Hans14 commited on
Commit
dc06b64
·
1 Parent(s): 1688047

Recover : Retrain model with last hyperparameters

Browse files
LunarLander-MlpPolicy.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d38035f50fa907b0b4c6e6c04a472e4f30e2d47dddb0b3848947e692ab0aa686
3
+ size 146742
LunarLander-MlpPolicy/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
LunarLander-MlpPolicy/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ab83eb6f490>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ab83eb6f520>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ab83eb6f5b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ab83eb6f640>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ab83eb6f6d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ab83eb6f760>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ab83eb6f7f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ab83eb6f880>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ab83eb6f910>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ab83eb6f9a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ab83eb6fa30>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ab83eb6fac0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ab83eb5fc80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1689495425953828119,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOB4BL4K8lq75VRSNCec0zKP6JQ8VvwntAAAgD8AAIA/wNpmPuW+gT/PmQU/BcnGvoUufT5s8oA+AAAAAAAAAADmySq9FKCLusTjMjKeR1yw63RFu/1bdrIAAIA/AACAPwAM2T3IL6c+0YsCvqITer7qf4y9PsoavQAAAAAAAAAAzePJPSlwJbosvgq9Iz2pNqXvPLvoeRy2AAAAAAAAgD+AQS09UiCZP1ilBj6dgeC+aeqcPer+rj0AAAAAAAAAAE2gYL1i6oU/qBhIvfbQrL6yu5q9HU3eOgAAAAAAAAAAQI38Pa2/XD69Q8K8NoOOvj5nvT31ldw9AAAAAAAAAAAz+p895PoCPpedwb10bJe+Nr94u9BAKr0AAAAAAAAAAHO/xT1x3mM89hRxPAUOdb41vG090zc8vQAAAAAAAAAAGhAfPjWSCj8TEI6+tjeXvl57m7qznuU8AAAAAAAAAACNcL29+dUFPrqEKD5DDG6+A9T6PPpMPr0AAAAAAAAAAIDHUL40h4c/yKJOvmfcrL7Q5D++pNzCvAAAAAAAAAAAgKapPa7drrohRpa7h+nKOCNbN7ogWbg5AAAAAAAAgD8zMPi84HJ9P4KLBr0eGIu+bBmMvVkYKL0AAAAAAAAAAGZ07r0mqr0+rvBVuw9Jkb7D3o+9TOmwPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJBrutwJgOMAWyUTQoBjAF0lEdAkmY01Q66rnV9lChoBkdAcjwMoc7yQWgHTVgBaAhHQJJme17Y02t1fZQoaAZHQHHoyZ8a4tpoB02PAWgIR0CSZ2H58BuGdX2UKGgGR0BxBIiu+yquaAdNKQFoCEdAkmf2y1NQCXV9lChoBkdAcsCFdcB2fWgHTRoBaAhHQJJo/foA4n51fZQoaAZHQHB/GZ7XxvxoB00gAWgIR0CSaa3rleWwdX2UKGgGR0BvBoJmdy1eaAdNIAFoCEdAkmryWNWEK3V9lChoBkdAcPY5vcafjGgHTXcBaAhHQJJ8uZiNKiB1fZQoaAZHQGwcCq6vq1RoB00kAWgIR0CSfOGipNsWdX2UKGgGR0Bs41pEhJRPaAdNEQFoCEdAkn46eK8+R3V9lChoBkfAN7I4ACGN72gHS+RoCEdAkn46qjrRjXV9lChoBkdAcWkqO938oGgHTXABaAhHQJJ+fMcIZ651fZQoaAZHQEN3LOAy2x9oB0veaAhHQJJ/aNLlFMJ1fZQoaAZHQEzthVENOM5oB0vgaAhHQJKAJRtP5591fZQoaAZHQHB35YT0xudoB00dAWgIR0CSgIO+IuXedX2UKGgGR0BxV+muTzNEaAdNMAFoCEdAkoC9ZeRgZ3V9lChoBkdAbLyj1wo9cWgHTZEBaAhHQJKBl3GGVRl1fZQoaAZHQD+Y3qAz545oB0vdaAhHQJKBv+ZPVNJ1fZQoaAZHQHNimUfPompoB001AmgIR0CShSilBQendX2UKGgGR0BwzGgxrSE2aAdNIwFoCEdAkodyuhbno3V9lChoBkdAcHbzSCvovGgHTTABaAhHQJKIghA4XGh1fZQoaAZHQHCF327FsHloB029AmgIR0CSiJa6z3RHdX2UKGgGR0BwW05o4+8oaAdNHAFoCEdAkolfP5YYBXV9lChoBkdAcOtWepXIVGgHTYYBaAhHQJKK/0SRKYl1fZQoaAZHQHIHwhbGFSNoB01MAWgIR0CSjBw8W9DhdX2UKGgGR0BwcfQUpNKzaAdNGQFoCEdAkozms/6frnV9lChoBkdAb+igPEsJ6mgHTV0BaAhHQJKNY/oq0+l1fZQoaAZHQGTPzAWSEDhoB03oA2gIR0CSj2AvtdAxdX2UKGgGR0Byi9R8+iaiaAdNVQFoCEdAko+MqnWJ8HV9lChoBkdAcMrjQRf4RGgHTU0BaAhHQJKRkulGgBd1fZQoaAZHQHIDeeWfK6poB010AWgIR0CSkiS5iExqdX2UKGgGR0Bw8XQ3PzFuaAdNLQFoCEdAkpWGEGqxT3V9lChoBkdAcSk3i704BGgHTZ0BaAhHQJKWNG5MDfZ1fZQoaAZHQHD46xcE/0NoB00LAWgIR0CSmAJLuhK2dX2UKGgGR0Bu/RUxVQyiaAdNuQJoCEdAkpiS8nNPg3V9lChoBkdAccmO/L1VYWgHTTgBaAhHQJKZXopx3mp1fZQoaAZHQD6N64UeuFJoB0v7aAhHQJKZa+6Ae7t1fZQoaAZHQG+QmYrrgO1oB01WAWgIR0CSmciR4hUzdX2UKGgGR0Bw372wmmcfaAdNKAFoCEdAkpo5QtSQ5nV9lChoBkdAbdi8q4H5amgHTVgBaAhHQJKdipuMuOF1fZQoaAZHQHDxWETQE6loB00sAWgIR0CSnwT1TR6XdX2UKGgGR0Bw23OGCZndaAdNKQFoCEdAkp9bJ8v25HV9lChoBkdAcSTIWP91l2gHTWgBaAhHQJKf8D0UXYV1fZQoaAZHQHH1KR6nivRoB0v+aAhHQJKgImUnogV1fZQoaAZHQHCZTaXa8HxoB000AWgIR0CSosgieNDMdX2UKGgGR0BxvaTjebd8aAdNIQFoCEdAkqPDYZl4DHV9lChoBkdAcMkGSIP9UGgHTSIBaAhHQJKkuScLBsR1fZQoaAZHQGzrbRnezldoB00sAWgIR0CSpSwblzU7dX2UKGgGR0Bw80495hScaAdNOgFoCEdAkqYxZ+x4ZHV9lChoBkdAcT8lxwQ18GgHTWcBaAhHQJKmR11W8yx1fZQoaAZHQG95nCfpUxVoB00zAWgIR0CSpnc6eXiSdX2UKGgGR0Bw3YhB7eEaaAdNiwJoCEdAkrnJ9Vmz0HV9lChoBkdAcGA3N9ph4WgHTRwBaAhHQJK6jRBu4w11fZQoaAZHQG78B6KLsKNoB00dAWgIR0CSuuYg7o0RdX2UKGgGR0BZqp/oaDPGaAdN6ANoCEdAkrswqmTC+HV9lChoBkdAcEXL876pHmgHTSYBaAhHQJK75fMOf/Z1fZQoaAZHQHJTZPAO8TVoB00tAWgIR0CSu/fra/RFdX2UKGgGR0Aw8IMz/IbPaAdL4GgIR0CSvus67ulXdX2UKGgGR0BwO56HCXQdaAdNUQFoCEdAksACVv/BFnV9lChoBkdAcL8W1twaSGgHTQUBaAhHQJLAOJBPbfx1fZQoaAZHQHC5IGMXJo1oB006AWgIR0CSwPcnVoYfdX2UKGgGR0BxTP0Bfa6CaAdNOAFoCEdAksFv1g6U7nV9lChoBkdAcSKLgXMyJ2gHTX0BaAhHQJLDN4TsY2t1fZQoaAZHQHBiB2KVII5oB01YAWgIR0CSxHKa5PM0dX2UKGgGR0BmzubI91U3aAdN6ANoCEdAksUxsdkrgHV9lChoBkdAcUZdeY2KmGgHTRMBaAhHQJLG75eqrBF1fZQoaAZHQG1BBXbM5fdoB006AWgIR0CSx3gw482adX2UKGgGR0Bv6950KZ2IaAdNNAFoCEdAkskSg9Net3V9lChoBkdAcZgRQ79ycWgHTVYBaAhHQJLKDAbhm5F1fZQoaAZHQHCUNXgccVBoB01KAWgIR0CSy3NRFZxJdX2UKGgGR0Bxa1KwpvxZaAdNSwFoCEdAksucbaRISXV9lChoBkdAXSZV81Gb1GgHTegDaAhHQJLL5SydFv11fZQoaAZHQG05LzXjENxoB00vAWgIR0CSzkZha1TjdX2UKGgGR0BtbmwosqaxaAdNIgFoCEdAks/9ycTakHV9lChoBkdAb767HyVfNWgHTQoDaAhHQJLQGOZLIxR1fZQoaAZHQE2mjL0SRKZoB0vVaAhHQJLQSHKwIMV1fZQoaAZHQHEa0d/8VHpoB002AWgIR0CS0VuQIUrTdX2UKGgGR0BsmzuYx+KCaAdNigFoCEdAktPgX/HYH3V9lChoBkdAUMDNorWiDmgHS/xoCEdAktUfqC6H03V9lChoBkdAb4rUoa1kUmgHTTYBaAhHQJLVv4h2W6d1fZQoaAZHQHH+rMxGlRBoB02BAWgIR0CS1eNke6qbdX2UKGgGR0BKjRo7FKkEaAdL6GgIR0CS1gb3Gn4xdX2UKGgGR0BwZavr4WUKaAdNeAFoCEdAktZU/SpiqnV9lChoBkdAcd8BYV6/qWgHTUwBaAhHQJLWuaRZED11fZQoaAZHQHIVaZ+hGpdoB001AWgIR0CS13XxvvSddX2UKGgGR0BsdT9wWFewaAdNNwFoCEdAkthNlZowmHV9lChoBkdAcfVuoP07KmgHTUgBaAhHQJLZGCoS+QF1fZQoaAZHQHH1mfseGPBoB00vAWgIR0CS2dzzVc2SdX2UKGgGR0Bwc83Mpw0gaAdNHwFoCEdAktp4c3l0YHV9lChoBkdAcpVUoKD02GgHTVoCaAhHQJLat+kP+XJ1fZQoaAZHQHHISg00m+loB00lAWgIR0CS2ri+cpb2dX2UKGgGR0BtAtdeIEbHaAdNLwFoCEdAktvV3EAHV3V9lChoBkdAcrTMlkYoAmgHTV0BaAhHQJLckpMHryF1fZQoaAZHQHBCcbm2b5NoB00TAWgIR0CS3KCGN70GdX2UKGgGR0BvGp+jM3ZPaAdNFgFoCEdAkt3rbg0j1XV9lChoBkdAcRCVsk6cRWgHTSQBaAhHQJLfADGLk0d1fZQoaAZHQEiPrl/6O5toB0vpaAhHQJLf3AFgUlB1fZQoaAZHQG7jO32EkB1oB00hAWgIR0CS3/3iaRZEdX2UKGgGR0Bu+zD4xk/baAdNTAFoCEdAkuCkMoc7yXV9lChoBkdAR0QDA8B+4WgHS9toCEdAkuEGahHsknVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
LunarLander-MlpPolicy/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7dd81eebcf13975d7765123d5fbddce2ced0d2df2fba45284137d24334d0b405
3
+ size 87929
LunarLander-MlpPolicy/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5627bf6dcaaccb9e6347cc3ab408ca20187318b48cedf33918dfa11a3099805c
3
+ size 43329
LunarLander-MlpPolicy/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunarLander-MlpPolicy/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 254.99 +/- 12.40
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ab83eb6f490>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ab83eb6f520>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ab83eb6f5b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ab83eb6f640>", "_build": "<function ActorCriticPolicy._build at 0x7ab83eb6f6d0>", "forward": "<function ActorCriticPolicy.forward at 0x7ab83eb6f760>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ab83eb6f7f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ab83eb6f880>", "_predict": "<function ActorCriticPolicy._predict at 0x7ab83eb6f910>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ab83eb6f9a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ab83eb6fa30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ab83eb6fac0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ab83eb5fc80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689495425953828119, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOB4BL4K8lq75VRSNCec0zKP6JQ8VvwntAAAgD8AAIA/wNpmPuW+gT/PmQU/BcnGvoUufT5s8oA+AAAAAAAAAADmySq9FKCLusTjMjKeR1yw63RFu/1bdrIAAIA/AACAPwAM2T3IL6c+0YsCvqITer7qf4y9PsoavQAAAAAAAAAAzePJPSlwJbosvgq9Iz2pNqXvPLvoeRy2AAAAAAAAgD+AQS09UiCZP1ilBj6dgeC+aeqcPer+rj0AAAAAAAAAAE2gYL1i6oU/qBhIvfbQrL6yu5q9HU3eOgAAAAAAAAAAQI38Pa2/XD69Q8K8NoOOvj5nvT31ldw9AAAAAAAAAAAz+p895PoCPpedwb10bJe+Nr94u9BAKr0AAAAAAAAAAHO/xT1x3mM89hRxPAUOdb41vG090zc8vQAAAAAAAAAAGhAfPjWSCj8TEI6+tjeXvl57m7qznuU8AAAAAAAAAACNcL29+dUFPrqEKD5DDG6+A9T6PPpMPr0AAAAAAAAAAIDHUL40h4c/yKJOvmfcrL7Q5D++pNzCvAAAAAAAAAAAgKapPa7drrohRpa7h+nKOCNbN7ogWbg5AAAAAAAAgD8zMPi84HJ9P4KLBr0eGIu+bBmMvVkYKL0AAAAAAAAAAGZ07r0mqr0+rvBVuw9Jkb7D3o+9TOmwPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJBrutwJgOMAWyUTQoBjAF0lEdAkmY01Q66rnV9lChoBkdAcjwMoc7yQWgHTVgBaAhHQJJme17Y02t1fZQoaAZHQHHoyZ8a4tpoB02PAWgIR0CSZ2H58BuGdX2UKGgGR0BxBIiu+yquaAdNKQFoCEdAkmf2y1NQCXV9lChoBkdAcsCFdcB2fWgHTRoBaAhHQJJo/foA4n51fZQoaAZHQHB/GZ7XxvxoB00gAWgIR0CSaa3rleWwdX2UKGgGR0BvBoJmdy1eaAdNIAFoCEdAkmryWNWEK3V9lChoBkdAcPY5vcafjGgHTXcBaAhHQJJ8uZiNKiB1fZQoaAZHQGwcCq6vq1RoB00kAWgIR0CSfOGipNsWdX2UKGgGR0Bs41pEhJRPaAdNEQFoCEdAkn46eK8+R3V9lChoBkfAN7I4ACGN72gHS+RoCEdAkn46qjrRjXV9lChoBkdAcWkqO938oGgHTXABaAhHQJJ+fMcIZ651fZQoaAZHQEN3LOAy2x9oB0veaAhHQJJ/aNLlFMJ1fZQoaAZHQEzthVENOM5oB0vgaAhHQJKAJRtP5591fZQoaAZHQHB35YT0xudoB00dAWgIR0CSgIO+IuXedX2UKGgGR0BxV+muTzNEaAdNMAFoCEdAkoC9ZeRgZ3V9lChoBkdAbLyj1wo9cWgHTZEBaAhHQJKBl3GGVRl1fZQoaAZHQD+Y3qAz545oB0vdaAhHQJKBv+ZPVNJ1fZQoaAZHQHNimUfPompoB001AmgIR0CShSilBQendX2UKGgGR0BwzGgxrSE2aAdNIwFoCEdAkodyuhbno3V9lChoBkdAcHbzSCvovGgHTTABaAhHQJKIghA4XGh1fZQoaAZHQHCF327FsHloB029AmgIR0CSiJa6z3RHdX2UKGgGR0BwW05o4+8oaAdNHAFoCEdAkolfP5YYBXV9lChoBkdAcOtWepXIVGgHTYYBaAhHQJKK/0SRKYl1fZQoaAZHQHIHwhbGFSNoB01MAWgIR0CSjBw8W9DhdX2UKGgGR0BwcfQUpNKzaAdNGQFoCEdAkozms/6frnV9lChoBkdAb+igPEsJ6mgHTV0BaAhHQJKNY/oq0+l1fZQoaAZHQGTPzAWSEDhoB03oA2gIR0CSj2AvtdAxdX2UKGgGR0Byi9R8+iaiaAdNVQFoCEdAko+MqnWJ8HV9lChoBkdAcMrjQRf4RGgHTU0BaAhHQJKRkulGgBd1fZQoaAZHQHIDeeWfK6poB010AWgIR0CSkiS5iExqdX2UKGgGR0Bw8XQ3PzFuaAdNLQFoCEdAkpWGEGqxT3V9lChoBkdAcSk3i704BGgHTZ0BaAhHQJKWNG5MDfZ1fZQoaAZHQHD46xcE/0NoB00LAWgIR0CSmAJLuhK2dX2UKGgGR0Bu/RUxVQyiaAdNuQJoCEdAkpiS8nNPg3V9lChoBkdAccmO/L1VYWgHTTgBaAhHQJKZXopx3mp1fZQoaAZHQD6N64UeuFJoB0v7aAhHQJKZa+6Ae7t1fZQoaAZHQG+QmYrrgO1oB01WAWgIR0CSmciR4hUzdX2UKGgGR0Bw372wmmcfaAdNKAFoCEdAkpo5QtSQ5nV9lChoBkdAbdi8q4H5amgHTVgBaAhHQJKdipuMuOF1fZQoaAZHQHDxWETQE6loB00sAWgIR0CSnwT1TR6XdX2UKGgGR0Bw23OGCZndaAdNKQFoCEdAkp9bJ8v25HV9lChoBkdAcSTIWP91l2gHTWgBaAhHQJKf8D0UXYV1fZQoaAZHQHH1KR6nivRoB0v+aAhHQJKgImUnogV1fZQoaAZHQHCZTaXa8HxoB000AWgIR0CSosgieNDMdX2UKGgGR0BxvaTjebd8aAdNIQFoCEdAkqPDYZl4DHV9lChoBkdAcMkGSIP9UGgHTSIBaAhHQJKkuScLBsR1fZQoaAZHQGzrbRnezldoB00sAWgIR0CSpSwblzU7dX2UKGgGR0Bw80495hScaAdNOgFoCEdAkqYxZ+x4ZHV9lChoBkdAcT8lxwQ18GgHTWcBaAhHQJKmR11W8yx1fZQoaAZHQG95nCfpUxVoB00zAWgIR0CSpnc6eXiSdX2UKGgGR0Bw3YhB7eEaaAdNiwJoCEdAkrnJ9Vmz0HV9lChoBkdAcGA3N9ph4WgHTRwBaAhHQJK6jRBu4w11fZQoaAZHQG78B6KLsKNoB00dAWgIR0CSuuYg7o0RdX2UKGgGR0BZqp/oaDPGaAdN6ANoCEdAkrswqmTC+HV9lChoBkdAcEXL876pHmgHTSYBaAhHQJK75fMOf/Z1fZQoaAZHQHJTZPAO8TVoB00tAWgIR0CSu/fra/RFdX2UKGgGR0Aw8IMz/IbPaAdL4GgIR0CSvus67ulXdX2UKGgGR0BwO56HCXQdaAdNUQFoCEdAksACVv/BFnV9lChoBkdAcL8W1twaSGgHTQUBaAhHQJLAOJBPbfx1fZQoaAZHQHC5IGMXJo1oB006AWgIR0CSwPcnVoYfdX2UKGgGR0BxTP0Bfa6CaAdNOAFoCEdAksFv1g6U7nV9lChoBkdAcSKLgXMyJ2gHTX0BaAhHQJLDN4TsY2t1fZQoaAZHQHBiB2KVII5oB01YAWgIR0CSxHKa5PM0dX2UKGgGR0BmzubI91U3aAdN6ANoCEdAksUxsdkrgHV9lChoBkdAcUZdeY2KmGgHTRMBaAhHQJLG75eqrBF1fZQoaAZHQG1BBXbM5fdoB006AWgIR0CSx3gw482adX2UKGgGR0Bv6950KZ2IaAdNNAFoCEdAkskSg9Net3V9lChoBkdAcZgRQ79ycWgHTVYBaAhHQJLKDAbhm5F1fZQoaAZHQHCUNXgccVBoB01KAWgIR0CSy3NRFZxJdX2UKGgGR0Bxa1KwpvxZaAdNSwFoCEdAksucbaRISXV9lChoBkdAXSZV81Gb1GgHTegDaAhHQJLL5SydFv11fZQoaAZHQG05LzXjENxoB00vAWgIR0CSzkZha1TjdX2UKGgGR0BtbmwosqaxaAdNIgFoCEdAks/9ycTakHV9lChoBkdAb767HyVfNWgHTQoDaAhHQJLQGOZLIxR1fZQoaAZHQE2mjL0SRKZoB0vVaAhHQJLQSHKwIMV1fZQoaAZHQHEa0d/8VHpoB002AWgIR0CS0VuQIUrTdX2UKGgGR0BsmzuYx+KCaAdNigFoCEdAktPgX/HYH3V9lChoBkdAUMDNorWiDmgHS/xoCEdAktUfqC6H03V9lChoBkdAb4rUoa1kUmgHTTYBaAhHQJLVv4h2W6d1fZQoaAZHQHH+rMxGlRBoB02BAWgIR0CS1eNke6qbdX2UKGgGR0BKjRo7FKkEaAdL6GgIR0CS1gb3Gn4xdX2UKGgGR0BwZavr4WUKaAdNeAFoCEdAktZU/SpiqnV9lChoBkdAcd8BYV6/qWgHTUwBaAhHQJLWuaRZED11fZQoaAZHQHIVaZ+hGpdoB001AWgIR0CS13XxvvSddX2UKGgGR0BsdT9wWFewaAdNNwFoCEdAkthNlZowmHV9lChoBkdAcfVuoP07KmgHTUgBaAhHQJLZGCoS+QF1fZQoaAZHQHH1mfseGPBoB00vAWgIR0CS2dzzVc2SdX2UKGgGR0Bwc83Mpw0gaAdNHwFoCEdAktp4c3l0YHV9lChoBkdAcpVUoKD02GgHTVoCaAhHQJLat+kP+XJ1fZQoaAZHQHHISg00m+loB00lAWgIR0CS2ri+cpb2dX2UKGgGR0BtAtdeIEbHaAdNLwFoCEdAktvV3EAHV3V9lChoBkdAcrTMlkYoAmgHTV0BaAhHQJLckpMHryF1fZQoaAZHQHBCcbm2b5NoB00TAWgIR0CS3KCGN70GdX2UKGgGR0BvGp+jM3ZPaAdNFgFoCEdAkt3rbg0j1XV9lChoBkdAcRCVsk6cRWgHTSQBaAhHQJLfADGLk0d1fZQoaAZHQEiPrl/6O5toB0vpaAhHQJLf3AFgUlB1fZQoaAZHQG7jO32EkB1oB00hAWgIR0CS3/3iaRZEdX2UKGgGR0Bu+zD4xk/baAdNTAFoCEdAkuCkMoc7yXV9lChoBkdAR0QDA8B+4WgHS9toCEdAkuEGahHsknVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (178 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 254.99477670000002, "std_reward": 12.398401590406205, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-16T08:41:59.924889"}