9314 | 43.14 | 2200 | 1.2372 | 0.7015 |
|
77 |
+
| 0.9147 | 45.1 | 2300 | 1.3035 | 0.7358 |
|
78 |
+
| 0.8758 | 47.06 | 2400 | 1.2598 | 0.7092 |
|
79 |
+
| 0.8356 | 49.02 | 2500 | 1.2557 | 0.7144 |
|
80 |
+
| 0.8105 | 50.98 | 2600 | 1.2619 | 0.7236 |
|
81 |
+
| 0.7947 | 52.94 | 2700 | 1.3994 | 0.7491 |
|
82 |
+
| 0.7623 | 54.9 | 2800 | 1.2932 | 0.7133 |
|
83 |
+
| 0.7282 | 56.86 | 2900 | 1.2799 | 0.7089 |
|
84 |
+
| 0.7108 | 58.82 | 3000 | 1.3615 | 0.7148 |
|
85 |
+
| 0.6896 | 60.78 | 3100 | 1.3129 | 0.7041 |
|
86 |
+
| 0.6496 | 62.75 | 3200 | 1.4050 | 0.6934 |
|
87 |
+
| 0.6075 | 64.71 | 3300 | 1.3571 | 0.7026 |
|
88 |
+
| 0.6242 | 66.67 | 3400 | 1.3369 | 0.7063 |
|
89 |
+
| 0.5865 | 68.63 | 3500 | 1.4368 | 0.7140 |
|
90 |
+
| 0.5721 | 70.59 | 3600 | 1.4224 | 0.7066 |
|
91 |
+
| 0.5475 | 72.55 | 3700 | 1.4798 | 0.7118 |
|
92 |
+
| 0.5086 | 74.51 | 3800 | 1.5107 | 0.7232 |
|
93 |
+
| 0.4958 | 76.47 | 3900 | 1.4849 | 0.7089 |
|
94 |
+
| 0.5046 | 78.43 | 4000 | 1.4451 | 0.7114 |
|
95 |
+
| 0.4694 | 80.39 | 4100 | 1.4674 | 0.7089 |
|
96 |
+
| 0.4386 | 82.35 | 4200 | 1.5245 | 0.7103 |
|
97 |
+
| 0.4516 | 84.31 | 4300 | 1.5032 | 0.7103 |
|
98 |
+
| 0.4113 | 86.27 | 4400 | 1.5246 | 0.7196 |
|
99 |
+
| 0.3972 | 88.24 | 4500 | 1.5318 | 0.7114 |
|
100 |
+
| 0.4006 | 90.2 | 4600 | 1.5543 | 0.6982 |
|
101 |
+
| 0.4014 | 92.16 | 4700 | 1.5442 | 0.7048 |
|
102 |
+
| 0.3672 | 94.12 | 4800 | 1.5542 | 0.7137 |
|
103 |
+
| 0.3666 | 96.08 | 4900 | 1.5414 | 0.7018 |
|
104 |
+
| 0.3574 | 98.04 | 5000 | 1.5465 | 0.7059 |
|
105 |
+
| 0.3428 | 100.0 | 5100 | 1.5443 | 0.7030 |
|
106 |
+
|
107 |
+
|
108 |
+
### Framework versions
|
109 |
+
|
110 |
+
- Transformers 4.17.0.dev0
|
111 |
+
- Pytorch 1.10.2+cu102
|
112 |
+
- Datasets 1.18.3
|
113 |
+
- Tokenizers 0.11.0
|