HaileyStorm's picture
Added random move opening option
67472fe verified
raw
history blame
23.6 kB
import openai
import chess
import chess.engine
import os
import csv
import random
import time
import platform
# NOTE: LLAMA AND NANOGPT ARE EXPERIMENTAL PLAYERS, if not using them, comment them out
# from llama_module import BaseLlamaPlayer, LocalLlamaPlayer, LocalLoraLlamaPlayer
from nanogpt.nanogpt_module import NanoGptPlayer
from mamba_module import MambaPlayer
import gpt_query
from lczero.backends import Weights, Backend, GameState
import numpy as np
from typing import Optional, Tuple
from dataclasses import dataclass
@dataclass
class LegalMoveResponse:
move_san: Optional[str] = None
move_uci: Optional[chess.Move] = None
attempts: int = 0
is_resignation: bool = False
is_illegal_move: bool = False
# Define base Player class
class Player:
def get_move(self, board: chess.Board, game_state: str, temperature: float) -> str:
raise NotImplementedError
def get_config(self) -> dict:
raise NotImplementedError
class GPTPlayer(Player):
def __init__(self, model: str):
with open("gpt_inputs/api_key.txt", "r") as f:
openai.api_key = f.read().strip()
self.model = model
def get_move(
self, board: chess.Board, game_state: str, temperature: float
) -> Optional[str]:
response = get_gpt_response(game_state, self.model, temperature)
return get_move_from_gpt_response(response)
def get_config(self) -> dict:
return {"model": self.model}
class LC0PLayer(Player):
# "11258-32x4-se.pb.gz" = stockfish level 0- = skill 0
# "11258-48x5-se.pb.gz" = stockfish level 0+ = skill 1
# "11258-80x7-se.pb.gz" = stockfish level 1 = skill 2
# "11258-104x9-se.pb.gz" = stockfish level 2 = skill 3
# "TK-6430 aka 128x10-BPR-64M-6430000.pb.gz" = stockfish level 3 = skill 4
# "00af53b081e80147172e6f281c01daf5ca19ada173321438914c730370aa4267" = stockfish level 4 = skill 5
# "b2ec465d0fb5b5eb39d2e1e3f74041a5d2fc92d413b71aa7ea0b6fb082ccba9c" = stockfish level 5+ = skill 6
def __init__(self, skill):
self.skill = skill
network_paths = ["./lc0/build/release/11258-32x4-se.pb.gz", "./lc0/build/release/11258-48x5-se.pb.gz", "./lc0/build/release/11258-80x7-se.pb.gz", "./lc0/build/release/11258-104x9-se.pb.gz", "./lc0/build/release/TK-6430 aka 128x10-BPR-64M-6430000.pb.gz", "./lc0/build/release/00af53b081e80147172e6f281c01daf5ca19ada173321438914c730370aa4267", "./lc0/build/release/b2ec465d0fb5b5eb39d2e1e3f74041a5d2fc92d413b71aa7ea0b6fb082ccba9c"]
print(f"\n\nLoading lc0 network: {network_paths[skill]}\n\n")
self.weights = Weights(network_paths[skill])
self.backend = Backend(weights=self.weights)
self.gamestate = GameState()
def get_move(self, board: chess.Board, game_state: str, temperature: float):
self.gamestate = GameState(fen=board.fen())
input_planes = self.gamestate.as_input(self.backend)
result = self.backend.evaluate(input_planes)[0]
moves = self.gamestate.moves()
policy_indices = self.gamestate.policy_indices()
move_probs = np.array(result.p_softmax(*policy_indices))
best_move_idx = move_probs.argmax()
best_move = moves[best_move_idx]
return board.san(chess.Move.from_uci(best_move))
def get_config(self) -> dict:
return {"network": self.weights, "skill_level": self.skill, "play_time": 0}
class StockfishPlayer(Player):
@staticmethod
def get_stockfish_path() -> str:
"""
Determines the operating system and returns the appropriate path for Stockfish.
Returns:
str: Path to the Stockfish executable based on the operating system.
"""
if platform.system() == 'Linux':
return "/usr/games/stockfish"
elif platform.system() == 'Darwin': # Darwin is the system name for macOS
return "stockfish"
elif platform.system() == 'Windows':
return r"C:\Users\Haile\Downloads\stockfish\stockfish-windows-x86-64-avx2.exe"
else:
raise OSError("Unsupported operating system")
def __init__(self, skill_level: int, play_time: float):
self._skill_level = skill_level
self._play_time = play_time
# If getting started, you need to run brew install stockfish
stockfish_path = StockfishPlayer.get_stockfish_path()
self._engine = chess.engine.SimpleEngine.popen_uci(stockfish_path)
def get_move(
self, board: chess.Board, game_state: str, temperature: float
) -> Optional[str]:
if self._skill_level == -2:
legal_moves = list(board.legal_moves)
random_move = random.choice(legal_moves)
return board.san(random_move)
elif self._skill_level < 0:
self._engine.configure({"Skill Level": 0})
result = self._engine.play(
board, chess.engine.Limit(time=1e-8, depth=1, nodes=1)
)
else:
self._engine.configure({"Skill Level": self._skill_level})
result = self._engine.play(board, chess.engine.Limit(time=self._play_time))
if result.move is None:
return None
return board.san(result.move)
def get_config(self) -> dict:
return {"skill_level": self._skill_level, "play_time": self._play_time}
def close(self):
self._engine.quit()
class HumanPlayer(Player):
def get_move(self, board: chess.Board, game_state: str, temperature: float) -> str:
# Print board for human player
print(board)
while True:
move = input("Enter your move (SAN format): ")
try:
move_uci = board.parse_san(move)
if move_uci in board.legal_moves:
return move
except:
print("Illegal move, try again.")
def get_config(self) -> dict:
return {"player": "human"}
def get_gpt_response(game_state: str, model: str, temperature: float) -> Optional[str]:
# trying to prevent what I believe to be rate limit issues
if model == "gpt-4":
time.sleep(0.4)
response = gpt_query.get_gpt_response(game_state, model, temperature)
return response
def get_move_from_gpt_response(response: Optional[str]) -> Optional[str]:
if response is None:
return None
# Parse the response to get only the first move
moves = response.split()
first_move = moves[0] if moves else None
return first_move
def record_results(
board: chess.Board,
player_one: Player,
player_two: Player,
game_state: str,
player_one_illegal_moves: int,
player_one_illegal_attempts: int,
player_two_illegal_moves: int,
player_one_legal_moves: int,
player_two_legal_moves: int,
total_time: float,
player_one_resignation: bool,
player_two_resignation: bool,
player_one_failed_to_find_legal_move: bool,
player_two_failed_to_find_legal_move: bool,
total_moves: int,
illegal_moves: int,
opening_moves: int,
illegal_move_numbers: list[int]
):
unique_game_id = generate_unique_game_id()
(
player_one_title,
player_two_title,
player_one_time,
player_two_time,
) = get_player_titles_and_time(player_one, player_two)
if player_one_resignation or player_one_failed_to_find_legal_move:
result = "0-1"
player_one_score = 0
player_two_score = 1
elif player_two_resignation or player_two_failed_to_find_legal_move:
result = "1-0"
player_one_score = 1
player_two_score = 0
else:
result = board.result()
# Hmmm.... debating this one. Annoying if I leave it running and it fails here for some reason, probably involving some
# resignation / failed move situation I didn't think of
# -1e10 at least ensures it doesn't fail silently
if "-" in result:
player_one_score = result.split("-")[0]
player_two_score = result.split("-")[1]
elif result == "*": # Draw due to hitting max moves
player_one_score = 0#1/2
player_two_score = 1#1/2
else:
player_one_score = -1e10
player_two_score = -1e10
played_moves = player_one_illegal_moves + player_one_legal_moves
info_dict = {
"game_id": unique_game_id,
"transcript": game_state,
"result": result,
"player_one": player_one_title,
"player_two": player_two_title,
"player_one_time": player_one_time,
"player_two_time": player_two_time,
"player_one_score": player_one_score,
"player_two_score": player_two_score,
"player_one_illegal_moves": player_one_illegal_moves,
"player_two_illegal_moves": player_two_illegal_moves,
"player_one_legal_moves": player_one_legal_moves,
"player_two_legal_moves": player_two_legal_moves,
"player_one_resignation": player_one_resignation,
"player_two_resignation": player_two_resignation,
"player_one_failed_to_find_legal_move": player_one_failed_to_find_legal_move,
"player_two_failed_to_find_legal_move": player_two_failed_to_find_legal_move,
"game_title": f"{player_one_title} vs. {player_two_title}",
"number_of_moves": board.fullmove_number,
"p1_illegal_attempts": player_one_illegal_attempts,
"p1_avg_attempts_per_illegal": 0 if player_one_illegal_moves == 0 else player_one_illegal_attempts / float(player_one_illegal_moves),
"p1_illegal_attemtps_pct": 1.0 if played_moves == 0 else player_one_illegal_attempts / float(player_one_illegal_attempts + player_one_legal_moves),
"p1_illegal_moves_pct": 1.0 if played_moves == 0 else player_one_illegal_moves / float(played_moves),
"p1_first_illegal_move_num": illegal_move_numbers[0] if illegal_move_numbers else 0,
"p1_avg_illegal_move_num": np.average(illegal_move_numbers) if illegal_move_numbers else 0,
"time_taken": total_time,
"total_moves": total_moves,
"illegal_moves": illegal_moves,
}
if RUN_FOR_ANALYSIS:
csv_file_path = f"logs/{player_one_recording_name}_vs_{player_two_recording_name}"
csv_file_path = csv_file_path.replace(".", "_") # Because I'm using ckpt filenames for nanogpt models
csv_file_path += ".csv"
else:
csv_file_path = recording_file
# Determine if we need to write headers (in case the file doesn't exist yet)
write_headers = not os.path.exists(csv_file_path)
# Append the results to the CSV file
os.makedirs(os.path.dirname(csv_file_path), exist_ok=True)
with open(csv_file_path, "a", newline="") as csv_file:
writer = csv.DictWriter(csv_file, fieldnames=info_dict.keys())
if write_headers:
writer.writeheader()
writer.writerow(info_dict)
with open("game.txt", "w") as f:
f.write(game_state)
def generate_unique_game_id() -> str:
timestamp = int(time.time())
random_num = random.randint(1000, 9999) # 4-digit random number
return f"{timestamp}-{random_num}"
def get_player_titles_and_time(
player_one: Player, player_two: Player
) -> Tuple[str, str, Optional[float], Optional[float]]:
player_one_config = player_one.get_config()
player_two_config = player_two.get_config()
# For player one
if "model" in player_one_config:
player_one_title = player_one_config["model"]
player_one_time = None
else:
player_one_title = f"Stockfish {player_one_config['skill_level']}"
player_one_time = player_one_config["play_time"]
# For player two
if "model" in player_two_config:
player_two_title = player_two_config["model"]
player_two_time = None
else:
player_two_title = f"Stockfish {player_two_config['skill_level']}"
player_two_time = player_two_config["play_time"]
return (player_one_title, player_two_title, player_one_time, player_two_time)
used_openings = []
def random_book_opening(
game_state: str, board: chess.Board
) -> Tuple[str, chess.Board]:
global used_openings
with open("openings.csv", "r") as file:
lines = file.readlines()[1:] # Skip header
moves_string = random.choice(lines)
while moves_string in used_openings:
moves_string = random.choice(lines)
used_openings.append(moves_string)
if move_num_in_gamestate:
game_state = moves_string.rstrip() + " "
else:
game_state = ' '.join(['.' + m.split(".")[-1] if "." in m else m for m in moves_string.split()])
game_state = game_state.rstrip() + " "
# Splitting the moves string on spaces
tokens = moves_string.split()
for token in tokens:
# If the token contains a period, it's a move number + move combination
if "." in token:
move = token.split(".")[-1] # Take the move part after the period
else:
move = token
board.push_san(move)
return game_state.rstrip(), board, len(tokens) // 2
def add_random_moves(
game_state: str, board: chess.Board, num_moves: int = 20
) -> Tuple[str, chess.Board, int]:
for i in range(num_moves * 2): # Full moves to half moves
legal_moves = list(board.legal_moves)
if not legal_moves:
break
move = board.san(random.choice(legal_moves))
board.push(board.parse_san(move))
if board.turn == chess.BLACK:
game_state += f" {i//2 + 1}.{move}" if move_num_in_gamestate else f" .{move}"
else:
game_state += f" {move}"
game_state = game_state.strip()
return game_state, board, num_moves
# Return is (move_san, move_uci, attempts, is_resignation, is_illegal_move)
def get_legal_move(
player: Player,
board: chess.Board,
game_state: str,
player_one: bool,
max_attempts: int = 5,
) -> LegalMoveResponse:
"""Request a move from the player and ensure it's legal."""
move_san = None
move_uci = None
for attempt in range(max_attempts):
#print(f"get_legal_move: |{game_state}|")
move_san = player.get_move(
board, game_state, min(((attempt / max_attempts) * 1) + 0.001, 0.75)
)
# Sometimes when GPT thinks it's the end of the game, it will just output the result
# Like "1-0". If so, this really isn't an illegal move, so we'll add a check for that.
if move_san is not None:
if move_san == "1-0" or move_san == "0-1" or move_san == "1/2-1/2":
print(f"{move_san}, player has resigned")
return LegalMoveResponse(
move_san=None,
move_uci=None,
attempts=attempt,
is_resignation=True,
)
try:
move_uci = board.parse_san(move_san)
except Exception as e:
print(f"Error parsing move {move_san}: {e}")
# check if player is gpt-3.5-turbo-instruct
# only recording errors for gpt-3.5-turbo-instruct because it's errors are so rare
if player.get_config()["model"] == "gpt-3.5-turbo-instruct":
with open("gpt-3.5-turbo-instruct-illegal-moves.txt", "a") as f:
f.write(f"{game_state}\n{move_san}\n")
continue
if move_uci in board.legal_moves:
if player_one == False:
if not move_san.startswith(" "):
move_san = " " + move_san
else:
if move_san.startswith(" "):
move_san = move_san[1:]
return LegalMoveResponse(move_san, move_uci, attempt)
print(f"Illegal move: {move_san}")
# If we reach here, the player has made illegal moves for all attempts.
print(f"{player} provided illegal moves for {max_attempts} attempts.")
return LegalMoveResponse(
move_san=None, move_uci=None, attempts=max_attempts, is_illegal_move=True
)
def play_turn(
player: Player, board: chess.Board, game_state: str, player_one: bool
) -> Tuple[str, bool, bool, int]:
result = get_legal_move(player, board, game_state, player_one, 5)
illegal_moves = result.attempts
move_san = result.move_san
move_uci = result.move_uci
resignation = result.is_resignation
failed_to_find_legal_move = result.is_illegal_move
if resignation:
print(f"{player} resigned with result: {board.result()}")
elif failed_to_find_legal_move:
print(f"Game over: 5 consecutive illegal moves from {player}")
elif move_san is None or move_uci is None:
print(f"Game over: {player} failed to find a legal move")
else:
board.push(move_uci)
game_state += move_san
print(move_san, end=" ")
return game_state, resignation, failed_to_find_legal_move, illegal_moves
def play_game(
player_one: Player,
player_two: Player,
max_games: int = 10,
book_opening: bool = False,
random_opening: bool = False,
random_opening_moves: int = 20,
):
for z in range(max_games):
print(f"\nGame {z} of {max_games}\n")
with open("gpt_inputs/prompt.txt", "r") as f:
game_state = f.read()
board = chess.Board()
if book_opening:
game_state, board, opening_moves = random_book_opening(game_state, board)
elif random_opening:
game_state, board, opening_moves = add_random_moves(game_state, board, random_opening_moves)
else:
opening_moves = 0
player_one_illegal_moves = 0
player_one_illegal_attempts = 0
player_two_illegal_moves = 0
player_one_legal_moves = 0
player_two_legal_moves = 0
player_one_resignation = False
player_two_resignation = False
player_one_failed_to_find_legal_move = False
player_two_failed_to_find_legal_move = False
start_time = time.time()
total_moves = 0
illegal_moves = 0
illegal_move_numbers = []
print_for_human = isinstance(player_one, HumanPlayer) or isinstance(player_two, HumanPlayer)
while not board.is_game_over():
if print_for_human:
print(board)
with open("game.txt", "w") as f:
f.write(game_state)
current_move_num = f"{board.fullmove_number if move_num_in_gamestate else ''}."
total_moves += 1
# I increment legal moves here so player_two isn't penalized for the game ending before its turn
player_one_legal_moves += 1
player_two_legal_moves += 1
# this if statement may be overkill, just trying to get format to exactly match PGN notation
if board.fullmove_number != 1:
game_state += " "
game_state += current_move_num
#print(f"|{game_state}|")
#print(f"{current_move_num}", end=" ")
(
game_state,
player_one_resignation,
player_one_failed_to_find_legal_move,
illegal_moves_one,
) = play_turn(player_one, board, game_state, player_one=True)
player_one_illegal_moves += 1 if illegal_moves_one > 0 else 0
player_one_illegal_attempts += illegal_moves_one
if illegal_moves_one != 0:
player_one_legal_moves -= 1
illegal_move_numbers.append(board.fullmove_number)
if (
board.is_game_over()
or player_one_resignation
or player_one_failed_to_find_legal_move
):
break
(
game_state,
player_two_resignation,
player_two_failed_to_find_legal_move,
illegal_moves_two,
) = play_turn(player_two, board, game_state, player_one=False)
player_two_illegal_moves += 1 if illegal_moves_two > 0 else 0
if illegal_moves_two != 0:
player_two_legal_moves -= 1
if (
board.is_game_over()
or player_two_resignation
or player_two_failed_to_find_legal_move
):
break
print("\n", end="")
if total_moves > MAX_MOVES:
break
end_time = time.time()
total_time = end_time - start_time
print(f"\nGame over. Total time: {total_time} seconds")
print(f"Result: {board.result()}")
print(board)
print()
record_results(
board,
player_one,
player_two,
game_state,
player_one_illegal_moves,
player_one_illegal_attempts,
player_two_illegal_moves,
player_one_legal_moves,
player_two_legal_moves,
total_time,
player_one_resignation,
player_two_resignation,
player_one_failed_to_find_legal_move,
player_two_failed_to_find_legal_move,
total_moves,
illegal_moves,
opening_moves,
illegal_move_numbers
)
if isinstance(player_one, StockfishPlayer):
player_one.close()
if isinstance(player_two, StockfishPlayer):
player_two.close()
# print(game_state)
RUN_FOR_ANALYSIS = True
MAX_MOVES = 999 # Due to nanogpt max input length of 1024
recording_file = "logs/determine.csv" # default recording file. Because we are using list [player_ones], recording_file is overwritten
# player_one_recording_name = "ckpt_8.pt"
#player_ones = ["ckpt_iter_20000.pt","ckpt_iter_40000.pt","ckpt_iter_60000.pt","ckpt_iter_80000.pt"] #["ckpt.pt"]
player_ones = ["50M/ckpt_9120050b.pt"]
player_two_recording_name = "lc0_sweep" #"stockfish_sweep"
move_num_in_gamestate = False
book_opening = True
random_opening = False
random_opening_moves = 20
if __name__ == "__main__":
for nanogpt_player in player_ones:
for i in range(1): #range(11):
num_games = 540
# player_one = GPTPlayer(model="gpt-3.5-turbo-instruct")
# player_one = LocalLlamaPlayer(model_name="meta-llama/Llama-2-7b-hf")
# player_one = LocalLoraLlamaPlayer("meta-llama/Llama-2-7b-hf", "/workspace/axolotl/lora2-out")
# player_one = GPTPlayer(model="gpt-4")
# player_one = StockfishPlayer(skill_level=-1, play_time=0.1)
player_one_recording_name = nanogpt_player
#player_one = NanoGptPlayer(model_name=player_one_recording_name, move_num_in_gamestate=move_num_in_gamestate)
#player_one_recording_name = "xformer_" + nanogpt_player
player_one = MambaPlayer(model_name=player_one_recording_name, move_num_in_gamestate=move_num_in_gamestate)
#player_two = StockfishPlayer(skill_level=i, play_time=0.1)
player_two = LC0PLayer(skill=i)
# player_two = GPTPlayer(model="gpt-4")
# player_two = GPTPlayer(model="gpt-3.5-turbo-instruct")
#print(f"\n\nSTARTING GAMES AGAINST STOCKFISH LEVEL {i}\n\n")
print(f"\n\nSTARTING GAMES AGAINST LC0 LEVEL {i}\n\n")
play_game(player_one, player_two, num_games, book_opening=book_opening, random_opening=random_opening,random_opening_moves=random_opening_moves)
print("\n\n\n********\nDONE!\n********\n\n\n")