Happy-endings commited on
Commit
d1e44de
1 Parent(s): 11f0157

Add LunarLander

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 254.09 +/- 23.88
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1839325a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1839325af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1839325b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1839325c10>", "_build": "<function ActorCriticPolicy._build at 0x7f1839325ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1839325d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1839325dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1839325e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1839325ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1839325f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1839328040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f183931dcc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1669841918877330111, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYfoD0pSD66ctmnO2ODbzjUV7Q7MfkOuAAAgD8AAIA/2jacPfZ0JboTSTG65rIbtnB8kTpqMk05AACAPwAAgD+zwGE+iOpOPyat+D3Hdru+8CQAPszNK74AAAAAAAAAAAAWTz0UWKm63D2Zu7ebQ70oST26rvBMOgAAAAAAAAAAM8owvcPRA7qIJRA6nRnvNYk3vzlesie5AACAPwAAgD/mL189KfxuuiwsPTq9hJo2CCqDu67xkjUAAIA/AACAPzNDejzDJV66W0jWuqle0rX0LSW7m8r7OQAAgD8AAIA/AKSbvBROiboW6Qm8hdSCOSd6LTtzFfC4AACAPwAAgD8aD6Y9e4iKuoiuWztDITk4BEg4u5rZCboAAIA/AACAP4BFTr0UZKy6Bsh+OzpcIzgAvT06xLJLtwAAgD8AAIA/5khnPSmEFLpFoeA5S70KNiO+KztAtQO5AACAPwAAgD8mQsG9pDA3OCbESDvem/Q6XoZvujqbR70AAAAAAACAP2ZVHb5eSo8/ek7rvsfvIL9V4oO+dtKYvgAAAAAAAAAAzTEwPg5fhj+VJ44+K8Mhv5TzLD6iHH66AAAAAAAAAAAzA1E7PZp6uULFDznVnFi1G+HaupqkK7gAAIA/AACAP2b7OT3D4Vm6b0qQO7pFaLb/ZHe6FWZatQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBWnGoulZYECUhpRSlIwBbJRN6AOMAXSUR0CHYB9xZMcqdX2UKGgGaAloD0MI6+HLRBGS/7+UhpRSlGgVTegDaBZHQIdljhDPWx11fZQoaAZoCWgPQwilEwmmGhNhQJSGlFKUaBVN6ANoFkdAh2xXtBv733V9lChoBmgJaA9DCCi5wyYy0FRAlIaUUpRoFU3oA2gWR0CHdyQV9F4LdX2UKGgGaAloD0MIhV0UPXDhZECUhpRSlGgVTegDaBZHQId4EX7+DOF1fZQoaAZoCWgPQwiCUx9I3ixeQJSGlFKUaBVN6ANoFkdAh6kwd0aIe3V9lChoBmgJaA9DCOs7vyhBKFdAlIaUUpRoFU3oA2gWR0CHr1n8KohqdX2UKGgGaAloD0MI1c4wtaVWYUCUhpRSlGgVTegDaBZHQIfaneaa1Cx1fZQoaAZoCWgPQwhy32qduCpcQJSGlFKUaBVN6ANoFkdAh90f47A+IXV9lChoBmgJaA9DCDQQy2aOUmBAlIaUUpRoFU3oA2gWR0CH3tm+TNdJdX2UKGgGaAloD0MIibK3lPPgWECUhpRSlGgVTegDaBZHQIffLjNpudh1fZQoaAZoCWgPQwjyecVTj7FbQJSGlFKUaBVN6ANoFkdAh+JNEG7jDXV9lChoBmgJaA9DCKWHodVJAWRAlIaUUpRoFU3oA2gWR0CH6D3225QQdX2UKGgGaAloD0MILQlQU8sUYECUhpRSlGgVTegDaBZHQIfqtFSbYsd1fZQoaAZoCWgPQwj7sUl+xJFEQJSGlFKUaBVL2mgWR0CH8niXpnpTdX2UKGgGaAloD0MIeuBjsGKIY0CUhpRSlGgVTegDaBZHQIf4nzWf9P11fZQoaAZoCWgPQwh1kUJZ+CxiQJSGlFKUaBVN6ANoFkdAh/jwnYxtYXV9lChoBmgJaA9DCHdOs0C7JmJAlIaUUpRoFU3oA2gWR0CH+SS+xnnMdX2UKGgGaAloD0MIOSf20L6hYkCUhpRSlGgVTegDaBZHQIf9o8+zMRp1fZQoaAZoCWgPQwify9QkeItZQJSGlFKUaBVN6ANoFkdAiAMXDWK/EnV9lChoBmgJaA9DCCridJKtAWJAlIaUUpRoFU3oA2gWR0CIC8qTbFjvdX2UKGgGaAloD0MIzy9K0F8CUkCUhpRSlGgVTegDaBZHQIgMjKcNH6N1fZQoaAZoCWgPQwh3SZwVUfJiQJSGlFKUaBVN6ANoFkdAiDsWkBS1mnV9lChoBmgJaA9DCCRFZFhFxGZAlIaUUpRoFU3oA2gWR0CIQUcABDG+dX2UKGgGaAloD0MIELIsmPilWUCUhpRSlGgVTegDaBZHQIhHFzp5eJJ1fZQoaAZoCWgPQwjMfXIUIIrxP5SGlFKUaBVN6ANoFkdAiHDnSOR1YHV9lChoBmgJaA9DCEd1OpD1nV9AlIaUUpRoFU3oA2gWR0CIcUUnG828dX2UKGgGaAloD0MIMZQT7SrYYUCUhpRSlGgVTegDaBZHQIh0graufVZ1fZQoaAZoCWgPQwgfLGNDN6BQQJSGlFKUaBVLmGgWR0CIeDZmI0qIdX2UKGgGaAloD0MItaUO8nqjWkCUhpRSlGgVTegDaBZHQIh6+wHJLdx1fZQoaAZoCWgPQwifIoeIm8dgQJSGlFKUaBVN6ANoFkdAiH15UcXFcnV9lChoBmgJaA9DCEJeDyZF/GJAlIaUUpRoFU3oA2gWR0CIhdMXaakRdX2UKGgGaAloD0MI73A7NCyuW0CUhpRSlGgVTegDaBZHQIiMAVj7Q9l1fZQoaAZoCWgPQwhvEK0VbfBiQJSGlFKUaBVN6ANoFkdAiIxX3xnWa3V9lChoBmgJaA9DCO53KAp0mGVAlIaUUpRoFU3oA2gWR0CIjIzGgi/xdX2UKGgGaAloD0MINpTai2irMcCUhpRSlGgVS+poFkdAiJAAP3BYWHV9lChoBmgJaA9DCCsVVFT9aWNAlIaUUpRoFU3oA2gWR0CIkPRVIZqEdX2UKGgGaAloD0MImRJJ9DKuYECUhpRSlGgVTegDaBZHQIiWetOmBOJ1fZQoaAZoCWgPQwhKmGn7VxFgQJSGlFKUaBVN6ANoFkdAiJ+eg+Qlr3V9lChoBmgJaA9DCF6B6EkZWmNAlIaUUpRoFU3oA2gWR0CIoHP1tfoidX2UKGgGaAloD0MIz4O7s3bHNECUhpRSlGgVS7FoFkdAiLRjHOryUnV9lChoBmgJaA9DCJVHN8IiDGRAlIaUUpRoFU3oA2gWR0CI0e78vVVhdX2UKGgGaAloD0MIjiJrDaWAVkCUhpRSlGgVTegDaBZHQIjfXMjeKsN1fZQoaAZoCWgPQwh+4ZUkz0JcQJSGlFKUaBVN6ANoFkdAiQnvB7/n4nV9lChoBmgJaA9DCJXTnpJzCWJAlIaUUpRoFU3oA2gWR0CJCleuV5bAdX2UKGgGaAloD0MIYkok0UtpY0CUhpRSlGgVTegDaBZHQIkNtzIV/MJ1fZQoaAZoCWgPQwjmsPuOYXRiQJSGlFKUaBVN6ANoFkdAiRSxXnyNGXV9lChoBmgJaA9DCCE/G7luAmVAlIaUUpRoFU3oA2gWR0CJF1Ru0kWzdX2UKGgGaAloD0MIyCWOPJBfYkCUhpRSlGgVTegDaBZHQIkfnxnWatt1fZQoaAZoCWgPQwhjYYicvjlnQJSGlFKUaBVN6ANoFkdAiSXAQHzH0nV9lChoBmgJaA9DCPopjgOvNmFAlIaUUpRoFU3oA2gWR0CJJg+cpb2UdX2UKGgGaAloD0MIyR6hZkjPXUCUhpRSlGgVTegDaBZHQIkmRTER8MN1fZQoaAZoCWgPQwi0AG2rWTc7QJSGlFKUaBVLymgWR0CJKUKtPpIMdX2UKGgGaAloD0MI4zPZP0+7TUCUhpRSlGgVS7NoFkdAiSmLApKBd3V9lChoBmgJaA9DCNNLjGV6f2NAlIaUUpRoFU3oA2gWR0CJKb67/XGwdX2UKGgGaAloD0MI8ItLVdr2XUCUhpRSlGgVTegDaBZHQIkqsE9t/F11fZQoaAZoCWgPQwhubHakenViQJSGlFKUaBVN6ANoFkdAiS+tGEwnIHV9lChoBmgJaA9DCBgIAmTo02VAlIaUUpRoFU3oA2gWR0CJN1o5ggHNdX2UKGgGaAloD0MIJv29FB4EF0CUhpRSlGgVS9JoFkdAiThHxBmf5HV9lChoBmgJaA9DCAvsMZHSkFtAlIaUUpRoFU3oA2gWR0CJS31zySV4dX2UKGgGaAloD0MIKCuGqwPjW0CUhpRSlGgVTegDaBZHQIloElzEJjV1fZQoaAZoCWgPQwhuoSsRqBRnQJSGlFKUaBVN6ANoFkdAiXSwZOzpo3V9lChoBmgJaA9DCKj/rPnxbWVAlIaUUpRoFU3oA2gWR0CJeWpUgjhUdX2UKGgGaAloD0MIK/htiHHvYECUhpRSlGgVTegDaBZHQIl51f7aZhN1fZQoaAZoCWgPQwgktybdFidgQJSGlFKUaBVN6ANoFkdAiaMMySFGonV9lChoBmgJaA9DCApoImx4Zk1AlIaUUpRoFUufaBZHQImtkFQl8gJ1fZQoaAZoCWgPQwj/JD53As1lQJSGlFKUaBVN6ANoFkdAibeVQIldC3V9lChoBmgJaA9DCGWMD7MXimFAlIaUUpRoFU3oA2gWR0CJvssOoYNzdX2UKGgGaAloD0MILgH4p9S+YkCUhpRSlGgVTegDaBZHQIm/JoK2KEZ1fZQoaAZoCWgPQwi6h4Tv/Z5cQJSGlFKUaBVN6ANoFkdAicMeWnjyWnV9lChoBmgJaA9DCEuTUtDtMWJAlIaUUpRoFU3oA2gWR0CJw3pfQa73dX2UKGgGaAloD0MIZOdtbHZMYECUhpRSlGgVTegDaBZHQInDs9QoCuF1fZQoaAZoCWgPQwgWa7jIPRZdQJSGlFKUaBVN6ANoFkdAicSxx1gYxnV9lChoBmgJaA9DCAXc8/zpMWVAlIaUUpRoFU3oA2gWR0CJyk6FuejEdX2UKGgGaAloD0MIlzYclgYjYkCUhpRSlGgVTegDaBZHQInS9p0wJw91fZQoaAZoCWgPQwgEO/4LBPlSQJSGlFKUaBVN6ANoFkdAidPsDW9UTHV9lChoBmgJaA9DCH9N1qgHq2RAlIaUUpRoFU3oA2gWR0CJ5cswtapxdX2UKGgGaAloD0MI+OP2yye9XUCUhpRSlGgVTegDaBZHQIn/fgYP5Hp1fZQoaAZoCWgPQwgpe0s5X+FUQJSGlFKUaBVN6ANoFkdAig/bBXS0B3V9lChoBmgJaA9DCFHbhlEQ/WRAlIaUUpRoFU3oA2gWR0CKEEP7vXsgdX2UKGgGaAloD0MI4e8Xs6WZYkCUhpRSlGgVTegDaBZHQIoTufRNRFZ1fZQoaAZoCWgPQwjY8zXL5VZhQJSGlFKUaBVN6ANoFkdAikNWzv7WNHV9lChoBmgJaA9DCPj+Bu1VB2NAlIaUUpRoFU3oA2gWR0CKTGyGi5/cdX2UKGgGaAloD0MI2PLK9bYdZUCUhpRSlGgVTegDaBZHQIpTGP91loV1fZQoaAZoCWgPQwimnC/2XvRfQJSGlFKUaBVN6ANoFkdAilN+so2GZnV9lChoBmgJaA9DCHFa8KKvgGdAlIaUUpRoFU2lAWgWR0CKViNH6MzedX2UKGgGaAloD0MIGmoUkkwhZECUhpRSlGgVTegDaBZHQIpXAWac7Qt1fZQoaAZoCWgPQwgepRKe0BtjQJSGlFKUaBVN6ANoFkdAildTJ6po9XV9lChoBmgJaA9DCGdF1ESf6lxAlIaUUpRoFU3oA2gWR0CKV4W4Vh1DdX2UKGgGaAloD0MImuleJ3UhYECUhpRSlGgVTegDaBZHQIpYY0j1PFh1fZQoaAZoCWgPQwgJ/reSHRskQJSGlFKUaBVLyWgWR0CKWULronrqdX2UKGgGaAloD0MIC2E1lrBaX0CUhpRSlGgVTegDaBZHQIpdBrLyMDR1fZQoaAZoCWgPQwjoZn+gXElgQJSGlFKUaBVN6ANoFkdAimSgcT8HfXV9lChoBmgJaA9DCJ2FPe3wA1lAlIaUUpRoFU3oA2gWR0CKZY2DQJHBdX2UKGgGaAloD0MItmXAWUpCQkCUhpRSlGgVS8poFkdAimeEHdGiH3V9lChoBmgJaA9DCADjGTT0BlxAlIaUUpRoFU3oA2gWR0CKdjV3EAHWdX2UKGgGaAloD0MI2uGvyRrDQcCUhpRSlGgVS/RoFkdAioC+vyLAHnV9lChoBmgJaA9DCBheSfLcm2VAlIaUUpRoFU3oA2gWR0CKoOEbo8p1dX2UKGgGaAloD0MIFEGchxOLXECUhpRSlGgVTegDaBZHQIqhTDVH4Gl1fZQoaAZoCWgPQwj5SiAl9i9hQJSGlFKUaBVN6ANoFkdAiqUHMMZxaXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo_LunarLander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61a1806ffdf0a5b747370ceaaf1696925dbb40cf9f14d6c4e711edf044955dc7
3
+ size 147140
ppo_LunarLander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo_LunarLander/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1839325a60>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1839325af0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1839325b80>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1839325c10>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1839325ca0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1839325d30>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1839325dc0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1839325e50>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1839325ee0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1839325f70>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1839328040>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f183931dcc0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1669841918877330111,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYfoD0pSD66ctmnO2ODbzjUV7Q7MfkOuAAAgD8AAIA/2jacPfZ0JboTSTG65rIbtnB8kTpqMk05AACAPwAAgD+zwGE+iOpOPyat+D3Hdru+8CQAPszNK74AAAAAAAAAAAAWTz0UWKm63D2Zu7ebQ70oST26rvBMOgAAAAAAAAAAM8owvcPRA7qIJRA6nRnvNYk3vzlesie5AACAPwAAgD/mL189KfxuuiwsPTq9hJo2CCqDu67xkjUAAIA/AACAPzNDejzDJV66W0jWuqle0rX0LSW7m8r7OQAAgD8AAIA/AKSbvBROiboW6Qm8hdSCOSd6LTtzFfC4AACAPwAAgD8aD6Y9e4iKuoiuWztDITk4BEg4u5rZCboAAIA/AACAP4BFTr0UZKy6Bsh+OzpcIzgAvT06xLJLtwAAgD8AAIA/5khnPSmEFLpFoeA5S70KNiO+KztAtQO5AACAPwAAgD8mQsG9pDA3OCbESDvem/Q6XoZvujqbR70AAAAAAACAP2ZVHb5eSo8/ek7rvsfvIL9V4oO+dtKYvgAAAAAAAAAAzTEwPg5fhj+VJ44+K8Mhv5TzLD6iHH66AAAAAAAAAAAzA1E7PZp6uULFDznVnFi1G+HaupqkK7gAAIA/AACAP2b7OT3D4Vm6b0qQO7pFaLb/ZHe6FWZatQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBWnGoulZYECUhpRSlIwBbJRN6AOMAXSUR0CHYB9xZMcqdX2UKGgGaAloD0MI6+HLRBGS/7+UhpRSlGgVTegDaBZHQIdljhDPWx11fZQoaAZoCWgPQwilEwmmGhNhQJSGlFKUaBVN6ANoFkdAh2xXtBv733V9lChoBmgJaA9DCCi5wyYy0FRAlIaUUpRoFU3oA2gWR0CHdyQV9F4LdX2UKGgGaAloD0MIhV0UPXDhZECUhpRSlGgVTegDaBZHQId4EX7+DOF1fZQoaAZoCWgPQwiCUx9I3ixeQJSGlFKUaBVN6ANoFkdAh6kwd0aIe3V9lChoBmgJaA9DCOs7vyhBKFdAlIaUUpRoFU3oA2gWR0CHr1n8KohqdX2UKGgGaAloD0MI1c4wtaVWYUCUhpRSlGgVTegDaBZHQIfaneaa1Cx1fZQoaAZoCWgPQwhy32qduCpcQJSGlFKUaBVN6ANoFkdAh90f47A+IXV9lChoBmgJaA9DCDQQy2aOUmBAlIaUUpRoFU3oA2gWR0CH3tm+TNdJdX2UKGgGaAloD0MIibK3lPPgWECUhpRSlGgVTegDaBZHQIffLjNpudh1fZQoaAZoCWgPQwjyecVTj7FbQJSGlFKUaBVN6ANoFkdAh+JNEG7jDXV9lChoBmgJaA9DCKWHodVJAWRAlIaUUpRoFU3oA2gWR0CH6D3225QQdX2UKGgGaAloD0MILQlQU8sUYECUhpRSlGgVTegDaBZHQIfqtFSbYsd1fZQoaAZoCWgPQwj7sUl+xJFEQJSGlFKUaBVL2mgWR0CH8niXpnpTdX2UKGgGaAloD0MIeuBjsGKIY0CUhpRSlGgVTegDaBZHQIf4nzWf9P11fZQoaAZoCWgPQwh1kUJZ+CxiQJSGlFKUaBVN6ANoFkdAh/jwnYxtYXV9lChoBmgJaA9DCHdOs0C7JmJAlIaUUpRoFU3oA2gWR0CH+SS+xnnMdX2UKGgGaAloD0MIOSf20L6hYkCUhpRSlGgVTegDaBZHQIf9o8+zMRp1fZQoaAZoCWgPQwify9QkeItZQJSGlFKUaBVN6ANoFkdAiAMXDWK/EnV9lChoBmgJaA9DCCridJKtAWJAlIaUUpRoFU3oA2gWR0CIC8qTbFjvdX2UKGgGaAloD0MIzy9K0F8CUkCUhpRSlGgVTegDaBZHQIgMjKcNH6N1fZQoaAZoCWgPQwh3SZwVUfJiQJSGlFKUaBVN6ANoFkdAiDsWkBS1mnV9lChoBmgJaA9DCCRFZFhFxGZAlIaUUpRoFU3oA2gWR0CIQUcABDG+dX2UKGgGaAloD0MIELIsmPilWUCUhpRSlGgVTegDaBZHQIhHFzp5eJJ1fZQoaAZoCWgPQwjMfXIUIIrxP5SGlFKUaBVN6ANoFkdAiHDnSOR1YHV9lChoBmgJaA9DCEd1OpD1nV9AlIaUUpRoFU3oA2gWR0CIcUUnG828dX2UKGgGaAloD0MIMZQT7SrYYUCUhpRSlGgVTegDaBZHQIh0graufVZ1fZQoaAZoCWgPQwgfLGNDN6BQQJSGlFKUaBVLmGgWR0CIeDZmI0qIdX2UKGgGaAloD0MItaUO8nqjWkCUhpRSlGgVTegDaBZHQIh6+wHJLdx1fZQoaAZoCWgPQwifIoeIm8dgQJSGlFKUaBVN6ANoFkdAiH15UcXFcnV9lChoBmgJaA9DCEJeDyZF/GJAlIaUUpRoFU3oA2gWR0CIhdMXaakRdX2UKGgGaAloD0MI73A7NCyuW0CUhpRSlGgVTegDaBZHQIiMAVj7Q9l1fZQoaAZoCWgPQwhvEK0VbfBiQJSGlFKUaBVN6ANoFkdAiIxX3xnWa3V9lChoBmgJaA9DCO53KAp0mGVAlIaUUpRoFU3oA2gWR0CIjIzGgi/xdX2UKGgGaAloD0MINpTai2irMcCUhpRSlGgVS+poFkdAiJAAP3BYWHV9lChoBmgJaA9DCCsVVFT9aWNAlIaUUpRoFU3oA2gWR0CIkPRVIZqEdX2UKGgGaAloD0MImRJJ9DKuYECUhpRSlGgVTegDaBZHQIiWetOmBOJ1fZQoaAZoCWgPQwhKmGn7VxFgQJSGlFKUaBVN6ANoFkdAiJ+eg+Qlr3V9lChoBmgJaA9DCF6B6EkZWmNAlIaUUpRoFU3oA2gWR0CIoHP1tfoidX2UKGgGaAloD0MIz4O7s3bHNECUhpRSlGgVS7FoFkdAiLRjHOryUnV9lChoBmgJaA9DCJVHN8IiDGRAlIaUUpRoFU3oA2gWR0CI0e78vVVhdX2UKGgGaAloD0MIjiJrDaWAVkCUhpRSlGgVTegDaBZHQIjfXMjeKsN1fZQoaAZoCWgPQwh+4ZUkz0JcQJSGlFKUaBVN6ANoFkdAiQnvB7/n4nV9lChoBmgJaA9DCJXTnpJzCWJAlIaUUpRoFU3oA2gWR0CJCleuV5bAdX2UKGgGaAloD0MIYkok0UtpY0CUhpRSlGgVTegDaBZHQIkNtzIV/MJ1fZQoaAZoCWgPQwjmsPuOYXRiQJSGlFKUaBVN6ANoFkdAiRSxXnyNGXV9lChoBmgJaA9DCCE/G7luAmVAlIaUUpRoFU3oA2gWR0CJF1Ru0kWzdX2UKGgGaAloD0MIyCWOPJBfYkCUhpRSlGgVTegDaBZHQIkfnxnWatt1fZQoaAZoCWgPQwhjYYicvjlnQJSGlFKUaBVN6ANoFkdAiSXAQHzH0nV9lChoBmgJaA9DCPopjgOvNmFAlIaUUpRoFU3oA2gWR0CJJg+cpb2UdX2UKGgGaAloD0MIyR6hZkjPXUCUhpRSlGgVTegDaBZHQIkmRTER8MN1fZQoaAZoCWgPQwi0AG2rWTc7QJSGlFKUaBVLymgWR0CJKUKtPpIMdX2UKGgGaAloD0MI4zPZP0+7TUCUhpRSlGgVS7NoFkdAiSmLApKBd3V9lChoBmgJaA9DCNNLjGV6f2NAlIaUUpRoFU3oA2gWR0CJKb67/XGwdX2UKGgGaAloD0MI8ItLVdr2XUCUhpRSlGgVTegDaBZHQIkqsE9t/F11fZQoaAZoCWgPQwhubHakenViQJSGlFKUaBVN6ANoFkdAiS+tGEwnIHV9lChoBmgJaA9DCBgIAmTo02VAlIaUUpRoFU3oA2gWR0CJN1o5ggHNdX2UKGgGaAloD0MIJv29FB4EF0CUhpRSlGgVS9JoFkdAiThHxBmf5HV9lChoBmgJaA9DCAvsMZHSkFtAlIaUUpRoFU3oA2gWR0CJS31zySV4dX2UKGgGaAloD0MIKCuGqwPjW0CUhpRSlGgVTegDaBZHQIloElzEJjV1fZQoaAZoCWgPQwhuoSsRqBRnQJSGlFKUaBVN6ANoFkdAiXSwZOzpo3V9lChoBmgJaA9DCKj/rPnxbWVAlIaUUpRoFU3oA2gWR0CJeWpUgjhUdX2UKGgGaAloD0MIK/htiHHvYECUhpRSlGgVTegDaBZHQIl51f7aZhN1fZQoaAZoCWgPQwgktybdFidgQJSGlFKUaBVN6ANoFkdAiaMMySFGonV9lChoBmgJaA9DCApoImx4Zk1AlIaUUpRoFUufaBZHQImtkFQl8gJ1fZQoaAZoCWgPQwj/JD53As1lQJSGlFKUaBVN6ANoFkdAibeVQIldC3V9lChoBmgJaA9DCGWMD7MXimFAlIaUUpRoFU3oA2gWR0CJvssOoYNzdX2UKGgGaAloD0MILgH4p9S+YkCUhpRSlGgVTegDaBZHQIm/JoK2KEZ1fZQoaAZoCWgPQwi6h4Tv/Z5cQJSGlFKUaBVN6ANoFkdAicMeWnjyWnV9lChoBmgJaA9DCEuTUtDtMWJAlIaUUpRoFU3oA2gWR0CJw3pfQa73dX2UKGgGaAloD0MIZOdtbHZMYECUhpRSlGgVTegDaBZHQInDs9QoCuF1fZQoaAZoCWgPQwgWa7jIPRZdQJSGlFKUaBVN6ANoFkdAicSxx1gYxnV9lChoBmgJaA9DCAXc8/zpMWVAlIaUUpRoFU3oA2gWR0CJyk6FuejEdX2UKGgGaAloD0MIlzYclgYjYkCUhpRSlGgVTegDaBZHQInS9p0wJw91fZQoaAZoCWgPQwgEO/4LBPlSQJSGlFKUaBVN6ANoFkdAidPsDW9UTHV9lChoBmgJaA9DCH9N1qgHq2RAlIaUUpRoFU3oA2gWR0CJ5cswtapxdX2UKGgGaAloD0MI+OP2yye9XUCUhpRSlGgVTegDaBZHQIn/fgYP5Hp1fZQoaAZoCWgPQwgpe0s5X+FUQJSGlFKUaBVN6ANoFkdAig/bBXS0B3V9lChoBmgJaA9DCFHbhlEQ/WRAlIaUUpRoFU3oA2gWR0CKEEP7vXsgdX2UKGgGaAloD0MI4e8Xs6WZYkCUhpRSlGgVTegDaBZHQIoTufRNRFZ1fZQoaAZoCWgPQwjY8zXL5VZhQJSGlFKUaBVN6ANoFkdAikNWzv7WNHV9lChoBmgJaA9DCPj+Bu1VB2NAlIaUUpRoFU3oA2gWR0CKTGyGi5/cdX2UKGgGaAloD0MI2PLK9bYdZUCUhpRSlGgVTegDaBZHQIpTGP91loV1fZQoaAZoCWgPQwimnC/2XvRfQJSGlFKUaBVN6ANoFkdAilN+so2GZnV9lChoBmgJaA9DCHFa8KKvgGdAlIaUUpRoFU2lAWgWR0CKViNH6MzedX2UKGgGaAloD0MIGmoUkkwhZECUhpRSlGgVTegDaBZHQIpXAWac7Qt1fZQoaAZoCWgPQwgepRKe0BtjQJSGlFKUaBVN6ANoFkdAildTJ6po9XV9lChoBmgJaA9DCGdF1ESf6lxAlIaUUpRoFU3oA2gWR0CKV4W4Vh1DdX2UKGgGaAloD0MImuleJ3UhYECUhpRSlGgVTegDaBZHQIpYY0j1PFh1fZQoaAZoCWgPQwgJ/reSHRskQJSGlFKUaBVLyWgWR0CKWULronrqdX2UKGgGaAloD0MIC2E1lrBaX0CUhpRSlGgVTegDaBZHQIpdBrLyMDR1fZQoaAZoCWgPQwjoZn+gXElgQJSGlFKUaBVN6ANoFkdAimSgcT8HfXV9lChoBmgJaA9DCJ2FPe3wA1lAlIaUUpRoFU3oA2gWR0CKZY2DQJHBdX2UKGgGaAloD0MItmXAWUpCQkCUhpRSlGgVS8poFkdAimeEHdGiH3V9lChoBmgJaA9DCADjGTT0BlxAlIaUUpRoFU3oA2gWR0CKdjV3EAHWdX2UKGgGaAloD0MI2uGvyRrDQcCUhpRSlGgVS/RoFkdAioC+vyLAHnV9lChoBmgJaA9DCBheSfLcm2VAlIaUUpRoFU3oA2gWR0CKoOEbo8p1dX2UKGgGaAloD0MIFEGchxOLXECUhpRSlGgVTegDaBZHQIqhTDVH4Gl1fZQoaAZoCWgPQwj5SiAl9i9hQJSGlFKUaBVN6ANoFkdAiqUHMMZxaXVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo_LunarLander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:916d352ef4a209720e164f504b63d83e3d397e9e16a6e6542c9e940b03841e75
3
+ size 87865
ppo_LunarLander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:463e23c1a68edfa8ed1be78a2ad124aea8a34e9b0787660cda78044de95b988d
3
+ size 43201
ppo_LunarLander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_LunarLander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (244 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 254.08963547874936, "std_reward": 23.884476606609706, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-30T21:17:49.935298"}