Harm commited on
Commit
7da7c5d
·
1 Parent(s): 4668724

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 284.73 +/- 14.67
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f346ca008b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f346ca00940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f346ca009d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f346ca00a60>", "_build": "<function ActorCriticPolicy._build at 0x7f346ca00af0>", "forward": "<function ActorCriticPolicy.forward at 0x7f346ca00b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f346ca00c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f346ca00ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f346ca00d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f346ca00dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f346ca00e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f346ca00ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f346c9fd510>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673435267615463785, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEB/vr34zYM//lCOvnGOC7+p5gO+Ohk1vQAAAAAAAAAAzSJ8vAWNojwyzUM+M+CIvvqD1DsJasq7AAAAAAAAAAA6uiC+7+E5P2Uuur3rsw+/F3hcvmJpF7wAAAAAAAAAAMahMj47uSE/l168viap474tjJU9gq4PvgAAAAAAAAAAmkX/vHHnHz+9QLU8QFLlvvsDMjzTCo29AAAAAAAAAABmTNA8SK+AumU9IjVauxIwMhe4uqU2VbQAAIA/AACAP2b6qbyffc+7w4k0vHWzkDxYfCU9Ekl3vQAAgD8AAIA/ACgovJVNiD80vRy9r9j/vrlXpz2oHmO8AAAAAAAAAACaXbo7kZUsPn4x3r3Xpa2+QbnovbNS6zsAAAAAAAAAADXfg77Ixvw+nqC6Pllfub5YE4e9/qg7PgAAAAAAAAAAZpDzvGZ2qT/y9/i9X77zvgALk7zQHGm6AAAAAAAAAAAj4J4+b+SJP2JZbL2z7f2+F+8LPzWYYr4AAAAAAAAAAGaK1bva6R8+g9NSvlT7wL6Ac1O+ldRhPQAAAAAAAAAAM4MSPZzpYLx8OCg9edO5PGdRy723TJU9AACAPwAAgD+6aEk+egmFPwAK0T2UKde+LBXLPp2Dxb0AAAAAAAAAAOZa4z2PMkU/uwRevo/e5L7U1Uk+q9tivgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhZm2f+XAbkCUhpRSlIwBbJRL2YwBdJRHQKT+WJ2MbWF1fZQoaAZoCWgPQwiEEJAvoX1xQJSGlFKUaBVL72gWR0Ck/oSqlxffdX2UKGgGaAloD0MICf8iaAyIcUCUhpRSlGgVS95oFkdApP6Ey+HrQnV9lChoBmgJaA9DCPp+arw0cHJAlIaUUpRoFUvUaBZHQKT+pPw/gR91fZQoaAZoCWgPQwhNg6J5gDJyQJSGlFKUaBVL02gWR0Ck/rnbypaSdX2UKGgGaAloD0MI3GPpQ1fzc0CUhpRSlGgVTRMBaBZHQKT/AUcn3L51fZQoaAZoCWgPQwhC0TyAReJxQJSGlFKUaBVL32gWR0Ck/xz7MxGldX2UKGgGaAloD0MIWyTtRh/abkCUhpRSlGgVS+FoFkdApP9hgTh5xHV9lChoBmgJaA9DCAq5Us+C4HJAlIaUUpRoFUvPaBZHQKT/knc+JP91fZQoaAZoCWgPQwgfgxWnGs5yQJSGlFKUaBVL7WgWR0Ck/67tiQT3dX2UKGgGaAloD0MIXVDfMif9ckCUhpRSlGgVS9doFkdApP++lVLi/HV9lChoBmgJaA9DCHL+JhSin3FAlIaUUpRoFUvZaBZHQKT/08jiXIF1fZQoaAZoCWgPQwiBJOzbCVtyQJSGlFKUaBVL2WgWR0ClABrCm/FjdX2UKGgGaAloD0MImIbhIyLLcUCUhpRSlGgVS9BoFkdApQAgWnCO3nV9lChoBmgJaA9DCPERMSVSS3NAlIaUUpRoFUvTaBZHQKUAUkhRqGl1fZQoaAZoCWgPQwjmdcQhW8pzQJSGlFKUaBVL1mgWR0ClAKLaufVadX2UKGgGaAloD0MI/aNv0vTOckCUhpRSlGgVS9ZoFkdApQDdrZamoHV9lChoBmgJaA9DCOfj2lBx/HNAlIaUUpRoFUv9aBZHQKUA4eaKDTV1fZQoaAZoCWgPQwhkdha9k6lwQJSGlFKUaBVL5GgWR0ClAO0V8CxNdX2UKGgGaAloD0MIWFUvv9Nzc0CUhpRSlGgVS/1oFkdApQELSuyNXHV9lChoBmgJaA9DCFEyObWzXG5AlIaUUpRoFUvGaBZHQKUBGchC+lF1fZQoaAZoCWgPQwjul09WDJ1yQJSGlFKUaBVNKQFoFkdApQEZ0r9VFXV9lChoBmgJaA9DCKMDkrBvS3FAlIaUUpRoFUvTaBZHQKUBIAggX/J1fZQoaAZoCWgPQwhZhjjWhXtwQJSGlFKUaBVL0WgWR0ClAahVENONdX2UKGgGaAloD0MIPRBZpAlKc0CUhpRSlGgVS+1oFkdApQG9eSjgynV9lChoBmgJaA9DCIO/X8wW0m9AlIaUUpRoFUvTaBZHQKUB8NxVAA11fZQoaAZoCWgPQwhlNsgkY4pwQJSGlFKUaBVL3WgWR0ClAfoTfzjFdX2UKGgGaAloD0MI8zy4O6sOcUCUhpRSlGgVS+VoFkdApQug1vVEu3V9lChoBmgJaA9DCCXpmsn3hnFAlIaUUpRoFUvYaBZHQKUL6UCaJAN1fZQoaAZoCWgPQwgFNufg2TFyQJSGlFKUaBVL4WgWR0ClDAp+lTFVdX2UKGgGaAloD0MImggbnl4EckCUhpRSlGgVS9NoFkdApQwc4BFNL3V9lChoBmgJaA9DCBqmttQBjnNAlIaUUpRoFUvaaBZHQKUMgT4+KTB1fZQoaAZoCWgPQwjcErngDMdxQJSGlFKUaBVLyGgWR0ClDJp0wJw9dX2UKGgGaAloD0MIKCzxgPJ7c0CUhpRSlGgVS9FoFkdApQyjsY2sJnV9lChoBmgJaA9DCIZ1493R63BAlIaUUpRoFUvOaBZHQKUM2D9wWFh1fZQoaAZoCWgPQwiIS4475aJzQJSGlFKUaBVLz2gWR0ClDNtbs4T9dX2UKGgGaAloD0MI7nw/NZ6hcECUhpRSlGgVS9toFkdApQzroOhCdHV9lChoBmgJaA9DCIhodAdxTHFAlIaUUpRoFUvoaBZHQKUNIDDCP6t1fZQoaAZoCWgPQwi7DtWUpFZxQJSGlFKUaBVNBwFoFkdApQ0yD0163XV9lChoBmgJaA9DCEUqjC0EiHJAlIaUUpRoFUvHaBZHQKUNm7NB4Ux1fZQoaAZoCWgPQwhjtmRVxN9xQJSGlFKUaBVL8mgWR0ClDc9YGMXKdX2UKGgGaAloD0MIu9HHfMAUcUCUhpRSlGgVS91oFkdApQ3pf8dgfHV9lChoBmgJaA9DCA9HV+nuLXBAlIaUUpRoFUvjaBZHQKUN8pH7P6d1fZQoaAZoCWgPQwj+gXLbPlFzQJSGlFKUaBVNAAFoFkdApQ4OaH9FWnV9lChoBmgJaA9DCBO3CmIg621AlIaUUpRoFUvRaBZHQKUOFzErGzd1fZQoaAZoCWgPQwgeVOI6xpxvQJSGlFKUaBVL3mgWR0ClDmaFVT73dX2UKGgGaAloD0MIXI3sSot0cECUhpRSlGgVS+NoFkdApQ5iLVFx43V9lChoBmgJaA9DCAK37uapxm5AlIaUUpRoFUveaBZHQKUOzA+IM0B1fZQoaAZoCWgPQwijOh3Iuo9xQJSGlFKUaBVL22gWR0ClDuRhUipvdX2UKGgGaAloD0MIylAVU+k+cUCUhpRSlGgVS9FoFkdApQ7/Kji4rnV9lChoBmgJaA9DCDvGFRfHDXNAlIaUUpRoFUvNaBZHQKUPCGJvYOF1fZQoaAZoCWgPQwgnF2NgHQpzQJSGlFKUaBVL8GgWR0ClDxIrvsqsdX2UKGgGaAloD0MIA0NWtzpWcECUhpRSlGgVS+hoFkdApQ85hF3IMnV9lChoBmgJaA9DCIrMXODyD3FAlIaUUpRoFUvdaBZHQKUPY6HTI/91fZQoaAZoCWgPQwgRVmMJq8FyQJSGlFKUaBVL7GgWR0ClD5pXp4bCdX2UKGgGaAloD0MIv+/fvLgTckCUhpRSlGgVS8xoFkdApQ/+XgLqlnV9lChoBmgJaA9DCDhJ88f093FAlIaUUpRoFUvpaBZHQKUQAsXizcB1fZQoaAZoCWgPQwhSX5Z2aqpwQJSGlFKUaBVL3GgWR0ClEBS2Yv38dX2UKGgGaAloD0MI4J9SJUqnb0CUhpRSlGgVS9RoFkdApRA8PMB6r3V9lChoBmgJaA9DCFLTLqZZrXNAlIaUUpRoFUvYaBZHQKUQUOsDGLl1fZQoaAZoCWgPQwghIcoXNMFxQJSGlFKUaBVL6WgWR0ClEFvTgEU1dX2UKGgGaAloD0MIU1vqIC+6b0CUhpRSlGgVS+FoFkdApRCzE5yU93V9lChoBmgJaA9DCCU8odcfRHNAlIaUUpRoFUv3aBZHQKUQ88CgbqB1fZQoaAZoCWgPQwhKCcGquidzQJSGlFKUaBVL1mgWR0ClEQTQeFL4dX2UKGgGaAloD0MI/WzkuikOc0CUhpRSlGgVS9BoFkdApREMzqKP4nV9lChoBmgJaA9DCPXzpiKVlXBAlIaUUpRoFUvUaBZHQKURL1rZamp1fZQoaAZoCWgPQwhY5ULlH3dzQJSGlFKUaBVL12gWR0ClEUidBjWkdX2UKGgGaAloD0MIv7UTJaGpc0CUhpRSlGgVS+RoFkdApRFfDP4VRHV9lChoBmgJaA9DCG0ANiBCu3NAlIaUUpRoFUviaBZHQKURi3Q2MsJ1fZQoaAZoCWgPQwhh4o+iDqRwQJSGlFKUaBVL9WgWR0ClEedbgTAWdX2UKGgGaAloD0MI3GPpQ5dQbkCUhpRSlGgVS85oFkdApRIlanrIHXV9lChoBmgJaA9DCMy3Pqw3z3FAlIaUUpRoFU0GAWgWR0ClElt/vv0AdX2UKGgGaAloD0MI8DLDRhlgcUCUhpRSlGgVS8xoFkdApRJtbaAWi3V9lChoBmgJaA9DCLE08KMaG3NAlIaUUpRoFUvpaBZHQKUSggsbvPV1fZQoaAZoCWgPQwixwFd0K7pzQJSGlFKUaBVL8mgWR0ClEoi0v4/NdX2UKGgGaAloD0MIUvAUcqUjckCUhpRSlGgVS9RoFkdApRKPdEb5unV9lChoBmgJaA9DCDS6g9jZ5nJAlIaUUpRoFUvoaBZHQKUSomGdqcp1fZQoaAZoCWgPQwgnZr0YihZzQJSGlFKUaBVL7GgWR0ClEyIPCl7/dX2UKGgGaAloD0MI8pTVdD3AbkCUhpRSlGgVS9poFkdApRNMC/47BHV9lChoBmgJaA9DCJi9bDvtbHFAlIaUUpRoFUvFaBZHQKUTV3g1m8N1fZQoaAZoCWgPQwj1nPS+capyQJSGlFKUaBVL02gWR0ClE2HmaH9FdX2UKGgGaAloD0MI8gpET8rIb0CUhpRSlGgVS+1oFkdApRN51ie/YnV9lChoBmgJaA9DCFUYWwhy7XJAlIaUUpRoFU0FAWgWR0ClE6cDSw4bdX2UKGgGaAloD0MIRZ25h4RkbUCUhpRSlGgVS9toFkdApROpLIxQBXV9lChoBmgJaA9DCJBnl289xXBAlIaUUpRoFUvnaBZHQKUT9l/Yrax1fZQoaAZoCWgPQwgSwqON47FyQJSGlFKUaBVL12gWR0ClFCyVnmJWdX2UKGgGaAloD0MIiUD1DyIMcUCUhpRSlGgVS81oFkdApRRJqTKT0XV9lChoBmgJaA9DCHnKarre5XFAlIaUUpRoFUvTaBZHQKUUnYh+vyN1fZQoaAZoCWgPQwgWhzO/GlpzQJSGlFKUaBVL0WgWR0ClFLANoakzdX2UKGgGaAloD0MIlq/L8B+lcUCUhpRSlGgVS+JoFkdApRS4pazNU3V9lChoBmgJaA9DCBnJHqHm93FAlIaUUpRoFUvxaBZHQKUVELhrFfl1fZQoaAZoCWgPQwiaC1we635xQJSGlFKUaBVNAAFoFkdApRVB02cawXV9lChoBmgJaA9DCBZtjnPbsnFAlIaUUpRoFUvMaBZHQKUVgJuVHFx1fZQoaAZoCWgPQwhCBYcXROJxQJSGlFKUaBVL3WgWR0ClFYdDx9XtdX2UKGgGaAloD0MIUtFY+3vZckCUhpRSlGgVS89oFkdApRWTyFwkxHV9lChoBmgJaA9DCIbijjc5w3FAlIaUUpRoFU0dAWgWR0ClFa4FJQLvdX2UKGgGaAloD0MIzuMwmL9CbUCUhpRSlGgVS9toFkdApRW77ALy+nV9lChoBmgJaA9DCDwVcM9zQnBAlIaUUpRoFUvpaBZHQKUV9CXyAhB1fZQoaAZoCWgPQwig+Zy7XdFSQJSGlFKUaBVLmGgWR0ClFfAPd2xIdX2UKGgGaAloD0MIRz1Eozv1b0CUhpRSlGgVS9toFkdApRX/itJWenVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.17.3"}}
my_ppo_rl_lunarlander_3M.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1ec92488b8d35d1c4f570e7ec69faf8c6b76850b8ec245f4631f038f46fad94
3
+ size 147294
my_ppo_rl_lunarlander_3M/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
my_ppo_rl_lunarlander_3M/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f346ca008b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f346ca00940>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f346ca009d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f346ca00a60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f346ca00af0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f346ca00b80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f346ca00c10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f346ca00ca0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f346ca00d30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f346ca00dc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f346ca00e50>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f346ca00ee0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f346c9fd510>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
27
+ "dtype": "float32",
28
+ "shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
40
+ "n": 4,
41
+ "shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 3014656,
47
+ "_total_timesteps": 3000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673435267615463785,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEB/vr34zYM//lCOvnGOC7+p5gO+Ohk1vQAAAAAAAAAAzSJ8vAWNojwyzUM+M+CIvvqD1DsJasq7AAAAAAAAAAA6uiC+7+E5P2Uuur3rsw+/F3hcvmJpF7wAAAAAAAAAAMahMj47uSE/l168viap474tjJU9gq4PvgAAAAAAAAAAmkX/vHHnHz+9QLU8QFLlvvsDMjzTCo29AAAAAAAAAABmTNA8SK+AumU9IjVauxIwMhe4uqU2VbQAAIA/AACAP2b6qbyffc+7w4k0vHWzkDxYfCU9Ekl3vQAAgD8AAIA/ACgovJVNiD80vRy9r9j/vrlXpz2oHmO8AAAAAAAAAACaXbo7kZUsPn4x3r3Xpa2+QbnovbNS6zsAAAAAAAAAADXfg77Ixvw+nqC6Pllfub5YE4e9/qg7PgAAAAAAAAAAZpDzvGZ2qT/y9/i9X77zvgALk7zQHGm6AAAAAAAAAAAj4J4+b+SJP2JZbL2z7f2+F+8LPzWYYr4AAAAAAAAAAGaK1bva6R8+g9NSvlT7wL6Ac1O+ldRhPQAAAAAAAAAAM4MSPZzpYLx8OCg9edO5PGdRy723TJU9AACAPwAAgD+6aEk+egmFPwAK0T2UKde+LBXLPp2Dxb0AAAAAAAAAAOZa4z2PMkU/uwRevo/e5L7U1Uk+q9tivgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.004885333333333408,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhZm2f+XAbkCUhpRSlIwBbJRL2YwBdJRHQKT+WJ2MbWF1fZQoaAZoCWgPQwiEEJAvoX1xQJSGlFKUaBVL72gWR0Ck/oSqlxffdX2UKGgGaAloD0MICf8iaAyIcUCUhpRSlGgVS95oFkdApP6Ey+HrQnV9lChoBmgJaA9DCPp+arw0cHJAlIaUUpRoFUvUaBZHQKT+pPw/gR91fZQoaAZoCWgPQwhNg6J5gDJyQJSGlFKUaBVL02gWR0Ck/rnbypaSdX2UKGgGaAloD0MI3GPpQ1fzc0CUhpRSlGgVTRMBaBZHQKT/AUcn3L51fZQoaAZoCWgPQwhC0TyAReJxQJSGlFKUaBVL32gWR0Ck/xz7MxGldX2UKGgGaAloD0MIWyTtRh/abkCUhpRSlGgVS+FoFkdApP9hgTh5xHV9lChoBmgJaA9DCAq5Us+C4HJAlIaUUpRoFUvPaBZHQKT/knc+JP91fZQoaAZoCWgPQwgfgxWnGs5yQJSGlFKUaBVL7WgWR0Ck/67tiQT3dX2UKGgGaAloD0MIXVDfMif9ckCUhpRSlGgVS9doFkdApP++lVLi/HV9lChoBmgJaA9DCHL+JhSin3FAlIaUUpRoFUvZaBZHQKT/08jiXIF1fZQoaAZoCWgPQwiBJOzbCVtyQJSGlFKUaBVL2WgWR0ClABrCm/FjdX2UKGgGaAloD0MImIbhIyLLcUCUhpRSlGgVS9BoFkdApQAgWnCO3nV9lChoBmgJaA9DCPERMSVSS3NAlIaUUpRoFUvTaBZHQKUAUkhRqGl1fZQoaAZoCWgPQwjmdcQhW8pzQJSGlFKUaBVL1mgWR0ClAKLaufVadX2UKGgGaAloD0MI/aNv0vTOckCUhpRSlGgVS9ZoFkdApQDdrZamoHV9lChoBmgJaA9DCOfj2lBx/HNAlIaUUpRoFUv9aBZHQKUA4eaKDTV1fZQoaAZoCWgPQwhkdha9k6lwQJSGlFKUaBVL5GgWR0ClAO0V8CxNdX2UKGgGaAloD0MIWFUvv9Nzc0CUhpRSlGgVS/1oFkdApQELSuyNXHV9lChoBmgJaA9DCFEyObWzXG5AlIaUUpRoFUvGaBZHQKUBGchC+lF1fZQoaAZoCWgPQwjul09WDJ1yQJSGlFKUaBVNKQFoFkdApQEZ0r9VFXV9lChoBmgJaA9DCKMDkrBvS3FAlIaUUpRoFUvTaBZHQKUBIAggX/J1fZQoaAZoCWgPQwhZhjjWhXtwQJSGlFKUaBVL0WgWR0ClAahVENONdX2UKGgGaAloD0MIPRBZpAlKc0CUhpRSlGgVS+1oFkdApQG9eSjgynV9lChoBmgJaA9DCIO/X8wW0m9AlIaUUpRoFUvTaBZHQKUB8NxVAA11fZQoaAZoCWgPQwhlNsgkY4pwQJSGlFKUaBVL3WgWR0ClAfoTfzjFdX2UKGgGaAloD0MI8zy4O6sOcUCUhpRSlGgVS+VoFkdApQug1vVEu3V9lChoBmgJaA9DCCXpmsn3hnFAlIaUUpRoFUvYaBZHQKUL6UCaJAN1fZQoaAZoCWgPQwgFNufg2TFyQJSGlFKUaBVL4WgWR0ClDAp+lTFVdX2UKGgGaAloD0MImggbnl4EckCUhpRSlGgVS9NoFkdApQwc4BFNL3V9lChoBmgJaA9DCBqmttQBjnNAlIaUUpRoFUvaaBZHQKUMgT4+KTB1fZQoaAZoCWgPQwjcErngDMdxQJSGlFKUaBVLyGgWR0ClDJp0wJw9dX2UKGgGaAloD0MIKCzxgPJ7c0CUhpRSlGgVS9FoFkdApQyjsY2sJnV9lChoBmgJaA9DCIZ1493R63BAlIaUUpRoFUvOaBZHQKUM2D9wWFh1fZQoaAZoCWgPQwiIS4475aJzQJSGlFKUaBVLz2gWR0ClDNtbs4T9dX2UKGgGaAloD0MI7nw/NZ6hcECUhpRSlGgVS9toFkdApQzroOhCdHV9lChoBmgJaA9DCIhodAdxTHFAlIaUUpRoFUvoaBZHQKUNIDDCP6t1fZQoaAZoCWgPQwi7DtWUpFZxQJSGlFKUaBVNBwFoFkdApQ0yD0163XV9lChoBmgJaA9DCEUqjC0EiHJAlIaUUpRoFUvHaBZHQKUNm7NB4Ux1fZQoaAZoCWgPQwhjtmRVxN9xQJSGlFKUaBVL8mgWR0ClDc9YGMXKdX2UKGgGaAloD0MIu9HHfMAUcUCUhpRSlGgVS91oFkdApQ3pf8dgfHV9lChoBmgJaA9DCA9HV+nuLXBAlIaUUpRoFUvjaBZHQKUN8pH7P6d1fZQoaAZoCWgPQwj+gXLbPlFzQJSGlFKUaBVNAAFoFkdApQ4OaH9FWnV9lChoBmgJaA9DCBO3CmIg621AlIaUUpRoFUvRaBZHQKUOFzErGzd1fZQoaAZoCWgPQwgeVOI6xpxvQJSGlFKUaBVL3mgWR0ClDmaFVT73dX2UKGgGaAloD0MIXI3sSot0cECUhpRSlGgVS+NoFkdApQ5iLVFx43V9lChoBmgJaA9DCAK37uapxm5AlIaUUpRoFUveaBZHQKUOzA+IM0B1fZQoaAZoCWgPQwijOh3Iuo9xQJSGlFKUaBVL22gWR0ClDuRhUipvdX2UKGgGaAloD0MIylAVU+k+cUCUhpRSlGgVS9FoFkdApQ7/Kji4rnV9lChoBmgJaA9DCDvGFRfHDXNAlIaUUpRoFUvNaBZHQKUPCGJvYOF1fZQoaAZoCWgPQwgnF2NgHQpzQJSGlFKUaBVL8GgWR0ClDxIrvsqsdX2UKGgGaAloD0MIA0NWtzpWcECUhpRSlGgVS+hoFkdApQ85hF3IMnV9lChoBmgJaA9DCIrMXODyD3FAlIaUUpRoFUvdaBZHQKUPY6HTI/91fZQoaAZoCWgPQwgRVmMJq8FyQJSGlFKUaBVL7GgWR0ClD5pXp4bCdX2UKGgGaAloD0MIv+/fvLgTckCUhpRSlGgVS8xoFkdApQ/+XgLqlnV9lChoBmgJaA9DCDhJ88f093FAlIaUUpRoFUvpaBZHQKUQAsXizcB1fZQoaAZoCWgPQwhSX5Z2aqpwQJSGlFKUaBVL3GgWR0ClEBS2Yv38dX2UKGgGaAloD0MI4J9SJUqnb0CUhpRSlGgVS9RoFkdApRA8PMB6r3V9lChoBmgJaA9DCFLTLqZZrXNAlIaUUpRoFUvYaBZHQKUQUOsDGLl1fZQoaAZoCWgPQwghIcoXNMFxQJSGlFKUaBVL6WgWR0ClEFvTgEU1dX2UKGgGaAloD0MIU1vqIC+6b0CUhpRSlGgVS+FoFkdApRCzE5yU93V9lChoBmgJaA9DCCU8odcfRHNAlIaUUpRoFUv3aBZHQKUQ88CgbqB1fZQoaAZoCWgPQwhKCcGquidzQJSGlFKUaBVL1mgWR0ClEQTQeFL4dX2UKGgGaAloD0MI/WzkuikOc0CUhpRSlGgVS9BoFkdApREMzqKP4nV9lChoBmgJaA9DCPXzpiKVlXBAlIaUUpRoFUvUaBZHQKURL1rZamp1fZQoaAZoCWgPQwhY5ULlH3dzQJSGlFKUaBVL12gWR0ClEUidBjWkdX2UKGgGaAloD0MIv7UTJaGpc0CUhpRSlGgVS+RoFkdApRFfDP4VRHV9lChoBmgJaA9DCG0ANiBCu3NAlIaUUpRoFUviaBZHQKURi3Q2MsJ1fZQoaAZoCWgPQwhh4o+iDqRwQJSGlFKUaBVL9WgWR0ClEedbgTAWdX2UKGgGaAloD0MI3GPpQ5dQbkCUhpRSlGgVS85oFkdApRIlanrIHXV9lChoBmgJaA9DCMy3Pqw3z3FAlIaUUpRoFU0GAWgWR0ClElt/vv0AdX2UKGgGaAloD0MI8DLDRhlgcUCUhpRSlGgVS8xoFkdApRJtbaAWi3V9lChoBmgJaA9DCLE08KMaG3NAlIaUUpRoFUvpaBZHQKUSggsbvPV1fZQoaAZoCWgPQwixwFd0K7pzQJSGlFKUaBVL8mgWR0ClEoi0v4/NdX2UKGgGaAloD0MIUvAUcqUjckCUhpRSlGgVS9RoFkdApRKPdEb5unV9lChoBmgJaA9DCDS6g9jZ5nJAlIaUUpRoFUvoaBZHQKUSomGdqcp1fZQoaAZoCWgPQwgnZr0YihZzQJSGlFKUaBVL7GgWR0ClEyIPCl7/dX2UKGgGaAloD0MI8pTVdD3AbkCUhpRSlGgVS9poFkdApRNMC/47BHV9lChoBmgJaA9DCJi9bDvtbHFAlIaUUpRoFUvFaBZHQKUTV3g1m8N1fZQoaAZoCWgPQwj1nPS+capyQJSGlFKUaBVL02gWR0ClE2HmaH9FdX2UKGgGaAloD0MI8gpET8rIb0CUhpRSlGgVS+1oFkdApRN51ie/YnV9lChoBmgJaA9DCFUYWwhy7XJAlIaUUpRoFU0FAWgWR0ClE6cDSw4bdX2UKGgGaAloD0MIRZ25h4RkbUCUhpRSlGgVS9toFkdApROpLIxQBXV9lChoBmgJaA9DCJBnl289xXBAlIaUUpRoFUvnaBZHQKUT9l/Yrax1fZQoaAZoCWgPQwgSwqON47FyQJSGlFKUaBVL12gWR0ClFCyVnmJWdX2UKGgGaAloD0MIiUD1DyIMcUCUhpRSlGgVS81oFkdApRRJqTKT0XV9lChoBmgJaA9DCHnKarre5XFAlIaUUpRoFUvTaBZHQKUUnYh+vyN1fZQoaAZoCWgPQwgWhzO/GlpzQJSGlFKUaBVL0WgWR0ClFLANoakzdX2UKGgGaAloD0MIlq/L8B+lcUCUhpRSlGgVS+JoFkdApRS4pazNU3V9lChoBmgJaA9DCBnJHqHm93FAlIaUUpRoFUvxaBZHQKUVELhrFfl1fZQoaAZoCWgPQwiaC1we635xQJSGlFKUaBVNAAFoFkdApRVB02cawXV9lChoBmgJaA9DCBZtjnPbsnFAlIaUUpRoFUvMaBZHQKUVgJuVHFx1fZQoaAZoCWgPQwhCBYcXROJxQJSGlFKUaBVL3WgWR0ClFYdDx9XtdX2UKGgGaAloD0MIUtFY+3vZckCUhpRSlGgVS89oFkdApRWTyFwkxHV9lChoBmgJaA9DCIbijjc5w3FAlIaUUpRoFU0dAWgWR0ClFa4FJQLvdX2UKGgGaAloD0MIzuMwmL9CbUCUhpRSlGgVS9toFkdApRW77ALy+nV9lChoBmgJaA9DCDwVcM9zQnBAlIaUUpRoFUvpaBZHQKUV9CXyAhB1fZQoaAZoCWgPQwig+Zy7XdFSQJSGlFKUaBVLmGgWR0ClFfAPd2xIdX2UKGgGaAloD0MIRz1Eozv1b0CUhpRSlGgVS9toFkdApRX/itJWenVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 736,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
my_ppo_rl_lunarlander_3M/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9a161def1a86da5365b7b3313b38db1c25cb16388314486b016b45cabcb427f
3
+ size 87929
my_ppo_rl_lunarlander_3M/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:843dac02b77d582ba1b42ebf05fae6c1fb92279474f96ba7279480788d5685f9
3
+ size 43393
my_ppo_rl_lunarlander_3M/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
my_ppo_rl_lunarlander_3M/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.17.3
replay.mp4 ADDED
Binary file (177 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 284.73160851220825, "std_reward": 14.673784782981524, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-11T11:55:06.783067"}