|
import glob |
|
import os |
|
import shutil |
|
import importlib |
|
from urllib.parse import urlparse |
|
|
|
from basicsr.utils.download_util import load_file_from_url |
|
from modules import shared |
|
from modules.upscaler import Upscaler |
|
from modules.paths import script_path, models_path |
|
|
|
|
|
def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None) -> list: |
|
""" |
|
A one-and done loader to try finding the desired models in specified directories. |
|
|
|
@param download_name: Specify to download from model_url immediately. |
|
@param model_url: If no other models are found, this will be downloaded on upscale. |
|
@param model_path: The location to store/find models in. |
|
@param command_path: A command-line argument to search for models in first. |
|
@param ext_filter: An optional list of filename extensions to filter by |
|
@return: A list of paths containing the desired model(s) |
|
""" |
|
output = [] |
|
|
|
if ext_filter is None: |
|
ext_filter = [] |
|
|
|
try: |
|
places = [] |
|
|
|
if command_path is not None and command_path != model_path: |
|
pretrained_path = os.path.join(command_path, 'experiments/pretrained_models') |
|
if os.path.exists(pretrained_path): |
|
print(f"Appending path: {pretrained_path}") |
|
places.append(pretrained_path) |
|
elif os.path.exists(command_path): |
|
places.append(command_path) |
|
|
|
places.append(model_path) |
|
|
|
for place in places: |
|
if os.path.exists(place): |
|
for file in glob.iglob(place + '**/**', recursive=True): |
|
full_path = file |
|
if os.path.isdir(full_path): |
|
continue |
|
if os.path.islink(full_path) and not os.path.exists(full_path): |
|
print(f"Skipping broken symlink: {full_path}") |
|
continue |
|
if ext_blacklist is not None and any([full_path.endswith(x) for x in ext_blacklist]): |
|
continue |
|
if len(ext_filter) != 0: |
|
model_name, extension = os.path.splitext(file) |
|
if extension not in ext_filter: |
|
continue |
|
if file not in output: |
|
output.append(full_path) |
|
|
|
if model_url is not None and len(output) == 0: |
|
if download_name is not None: |
|
dl = load_file_from_url(model_url, model_path, True, download_name) |
|
output.append(dl) |
|
else: |
|
output.append(model_url) |
|
|
|
except Exception: |
|
pass |
|
|
|
return output |
|
|
|
|
|
def friendly_name(file: str): |
|
if "http" in file: |
|
file = urlparse(file).path |
|
|
|
file = os.path.basename(file) |
|
model_name, extension = os.path.splitext(file) |
|
return model_name |
|
|
|
|
|
def cleanup_models(): |
|
|
|
|
|
|
|
root_path = script_path |
|
src_path = models_path |
|
dest_path = os.path.join(models_path, "Stable-diffusion") |
|
move_files(src_path, dest_path, ".ckpt") |
|
move_files(src_path, dest_path, ".safetensors") |
|
src_path = os.path.join(root_path, "ESRGAN") |
|
dest_path = os.path.join(models_path, "ESRGAN") |
|
move_files(src_path, dest_path) |
|
src_path = os.path.join(models_path, "BSRGAN") |
|
dest_path = os.path.join(models_path, "ESRGAN") |
|
move_files(src_path, dest_path, ".pth") |
|
src_path = os.path.join(root_path, "gfpgan") |
|
dest_path = os.path.join(models_path, "GFPGAN") |
|
move_files(src_path, dest_path) |
|
src_path = os.path.join(root_path, "SwinIR") |
|
dest_path = os.path.join(models_path, "SwinIR") |
|
move_files(src_path, dest_path) |
|
src_path = os.path.join(root_path, "repositories/latent-diffusion/experiments/pretrained_models/") |
|
dest_path = os.path.join(models_path, "LDSR") |
|
move_files(src_path, dest_path) |
|
|
|
|
|
def move_files(src_path: str, dest_path: str, ext_filter: str = None): |
|
try: |
|
if not os.path.exists(dest_path): |
|
os.makedirs(dest_path) |
|
if os.path.exists(src_path): |
|
for file in os.listdir(src_path): |
|
fullpath = os.path.join(src_path, file) |
|
if os.path.isfile(fullpath): |
|
if ext_filter is not None: |
|
if ext_filter not in file: |
|
continue |
|
print(f"Moving {file} from {src_path} to {dest_path}.") |
|
try: |
|
shutil.move(fullpath, dest_path) |
|
except: |
|
pass |
|
if len(os.listdir(src_path)) == 0: |
|
print(f"Removing empty folder: {src_path}") |
|
shutil.rmtree(src_path, True) |
|
except: |
|
pass |
|
|
|
|
|
builtin_upscaler_classes = [] |
|
forbidden_upscaler_classes = set() |
|
|
|
|
|
def list_builtin_upscalers(): |
|
load_upscalers() |
|
|
|
builtin_upscaler_classes.clear() |
|
builtin_upscaler_classes.extend(Upscaler.__subclasses__()) |
|
|
|
|
|
def forbid_loaded_nonbuiltin_upscalers(): |
|
for cls in Upscaler.__subclasses__(): |
|
if cls not in builtin_upscaler_classes: |
|
forbidden_upscaler_classes.add(cls) |
|
|
|
|
|
def load_upscalers(): |
|
|
|
|
|
modules_dir = os.path.join(shared.script_path, "modules") |
|
for file in os.listdir(modules_dir): |
|
if "_model.py" in file: |
|
model_name = file.replace("_model.py", "") |
|
full_model = f"modules.{model_name}_model" |
|
try: |
|
importlib.import_module(full_model) |
|
except: |
|
pass |
|
|
|
datas = [] |
|
commandline_options = vars(shared.cmd_opts) |
|
for cls in Upscaler.__subclasses__(): |
|
if cls in forbidden_upscaler_classes: |
|
continue |
|
|
|
name = cls.__name__ |
|
cmd_name = f"{name.lower().replace('upscaler', '')}_models_path" |
|
scaler = cls(commandline_options.get(cmd_name, None)) |
|
datas += scaler.scalers |
|
|
|
shared.sd_upscalers = datas |
|
|