PyramidsDRL / run_logs /timers.json
Hans14's picture
First model using PPO
5a12aaf
{
"name": "root",
"gauges": {
"Pyramids.Policy.Entropy.mean": {
"value": 0.22929097712039948,
"min": 0.22147920727729797,
"max": 1.4221351146697998,
"count": 50
},
"Pyramids.Policy.Entropy.sum": {
"value": 6838.3740234375,
"min": 6690.44384765625,
"max": 43141.890625,
"count": 50
},
"Pyramids.Step.mean": {
"value": 1499980.0,
"min": 29952.0,
"max": 1499980.0,
"count": 50
},
"Pyramids.Step.sum": {
"value": 1499980.0,
"min": 29952.0,
"max": 1499980.0,
"count": 50
},
"Pyramids.Policy.ExtrinsicValueEstimate.mean": {
"value": 0.7262492179870605,
"min": -0.12259096652269363,
"max": 0.7778822183609009,
"count": 50
},
"Pyramids.Policy.ExtrinsicValueEstimate.sum": {
"value": 212.791015625,
"min": -29.544422149658203,
"max": 229.47525024414062,
"count": 50
},
"Pyramids.Policy.RndValueEstimate.mean": {
"value": 0.017438266426324844,
"min": -0.03241197392344475,
"max": 0.3020504117012024,
"count": 50
},
"Pyramids.Policy.RndValueEstimate.sum": {
"value": 5.10941219329834,
"min": -8.62158489227295,
"max": 71.58594512939453,
"count": 50
},
"Pyramids.Losses.PolicyLoss.mean": {
"value": 0.06806238504941575,
"min": 0.06455917499456633,
"max": 0.0738861463420714,
"count": 50
},
"Pyramids.Losses.PolicyLoss.sum": {
"value": 0.9528733906918205,
"min": 0.4872314462469337,
"max": 1.0771813474888867,
"count": 50
},
"Pyramids.Losses.ValueLoss.mean": {
"value": 0.014367812083773536,
"min": 9.688859022965231e-05,
"max": 0.01645606311822554,
"count": 50
},
"Pyramids.Losses.ValueLoss.sum": {
"value": 0.2011493691728295,
"min": 0.0013564402632151324,
"max": 0.24551326486135963,
"count": 50
},
"Pyramids.Policy.LearningRate.mean": {
"value": 3.1416703813809517e-06,
"min": 3.1416703813809517e-06,
"max": 0.00029676708679192377,
"count": 50
},
"Pyramids.Policy.LearningRate.sum": {
"value": 4.398338533933333e-05,
"min": 4.398338533933333e-05,
"max": 0.0036545653818115995,
"count": 50
},
"Pyramids.Policy.Epsilon.mean": {
"value": 0.10104719047619048,
"min": 0.10104719047619048,
"max": 0.19892236190476195,
"count": 50
},
"Pyramids.Policy.Epsilon.sum": {
"value": 1.4146606666666668,
"min": 1.3794090666666667,
"max": 2.6181884000000006,
"count": 50
},
"Pyramids.Policy.Beta.mean": {
"value": 0.00011461432857142858,
"min": 0.00011461432857142858,
"max": 0.009892343954285714,
"count": 50
},
"Pyramids.Policy.Beta.sum": {
"value": 0.0016046006,
"min": 0.0016046006,
"max": 0.12183702115999999,
"count": 50
},
"Pyramids.Losses.RNDLoss.mean": {
"value": 0.010168899782001972,
"min": 0.010024704039096832,
"max": 0.45344170928001404,
"count": 50
},
"Pyramids.Losses.RNDLoss.sum": {
"value": 0.14236459136009216,
"min": 0.14034585654735565,
"max": 3.1740920543670654,
"count": 50
},
"Pyramids.Environment.EpisodeLength.mean": {
"value": 251.75,
"min": 228.50393700787401,
"max": 999.0,
"count": 50
},
"Pyramids.Environment.EpisodeLength.sum": {
"value": 30210.0,
"min": 15984.0,
"max": 32781.0,
"count": 50
},
"Pyramids.Environment.CumulativeReward.mean": {
"value": 1.7494297351472634,
"min": -1.0000000521540642,
"max": 1.770267701759113,
"count": 50
},
"Pyramids.Environment.CumulativeReward.sum": {
"value": 211.68099795281887,
"min": -32.000001668930054,
"max": 224.82399812340736,
"count": 50
},
"Pyramids.Policy.ExtrinsicReward.mean": {
"value": 1.7494297351472634,
"min": -1.0000000521540642,
"max": 1.770267701759113,
"count": 50
},
"Pyramids.Policy.ExtrinsicReward.sum": {
"value": 211.68099795281887,
"min": -32.000001668930054,
"max": 224.82399812340736,
"count": 50
},
"Pyramids.Policy.RndReward.mean": {
"value": 0.02620454387095168,
"min": 0.024720477220198087,
"max": 9.579654056578875,
"count": 50
},
"Pyramids.Policy.RndReward.sum": {
"value": 3.1707498083851533,
"min": 3.0282883491308894,
"max": 153.274464905262,
"count": 50
},
"Pyramids.IsTraining.mean": {
"value": 1.0,
"min": 1.0,
"max": 1.0,
"count": 50
},
"Pyramids.IsTraining.sum": {
"value": 1.0,
"min": 1.0,
"max": 1.0,
"count": 50
}
},
"metadata": {
"timer_format_version": "0.1.0",
"start_time_seconds": "1685866891",
"python_version": "3.10.11 (main, Apr 5 2023, 14:15:10) [GCC 9.4.0]",
"command_line_arguments": "/usr/local/bin/mlagents-learn ./config/ppo/PyramidsRND.yaml --env=./training-envs-executables/linux/Pyramids/Pyramids --run-id=PyramidsRND --no-graphics",
"mlagents_version": "0.31.0.dev0",
"mlagents_envs_version": "0.31.0.dev0",
"communication_protocol_version": "1.5.0",
"pytorch_version": "1.11.0+cu102",
"numpy_version": "1.21.2",
"end_time_seconds": "1685870442"
},
"total": 3550.9206053549997,
"count": 1,
"self": 0.5753164249999827,
"children": {
"run_training.setup": {
"total": 0.042803211999853374,
"count": 1,
"self": 0.042803211999853374
},
"TrainerController.start_learning": {
"total": 3550.302485718,
"count": 1,
"self": 2.2334032709973144,
"children": {
"TrainerController._reset_env": {
"total": 3.6784017749996565,
"count": 1,
"self": 3.6784017749996565
},
"TrainerController.advance": {
"total": 3544.291227039002,
"count": 96710,
"self": 2.2578433160128952,
"children": {
"env_step": {
"total": 2607.718581934908,
"count": 96710,
"self": 2435.4058637560693,
"children": {
"SubprocessEnvManager._take_step": {
"total": 170.97957328087705,
"count": 96710,
"self": 7.344103831932443,
"children": {
"TorchPolicy.evaluate": {
"total": 163.6354694489446,
"count": 93814,
"self": 163.6354694489446
}
}
},
"workers": {
"total": 1.3331448979615743,
"count": 96710,
"self": 0.0,
"children": {
"worker_root": {
"total": 3542.1563782999174,
"count": 96710,
"is_parallel": true,
"self": 1285.950373642822,
"children": {
"run_training.setup": {
"total": 0.0,
"count": 0,
"is_parallel": true,
"self": 0.0,
"children": {
"steps_from_proto": {
"total": 0.0018310929999643122,
"count": 1,
"is_parallel": true,
"self": 0.0005710499990527751,
"children": {
"_process_rank_one_or_two_observation": {
"total": 0.001260043000911537,
"count": 8,
"is_parallel": true,
"self": 0.001260043000911537
}
}
},
"UnityEnvironment.step": {
"total": 0.04741607699997985,
"count": 1,
"is_parallel": true,
"self": 0.0005924960005359026,
"children": {
"UnityEnvironment._generate_step_input": {
"total": 0.0005117929999869375,
"count": 1,
"is_parallel": true,
"self": 0.0005117929999869375
},
"communicator.exchange": {
"total": 0.044369594999807305,
"count": 1,
"is_parallel": true,
"self": 0.044369594999807305
},
"steps_from_proto": {
"total": 0.0019421929996497056,
"count": 1,
"is_parallel": true,
"self": 0.00039331900097749894,
"children": {
"_process_rank_one_or_two_observation": {
"total": 0.0015488739986722067,
"count": 8,
"is_parallel": true,
"self": 0.0015488739986722067
}
}
}
}
}
}
},
"UnityEnvironment.step": {
"total": 2256.2060046570955,
"count": 96709,
"is_parallel": true,
"self": 50.8518132531608,
"children": {
"UnityEnvironment._generate_step_input": {
"total": 36.58727748590809,
"count": 96709,
"is_parallel": true,
"self": 36.58727748590809
},
"communicator.exchange": {
"total": 2006.9956509900571,
"count": 96709,
"is_parallel": true,
"self": 2006.9956509900571
},
"steps_from_proto": {
"total": 161.77126292796947,
"count": 96709,
"is_parallel": true,
"self": 33.15267456284437,
"children": {
"_process_rank_one_or_two_observation": {
"total": 128.6185883651251,
"count": 773672,
"is_parallel": true,
"self": 128.6185883651251
}
}
}
}
}
}
}
}
}
}
},
"trainer_advance": {
"total": 934.3148017880812,
"count": 96710,
"self": 4.4016466042608045,
"children": {
"process_trajectory": {
"total": 170.44975956981625,
"count": 96710,
"self": 170.0590800878158,
"children": {
"RLTrainer._checkpoint": {
"total": 0.39067948200045066,
"count": 3,
"self": 0.39067948200045066
}
}
},
"_update_policy": {
"total": 759.4633956140042,
"count": 683,
"self": 485.4348679558998,
"children": {
"TorchPPOOptimizer.update": {
"total": 274.0285276581044,
"count": 34194,
"self": 274.0285276581044
}
}
}
}
}
}
},
"trainer_threads": {
"total": 1.0680005289032124e-06,
"count": 1,
"self": 1.0680005289032124e-06
},
"TrainerController._save_models": {
"total": 0.09945256500031974,
"count": 1,
"self": 0.001604840000254626,
"children": {
"RLTrainer._checkpoint": {
"total": 0.09784772500006511,
"count": 1,
"self": 0.09784772500006511
}
}
}
}
}
}
}