HarmlessFlower
commited on
Commit
·
7c1fb55
1
Parent(s):
f2683ad
Upload PPO LunarLander-v2 Trained Agent
Browse files- README.md +35 -1
- config.json +1 -0
- pi_day_ppo-LunarLander-v2.zip +3 -0
- pi_day_ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- pi_day_ppo-LunarLander-v2/data +95 -0
- pi_day_ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- pi_day_ppo-LunarLander-v2/policy.pth +3 -0
- pi_day_ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- pi_day_ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 265.94 +/- 19.97
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2e77b39940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2e77b399d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2e77b39a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2e77b39af0>", "_build": "<function ActorCriticPolicy._build at 0x7f2e77b39b80>", "forward": "<function ActorCriticPolicy.forward at 0x7f2e77b39c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2e77b39ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2e77b39d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2e77b39dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2e77b39e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2e77b39ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2e77b39f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2e77b58880>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678466595376447579, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOmijwItQQ/qnqDvbDfXb46cyW8JEGiuwAAAAAAAAAA83bHPbhl47vmGuS8xYiuPE09UL0AIJE9AACAPwAAAACaoVu84eikui0B5jqCkbw1mhNUuuY6BLoAAIA/AACAP3qeBL5KYp8/+UyUvnJ7+L76EZ29azgivgAAAAAAAAAAAKq3vPa0Obq78Eq6wN1JNupv27qbFG85AACAPwAAgD8zTt89uFnCPhPF8r3wkoG+0QSEPDoxiT0AAAAAAAAAALqzRL559bw+fgOOPjGPaL4+Q1C8nqbAPQAAAAAAAAAAJn6IvQRxtz+6wRG/U/MuvVjIoDxoXvK9AAAAAAAAAABALIw9XJCdPtYopb42C3C+ph2rvR5oPr0AAAAAAAAAABotuD03Zmo/dn35vcLbir6It4g9sKPQvQAAAAAAAAAAZt+yvWT+2z4VIJS9w6BtvhT4u70GUjO8AAAAAAAAAACagaI84fi7uvYJ6zu9FIw8IVsHPP5tc70AAIA/AACAPzNgDD37/Yk9uoTrPZy/aL7gMjc9K2yiOQAAAAAAAAAAM7ciPM+qbz82F4q9q/C1vtmpS7zW/6O9AAAAAAAAAABKC5K+JxugPwgl574UphW/o+h/vnW5Pr4AAAAAAAAAAABlJ72IlRk/UPkYvhOxs75oYeG8DtuAvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXoB9dOrmbUCUhpRSlIwBbJRNNAGMAXSUR0CVaQCmdiDvdX2UKGgGaAloD0MI5q26DlWycECUhpRSlGgVTTIBaBZHQJVpWYlY2bZ1fZQoaAZoCWgPQwjylNV0vRpuQJSGlFKUaBVNVgFoFkdAlWsB73PAwnV9lChoBmgJaA9DCLVwWYXNTG5AlIaUUpRoFU0rAWgWR0CVa2Ymb9ZSdX2UKGgGaAloD0MI9+l4zMDibkCUhpRSlGgVTRMBaBZHQJVtiCOFQEZ1fZQoaAZoCWgPQwiLG7eYn81wQJSGlFKUaBVNEwFoFkdAlW5xZyMkyHV9lChoBmgJaA9DCDwW26TiDXFAlIaUUpRoFU0gAWgWR0CVbulGwzLwdX2UKGgGaAloD0MIsKpefqfAc0CUhpRSlGgVTVgBaBZHQJVvF85S3sp1fZQoaAZoCWgPQwik374OnKluQJSGlFKUaBVNNwFoFkdAlXCAqiGnGnV9lChoBmgJaA9DCA05tp4hHm1AlIaUUpRoFU02AWgWR0CVcjPsRg7YdX2UKGgGaAloD0MI7E0MyQmXckCUhpRSlGgVTR0BaBZHQJVyP/rB0p51fZQoaAZoCWgPQwjOOA1RxTpyQJSGlFKUaBVNCAFoFkdAlXT4w7DEWXV9lChoBmgJaA9DCEmfVtEf3nFAlIaUUpRoFU0eAWgWR0CVdTfl6qsEdX2UKGgGaAloD0MIoOI48CrpcUCUhpRSlGgVTSkBaBZHQJV12X1J17p1fZQoaAZoCWgPQwg4oKUrGJVwQJSGlFKUaBVNZgFoFkdAlXZxd6cAinV9lChoBmgJaA9DCA04S8nylWxAlIaUUpRoFU0/AWgWR0CVdwFUADJVdX2UKGgGaAloD0MI1cvvNJmGb0CUhpRSlGgVTaQBaBZHQJV4MRg7YCh1fZQoaAZoCWgPQwgpBd1ekntxQJSGlFKUaBVNbwFoFkdAlXinY+Sr53V9lChoBmgJaA9DCL8LW7PVwXFAlIaUUpRoFU1OAWgWR0CVeXViF0xNdX2UKGgGaAloD0MIp7Io7KKEbkCUhpRSlGgVTVUBaBZHQJV6A6U7jkx1fZQoaAZoCWgPQwig3oyaLwttQJSGlFKUaBVNJQFoFkdAlXq6hUR3/3V9lChoBmgJaA9DCAiQoWMH/m5AlIaUUpRoFU0gAWgWR0CVeuEWqLjxdX2UKGgGaAloD0MItvY+VYUncUCUhpRSlGgVTUABaBZHQJV67W3BpHt1fZQoaAZoCWgPQwiEukihLE5wQJSGlFKUaBVNJQFoFkdAlXsizTnaFnV9lChoBmgJaA9DCHldv2C3M25AlIaUUpRoFU0hAWgWR0CVe9cnmaH9dX2UKGgGaAloD0MIxXJLqyGXcUCUhpRSlGgVTSkBaBZHQJV9Vo/Rmbt1fZQoaAZoCWgPQwiXjjnPGEhyQJSGlFKUaBVNSgFoFkdAlX5zR+jM3nV9lChoBmgJaA9DCGK/J9bp9XBAlIaUUpRoFU0gAWgWR0CVfrfMOf/WdX2UKGgGaAloD0MIIR0ewvgUakCUhpRSlGgVTRIBaBZHQJV/SUX531V1fZQoaAZoCWgPQwjbFI+LatH4P5SGlFKUaBVL3mgWR0CVf5FWGRFJdX2UKGgGaAloD0MIaFiMuhZ9cUCUhpRSlGgVTScBaBZHQJWAXpeNT991fZQoaAZoCWgPQwjhmdAksQRxQJSGlFKUaBVNVQFoFkdAlYCcSK3uu3V9lChoBmgJaA9DCA/yejBpUHBAlIaUUpRoFU0bAWgWR0CVgQX8O09hdX2UKGgGaAloD0MI4j5ya1K+cUCUhpRSlGgVTQkBaBZHQJWBsM7U5Ml1fZQoaAZoCWgPQwh5lbVN8dg8QJSGlFKUaBVL7mgWR0CVghuHvc8DdX2UKGgGaAloD0MIdY9srpo0cECUhpRSlGgVTZIBaBZHQJWC6hRIjGF1fZQoaAZoCWgPQwjv4v24vTxwQJSGlFKUaBVNEwFoFkdAlYO5cX3xnXV9lChoBmgJaA9DCLgE4J/Stm9AlIaUUpRoFU0dAWgWR0CVg9C6H0sfdX2UKGgGaAloD0MI9YO6SKEUcUCUhpRSlGgVTT0BaBZHQJWD4yM1jy51fZQoaAZoCWgPQwh/pIgMa2ZzQJSGlFKUaBVNNAFoFkdAlYSBZ2ZAp3V9lChoBmgJaA9DCH+jHTe8D3NAlIaUUpRoFU0SAWgWR0CVhJzCUHIIdX2UKGgGaAloD0MITDj0Fg+lcUCUhpRSlGgVTRIBaBZHQJWFoU47zTZ1fZQoaAZoCWgPQwj99QoLrjlwQJSGlFKUaBVNIAFoFkdAlYchrFfiP3V9lChoBmgJaA9DCB/ZXDVPMm5AlIaUUpRoFU0wAWgWR0CVnB/GlyimdX2UKGgGaAloD0MI/RLx1vlKckCUhpRSlGgVTUsBaBZHQJWcJ1Oj7AN1fZQoaAZoCWgPQwjxngPLEXhxQJSGlFKUaBVNGgFoFkdAlZyzn7pFC3V9lChoBmgJaA9DCHOBy2NNgnFAlIaUUpRoFU0/AWgWR0CVnNd/axoqdX2UKGgGaAloD0MIcmvSbQkgb0CUhpRSlGgVTTABaBZHQJWdLXAdn011fZQoaAZoCWgPQwiqLAq7qLZtQJSGlFKUaBVNNAFoFkdAlZ3YtpVS43V9lChoBmgJaA9DCIuH9xxY73BAlIaUUpRoFU0rAWgWR0CVnjcPe54GdX2UKGgGaAloD0MIYTWWsLaGcUCUhpRSlGgVTSMBaBZHQJWebIgeRxN1fZQoaAZoCWgPQwhR3Vz8LYRwQJSGlFKUaBVNAAFoFkdAlZ79pVS4v3V9lChoBmgJaA9DCDwx68WQ3HBAlIaUUpRoFU0FAWgWR0CVnxPi1iOOdX2UKGgGaAloD0MIIXTQJZwObkCUhpRSlGgVTSkBaBZHQJWfTfKp1ih1fZQoaAZoCWgPQwhqTl5kwhNzQJSGlFKUaBVNEAFoFkdAlaAAj6eoUHV9lChoBmgJaA9DCLgiMUENe3BAlIaUUpRoFU0jAWgWR0CVoN7el9BsdX2UKGgGaAloD0MIradWX10dcECUhpRSlGgVTSMBaBZHQJWilXfZVXF1fZQoaAZoCWgPQwhd+MH51BRqQJSGlFKUaBVNdwFoFkdAlaMyvs7dSHV9lChoBmgJaA9DCF7260536kRAlIaUUpRoFU0IAWgWR0CVo7I4lyBDdX2UKGgGaAloD0MIe/SG+0jucECUhpRSlGgVTQABaBZHQJWlwvg3tKJ1fZQoaAZoCWgPQwi0rPvHQmBwQJSGlFKUaBVNLQFoFkdAlaekbT+efHV9lChoBmgJaA9DCMbCEDk9q3FAlIaUUpRoFU0pAWgWR0CVqDz/ZM+NdX2UKGgGaAloD0MIU82spQALcECUhpRSlGgVTVUBaBZHQJWot8Sf16F1fZQoaAZoCWgPQwhjQswllQ1xQJSGlFKUaBVNWQFoFkdAlajw+MZP23V9lChoBmgJaA9DCOYhUz4EVeI/lIaUUpRoFUviaBZHQJWpjEgntv51fZQoaAZoCWgPQwgjg9xFWD1yQJSGlFKUaBVNBwFoFkdAlamkWVNYbXV9lChoBmgJaA9DCI3uIHamom1AlIaUUpRoFU0rAWgWR0CVqfMFEAo5dX2UKGgGaAloD0MIOzquRnZickCUhpRSlGgVTUEBaBZHQJWqS14Pf9B1fZQoaAZoCWgPQwiLbr2mB2xxQJSGlFKUaBVNPQFoFkdAlargP7N0NnV9lChoBmgJaA9DCE3cKoiB/W5AlIaUUpRoFU07AWgWR0CVq4D+irT6dX2UKGgGaAloD0MIAHFXryKRb0CUhpRSlGgVTVQBaBZHQJWs5RceKbd1fZQoaAZoCWgPQwi2v7M9eitvQJSGlFKUaBVNJwFoFkdAlaz/kmx+rnV9lChoBmgJaA9DCEWCqWbWEnBAlIaUUpRoFU1DAWgWR0CVr/4J/oaDdX2UKGgGaAloD0MI6QyMvGxTcECUhpRSlGgVTUABaBZHQJWwjuOS4e91fZQoaAZoCWgPQwhRhT/DmwpzQJSGlFKUaBVNWgFoFkdAlbJWMXJo03V9lChoBmgJaA9DCKcExCTc5m5AlIaUUpRoFU02AWgWR0CVstxcE/0NdX2UKGgGaAloD0MInYU97bBwcECUhpRSlGgVTRIBaBZHQJWzbWjGkvd1fZQoaAZoCWgPQwhj8gaYefltQJSGlFKUaBVNFAFoFkdAlbPMdDIBBHV9lChoBmgJaA9DCIwTX+2o7nFAlIaUUpRoFU0xAWgWR0CVtAT6BRQ8dX2UKGgGaAloD0MI4+E9B5ZvbkCUhpRSlGgVTQABaBZHQJW0EOLBKth1fZQoaAZoCWgPQwjbp+Mxw1NwQJSGlFKUaBVNKgFoFkdAlbSSe7L+xXV9lChoBmgJaA9DCKEt51KcRXJAlIaUUpRoFU0xAWgWR0CVtSd4FA3UdX2UKGgGaAloD0MIO/4LBME4cECUhpRSlGgVTVABaBZHQJW2EG9pRGd1fZQoaAZoCWgPQwhlOQmlr99vQJSGlFKUaBVNMwFoFkdAlbYlBlcyFnV9lChoBmgJaA9DCIarAyDuT3BAlIaUUpRoFU0vAWgWR0CVtnkFOfukdX2UKGgGaAloD0MI205bI0Jpc0CUhpRSlGgVTRABaBZHQJW2qEL6UJR1fZQoaAZoCWgPQwhPWyOCMZhyQJSGlFKUaBVNXgFoFkdAlbbJda+vhnV9lChoBmgJaA9DCFr0TgWc5HFAlIaUUpRoFU1CAWgWR0CVt6lcQiA2dX2UKGgGaAloD0MIQkP/BBcpUECUhpRSlGgVS9RoFkdAlbh1ZLZi/nV9lChoBmgJaA9DCDwtP3AVl25AlIaUUpRoFU01AWgWR0CVuWb3oLXudX2UKGgGaAloD0MIDRgkfVqNRECUhpRSlGgVS9toFkdAlbl996Tnq3V9lChoBmgJaA9DCNWxSukZGHJAlIaUUpRoFU0XAWgWR0CVuhW4mTkidX2UKGgGaAloD0MI9l580Z6+cECUhpRSlGgVTVQBaBZHQJW6w0vXbud1fZQoaAZoCWgPQwhJnBVRE4dFQJSGlFKUaBVLumgWR0CVuw10DEFXdX2UKGgGaAloD0MInil0XmOscECUhpRSlGgVTS8BaBZHQJW7nLyMDOl1fZQoaAZoCWgPQwg7j4r/Oy1vQJSGlFKUaBVNJwFoFkdAlbv93fQ8fXV9lChoBmgJaA9DCHXLDvEPr3FAlIaUUpRoFU0cAWgWR0CVvL5xzaK2dX2UKGgGaAloD0MIEheARqlucUCUhpRSlGgVTTUBaBZHQJW82o3rD651fZQoaAZoCWgPQwgiwVQzq4txQJSGlFKUaBVNUQFoFkdAlb0XJtBOYnV9lChoBmgJaA9DCK8LPzifuk9AlIaUUpRoFUvgaBZHQJW9/Gecx0x1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
pi_day_ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89e3ec8233ed980f21d17b03db40d230279f134db1f01e564e1347b7056afc67
|
3 |
+
size 147421
|
pi_day_ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
pi_day_ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2e77b39940>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2e77b399d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2e77b39a60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2e77b39af0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2e77b39b80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2e77b39c10>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2e77b39ca0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2e77b39d30>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2e77b39dc0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2e77b39e50>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2e77b39ee0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2e77b39f70>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f2e77b58880>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1678466595376447579,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOmijwItQQ/qnqDvbDfXb46cyW8JEGiuwAAAAAAAAAA83bHPbhl47vmGuS8xYiuPE09UL0AIJE9AACAPwAAAACaoVu84eikui0B5jqCkbw1mhNUuuY6BLoAAIA/AACAP3qeBL5KYp8/+UyUvnJ7+L76EZ29azgivgAAAAAAAAAAAKq3vPa0Obq78Eq6wN1JNupv27qbFG85AACAPwAAgD8zTt89uFnCPhPF8r3wkoG+0QSEPDoxiT0AAAAAAAAAALqzRL559bw+fgOOPjGPaL4+Q1C8nqbAPQAAAAAAAAAAJn6IvQRxtz+6wRG/U/MuvVjIoDxoXvK9AAAAAAAAAABALIw9XJCdPtYopb42C3C+ph2rvR5oPr0AAAAAAAAAABotuD03Zmo/dn35vcLbir6It4g9sKPQvQAAAAAAAAAAZt+yvWT+2z4VIJS9w6BtvhT4u70GUjO8AAAAAAAAAACagaI84fi7uvYJ6zu9FIw8IVsHPP5tc70AAIA/AACAPzNgDD37/Yk9uoTrPZy/aL7gMjc9K2yiOQAAAAAAAAAAM7ciPM+qbz82F4q9q/C1vtmpS7zW/6O9AAAAAAAAAABKC5K+JxugPwgl574UphW/o+h/vnW5Pr4AAAAAAAAAAABlJ72IlRk/UPkYvhOxs75oYeG8DtuAvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXoB9dOrmbUCUhpRSlIwBbJRNNAGMAXSUR0CVaQCmdiDvdX2UKGgGaAloD0MI5q26DlWycECUhpRSlGgVTTIBaBZHQJVpWYlY2bZ1fZQoaAZoCWgPQwjylNV0vRpuQJSGlFKUaBVNVgFoFkdAlWsB73PAwnV9lChoBmgJaA9DCLVwWYXNTG5AlIaUUpRoFU0rAWgWR0CVa2Ymb9ZSdX2UKGgGaAloD0MI9+l4zMDibkCUhpRSlGgVTRMBaBZHQJVtiCOFQEZ1fZQoaAZoCWgPQwiLG7eYn81wQJSGlFKUaBVNEwFoFkdAlW5xZyMkyHV9lChoBmgJaA9DCDwW26TiDXFAlIaUUpRoFU0gAWgWR0CVbulGwzLwdX2UKGgGaAloD0MIsKpefqfAc0CUhpRSlGgVTVgBaBZHQJVvF85S3sp1fZQoaAZoCWgPQwik374OnKluQJSGlFKUaBVNNwFoFkdAlXCAqiGnGnV9lChoBmgJaA9DCA05tp4hHm1AlIaUUpRoFU02AWgWR0CVcjPsRg7YdX2UKGgGaAloD0MI7E0MyQmXckCUhpRSlGgVTR0BaBZHQJVyP/rB0p51fZQoaAZoCWgPQwjOOA1RxTpyQJSGlFKUaBVNCAFoFkdAlXT4w7DEWXV9lChoBmgJaA9DCEmfVtEf3nFAlIaUUpRoFU0eAWgWR0CVdTfl6qsEdX2UKGgGaAloD0MIoOI48CrpcUCUhpRSlGgVTSkBaBZHQJV12X1J17p1fZQoaAZoCWgPQwg4oKUrGJVwQJSGlFKUaBVNZgFoFkdAlXZxd6cAinV9lChoBmgJaA9DCA04S8nylWxAlIaUUpRoFU0/AWgWR0CVdwFUADJVdX2UKGgGaAloD0MI1cvvNJmGb0CUhpRSlGgVTaQBaBZHQJV4MRg7YCh1fZQoaAZoCWgPQwgpBd1ekntxQJSGlFKUaBVNbwFoFkdAlXinY+Sr53V9lChoBmgJaA9DCL8LW7PVwXFAlIaUUpRoFU1OAWgWR0CVeXViF0xNdX2UKGgGaAloD0MIp7Io7KKEbkCUhpRSlGgVTVUBaBZHQJV6A6U7jkx1fZQoaAZoCWgPQwig3oyaLwttQJSGlFKUaBVNJQFoFkdAlXq6hUR3/3V9lChoBmgJaA9DCAiQoWMH/m5AlIaUUpRoFU0gAWgWR0CVeuEWqLjxdX2UKGgGaAloD0MItvY+VYUncUCUhpRSlGgVTUABaBZHQJV67W3BpHt1fZQoaAZoCWgPQwiEukihLE5wQJSGlFKUaBVNJQFoFkdAlXsizTnaFnV9lChoBmgJaA9DCHldv2C3M25AlIaUUpRoFU0hAWgWR0CVe9cnmaH9dX2UKGgGaAloD0MIxXJLqyGXcUCUhpRSlGgVTSkBaBZHQJV9Vo/Rmbt1fZQoaAZoCWgPQwiXjjnPGEhyQJSGlFKUaBVNSgFoFkdAlX5zR+jM3nV9lChoBmgJaA9DCGK/J9bp9XBAlIaUUpRoFU0gAWgWR0CVfrfMOf/WdX2UKGgGaAloD0MIIR0ewvgUakCUhpRSlGgVTRIBaBZHQJV/SUX531V1fZQoaAZoCWgPQwjbFI+LatH4P5SGlFKUaBVL3mgWR0CVf5FWGRFJdX2UKGgGaAloD0MIaFiMuhZ9cUCUhpRSlGgVTScBaBZHQJWAXpeNT991fZQoaAZoCWgPQwjhmdAksQRxQJSGlFKUaBVNVQFoFkdAlYCcSK3uu3V9lChoBmgJaA9DCA/yejBpUHBAlIaUUpRoFU0bAWgWR0CVgQX8O09hdX2UKGgGaAloD0MI4j5ya1K+cUCUhpRSlGgVTQkBaBZHQJWBsM7U5Ml1fZQoaAZoCWgPQwh5lbVN8dg8QJSGlFKUaBVL7mgWR0CVghuHvc8DdX2UKGgGaAloD0MIdY9srpo0cECUhpRSlGgVTZIBaBZHQJWC6hRIjGF1fZQoaAZoCWgPQwjv4v24vTxwQJSGlFKUaBVNEwFoFkdAlYO5cX3xnXV9lChoBmgJaA9DCLgE4J/Stm9AlIaUUpRoFU0dAWgWR0CVg9C6H0sfdX2UKGgGaAloD0MI9YO6SKEUcUCUhpRSlGgVTT0BaBZHQJWD4yM1jy51fZQoaAZoCWgPQwh/pIgMa2ZzQJSGlFKUaBVNNAFoFkdAlYSBZ2ZAp3V9lChoBmgJaA9DCH+jHTe8D3NAlIaUUpRoFU0SAWgWR0CVhJzCUHIIdX2UKGgGaAloD0MITDj0Fg+lcUCUhpRSlGgVTRIBaBZHQJWFoU47zTZ1fZQoaAZoCWgPQwj99QoLrjlwQJSGlFKUaBVNIAFoFkdAlYchrFfiP3V9lChoBmgJaA9DCB/ZXDVPMm5AlIaUUpRoFU0wAWgWR0CVnB/GlyimdX2UKGgGaAloD0MI/RLx1vlKckCUhpRSlGgVTUsBaBZHQJWcJ1Oj7AN1fZQoaAZoCWgPQwjxngPLEXhxQJSGlFKUaBVNGgFoFkdAlZyzn7pFC3V9lChoBmgJaA9DCHOBy2NNgnFAlIaUUpRoFU0/AWgWR0CVnNd/axoqdX2UKGgGaAloD0MIcmvSbQkgb0CUhpRSlGgVTTABaBZHQJWdLXAdn011fZQoaAZoCWgPQwiqLAq7qLZtQJSGlFKUaBVNNAFoFkdAlZ3YtpVS43V9lChoBmgJaA9DCIuH9xxY73BAlIaUUpRoFU0rAWgWR0CVnjcPe54GdX2UKGgGaAloD0MIYTWWsLaGcUCUhpRSlGgVTSMBaBZHQJWebIgeRxN1fZQoaAZoCWgPQwhR3Vz8LYRwQJSGlFKUaBVNAAFoFkdAlZ79pVS4v3V9lChoBmgJaA9DCDwx68WQ3HBAlIaUUpRoFU0FAWgWR0CVnxPi1iOOdX2UKGgGaAloD0MIIXTQJZwObkCUhpRSlGgVTSkBaBZHQJWfTfKp1ih1fZQoaAZoCWgPQwhqTl5kwhNzQJSGlFKUaBVNEAFoFkdAlaAAj6eoUHV9lChoBmgJaA9DCLgiMUENe3BAlIaUUpRoFU0jAWgWR0CVoN7el9BsdX2UKGgGaAloD0MIradWX10dcECUhpRSlGgVTSMBaBZHQJWilXfZVXF1fZQoaAZoCWgPQwhd+MH51BRqQJSGlFKUaBVNdwFoFkdAlaMyvs7dSHV9lChoBmgJaA9DCF7260536kRAlIaUUpRoFU0IAWgWR0CVo7I4lyBDdX2UKGgGaAloD0MIe/SG+0jucECUhpRSlGgVTQABaBZHQJWlwvg3tKJ1fZQoaAZoCWgPQwi0rPvHQmBwQJSGlFKUaBVNLQFoFkdAlaekbT+efHV9lChoBmgJaA9DCMbCEDk9q3FAlIaUUpRoFU0pAWgWR0CVqDz/ZM+NdX2UKGgGaAloD0MIU82spQALcECUhpRSlGgVTVUBaBZHQJWot8Sf16F1fZQoaAZoCWgPQwhjQswllQ1xQJSGlFKUaBVNWQFoFkdAlajw+MZP23V9lChoBmgJaA9DCOYhUz4EVeI/lIaUUpRoFUviaBZHQJWpjEgntv51fZQoaAZoCWgPQwgjg9xFWD1yQJSGlFKUaBVNBwFoFkdAlamkWVNYbXV9lChoBmgJaA9DCI3uIHamom1AlIaUUpRoFU0rAWgWR0CVqfMFEAo5dX2UKGgGaAloD0MIOzquRnZickCUhpRSlGgVTUEBaBZHQJWqS14Pf9B1fZQoaAZoCWgPQwiLbr2mB2xxQJSGlFKUaBVNPQFoFkdAlargP7N0NnV9lChoBmgJaA9DCE3cKoiB/W5AlIaUUpRoFU07AWgWR0CVq4D+irT6dX2UKGgGaAloD0MIAHFXryKRb0CUhpRSlGgVTVQBaBZHQJWs5RceKbd1fZQoaAZoCWgPQwi2v7M9eitvQJSGlFKUaBVNJwFoFkdAlaz/kmx+rnV9lChoBmgJaA9DCEWCqWbWEnBAlIaUUpRoFU1DAWgWR0CVr/4J/oaDdX2UKGgGaAloD0MI6QyMvGxTcECUhpRSlGgVTUABaBZHQJWwjuOS4e91fZQoaAZoCWgPQwhRhT/DmwpzQJSGlFKUaBVNWgFoFkdAlbJWMXJo03V9lChoBmgJaA9DCKcExCTc5m5AlIaUUpRoFU02AWgWR0CVstxcE/0NdX2UKGgGaAloD0MInYU97bBwcECUhpRSlGgVTRIBaBZHQJWzbWjGkvd1fZQoaAZoCWgPQwhj8gaYefltQJSGlFKUaBVNFAFoFkdAlbPMdDIBBHV9lChoBmgJaA9DCIwTX+2o7nFAlIaUUpRoFU0xAWgWR0CVtAT6BRQ8dX2UKGgGaAloD0MI4+E9B5ZvbkCUhpRSlGgVTQABaBZHQJW0EOLBKth1fZQoaAZoCWgPQwjbp+Mxw1NwQJSGlFKUaBVNKgFoFkdAlbSSe7L+xXV9lChoBmgJaA9DCKEt51KcRXJAlIaUUpRoFU0xAWgWR0CVtSd4FA3UdX2UKGgGaAloD0MIO/4LBME4cECUhpRSlGgVTVABaBZHQJW2EG9pRGd1fZQoaAZoCWgPQwhlOQmlr99vQJSGlFKUaBVNMwFoFkdAlbYlBlcyFnV9lChoBmgJaA9DCIarAyDuT3BAlIaUUpRoFU0vAWgWR0CVtnkFOfukdX2UKGgGaAloD0MI205bI0Jpc0CUhpRSlGgVTRABaBZHQJW2qEL6UJR1fZQoaAZoCWgPQwhPWyOCMZhyQJSGlFKUaBVNXgFoFkdAlbbJda+vhnV9lChoBmgJaA9DCFr0TgWc5HFAlIaUUpRoFU1CAWgWR0CVt6lcQiA2dX2UKGgGaAloD0MIQkP/BBcpUECUhpRSlGgVS9RoFkdAlbh1ZLZi/nV9lChoBmgJaA9DCDwtP3AVl25AlIaUUpRoFU01AWgWR0CVuWb3oLXudX2UKGgGaAloD0MIDRgkfVqNRECUhpRSlGgVS9toFkdAlbl996Tnq3V9lChoBmgJaA9DCNWxSukZGHJAlIaUUpRoFU0XAWgWR0CVuhW4mTkidX2UKGgGaAloD0MI9l580Z6+cECUhpRSlGgVTVQBaBZHQJW6w0vXbud1fZQoaAZoCWgPQwhJnBVRE4dFQJSGlFKUaBVLumgWR0CVuw10DEFXdX2UKGgGaAloD0MInil0XmOscECUhpRSlGgVTS8BaBZHQJW7nLyMDOl1fZQoaAZoCWgPQwg7j4r/Oy1vQJSGlFKUaBVNJwFoFkdAlbv93fQ8fXV9lChoBmgJaA9DCHXLDvEPr3FAlIaUUpRoFU0cAWgWR0CVvL5xzaK2dX2UKGgGaAloD0MIEheARqlucUCUhpRSlGgVTTUBaBZHQJW82o3rD651fZQoaAZoCWgPQwgiwVQzq4txQJSGlFKUaBVNUQFoFkdAlb0XJtBOYnV9lChoBmgJaA9DCK8LPzifuk9AlIaUUpRoFUvgaBZHQJW9/Gecx0x1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
pi_day_ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bed924583f8a04fb899f8e2224aea00324c9982cee27246f0cae72a606e17caa
|
3 |
+
size 87929
|
pi_day_ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e46b4f0abd7d7a3088c39930a73f9e1316c78a64ad1787cab2ee7e146804ee79
|
3 |
+
size 43393
|
pi_day_ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
pi_day_ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (246 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 265.93706436039116, "std_reward": 19.972669304477453, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-10T17:11:52.956356"}
|