MambaMate-Micro / train_bygame.py
HaileyStorm's picture
Upload 8 files
816f85a verified
raw
history blame
No virus
19.8 kB
import os
import time
import math
import pickle
from contextlib import nullcontext
import numpy as np
import torch
import torch.nn.functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group
from mamba_lm import MambaLM, MambaLMConfig
import pyarrow.parquet as pq
import random
from torch.utils.data import Dataset, DataLoader
import glob
# -----------------------------------------------------------------------------
# default config values designed for Mamba model training
# I/O
out_dir = 'out'
eval_interval = 2000
log_interval = 1
eval_iters = 5
eval_only = False
always_save_checkpoint = True
init_from = 'resume' # 'scratch', 'resume', 'anneal', or Mamba model name
# wandb logging
wandb_log = False
wandb_project = 'mamba'
wandb_run_name = 'mamba_run' # modify as needed
# data
dataset = 'chess' # specify your dataset
gradient_accumulation_steps = 5 * 8
batch_size = 12
base_batch_size = batch_size
effective_batch_size = batch_size
max_seq_len = 1024 # A trianing-only parameter for controlling VRAM
train_file_update_interval = 7
# model
n_layer = 12
d_model = 768
dt_rank = 'auto'
d_state = 16
expand_factor = 2
bias = False
conv_bias = True
pscan = True
vocab_size = 32000
move_num_in_gamestate = True
# optimizer settings
learning_rate = 6e-4
max_iters = 600000
weight_decay = 1e-1
beta1 = 0.9
beta2 = 0.95
grad_clip = 1.0
auto_clip = False
grad_clip_start_size = 100
grad_clip_max_size = 500
grad_clip_percentile = 10
# learning rate decay settings
decay_lr = True
warmup_iters = 2000
lr_decay_iters = 600000
min_lr = 6e-5
# DDP settings
backend = 'nccl'
# system
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dtype = 'bfloat16' if torch.cuda.is_bf16_supported() else 'float32'
compile = False # set to True if using PyTorch 2.0
# -----------------------------------------------------------------------------
config_keys = [k for k, v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
exec(open('configurator.py').read()) # overrides from command line or config file
config = {k: globals()[k] for k in config_keys} # will be useful for logging
# -----------------------------------------------------------------------------
anneal_checkpoint = 'anneal/ckpt.pt' #'anneal_me.pt'
anneal_dir = os.path.join(out_dir, 'anneal/')
anneal_start_iters = None # Set at init
anneal_decay_iters = None # Set at init
mamba_config = MambaLMConfig(
d_model=d_model, # adjust as needed
n_layers=n_layer, # adjust as needed
dt_rank=dt_rank,
d_state=d_state,
expand_factor=expand_factor,
bias=bias,
conv_bias=conv_bias,
pscan=pscan,
vocab_size=vocab_size # adjust based on your dataset
)
# DDP and other initializations
ddp = int(os.environ.get('RANK', -1)) != -1
if ddp:
init_process_group(backend=backend)
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
master_process = ddp_rank == 0
seed_offset = ddp_rank
assert gradient_accumulation_steps % ddp_world_size == 0
gradient_accumulation_steps //= ddp_world_size
else:
master_process = True
seed_offset = 0
ddp_world_size = 1
tokens_per_iter = gradient_accumulation_steps * ddp_world_size * batch_size * max_seq_len
if master_process:
os.makedirs(out_dir, exist_ok=True)
os.makedirs(anneal_dir, exist_ok=True)
torch.manual_seed(1337 + seed_offset)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
device_type = 'cuda' if 'cuda' in device else 'cpu'
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16}[dtype]
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
# poor man's data loader
data_dir = os.path.join('data', dataset)
current_train_file_index = 0
train_files = glob.glob(os.path.join(data_dir, 'train*.parquet'))
train_datasets = []
for f in train_files:
dataset = pq.read_table(f).to_pandas()
dataset = dataset[dataset['tokenized'].apply(len) >= 8]
train_datasets.append(dataset)
#val_data = pq.read_table(os.path.join(data_dir, 'val.parquet')).to_pandas()
#val_data = val_data[val_data['tokenized'].apply(len) >= 8]
truncated_games_count = 0
total_games_count = 0
games_seen = 0
def get_batch(split):
global truncated_games_count, total_games_count, current_train_file_index
# Randomly select batch_size games
dataset = train_datasets[current_train_file_index] if split == 'train' else None # else val_data # Use the correct DataFrame based on the split
sample_df = dataset.sample(batch_size)
games = sample_df['tokenized'].tolist()
# Prepare sequences tensor for the batch
max_length_in_batch = min(max(len(game) for game in games), max_seq_len)
sequences = torch.zeros((batch_size, max_length_in_batch), dtype=torch.int64)
for i, game in enumerate(games):
total_games_count += 1
if len(game) > max_seq_len:
truncated_games_count += 1
# Randomly decide truncation strategy
truncation_choice = random.choice(['beginning', 'end', 'end2', 'random'])
if truncation_choice == 'beginning':
# Truncatethe beginning (use from the end backward)
truncated_game = game[-max_seq_len:]
elif truncation_choice.startswith('end'):
# Truncatethe end (use from the beginning forward)
truncated_game = game[:max_seq_len]
else:
# Random start index (truncate beginning and end)
start_idx = random.randint(0, len(game) - max_seq_len)
truncated_game = game[start_idx:start_idx + max_seq_len]
sequences[i, :len(truncated_game)] = torch.tensor(truncated_game, dtype=torch.int64)
# Report the percentage of truncated games
if truncated_games_count > 0 and truncated_games_count % 50 == 0:
truncated_percentage = (truncated_games_count / total_games_count) * 100
print(f"Percentage of truncated games: {truncated_percentage:.2f}%\t\t({truncated_games_count}/{total_games_count})")
else:
sequences[i, :len(game)] = torch.tensor(game, dtype=torch.int64)
if (total_games_count // batch_size) % train_file_update_interval == 0:
current_train_file_index = random.randint(0, len(train_files) - 1)
# print(f"Switched to file: {train_files[current_train_file_index]}")
if device_type == 'cuda':
sequences = sequences.pin_memory().to(device, non_blocking=True)
else:
sequences = sequences.to(device)
return sequences
# init these up here, can override if init_from='resume' (i.e. from a checkpoint)
iter_num = 0
best_val_loss = 1e9
# attempt to derive vocab_size from the dataset
meta_path = os.path.join(data_dir, 'meta.pkl')
meta_vocab_size = None
if not move_num_in_gamestate:
meta_vocab_size = 28
elif os.path.exists(meta_path):
with open(meta_path, 'rb') as f:
meta = pickle.load(f)
meta_vocab_size = meta['vocab_size']
print(f"found vocab_size = {meta_vocab_size} (inside {meta_path})")
# Model initialization
if init_from == 'scratch':
print("Initializing a new Mamba model from scratch")
if meta_vocab_size is None:
print(f"defaulting to vocab_size of {vocab_size}")
else:
mamba_config.vocab_size = meta_vocab_size
model = MambaLM(mamba_config)
if auto_clip:
grad_clip = 0
config['grad_clip'] = 0
grad_norm_history = []
elif init_from == 'resume' or init_from == 'anneal':
print(f"Resuming training from {out_dir}")
if init_from == 'anneal':
ckpt_path = os.path.join(out_dir, anneal_checkpoint)
else:
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
checkpoint = torch.load(ckpt_path, map_location=device)
mamba_config = checkpoint['model_args']
model = MambaLM(mamba_config)
state_dict = checkpoint['model']
# fix the keys of the state dictionary :(
# honestly no idea how checkpoints sometimes get this prefix, have to debug more
unwanted_prefix = '_orig_mod.'
for k,v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
model.load_state_dict(state_dict)
if 'effective_batch_size' not in checkpoint['config']:
print("Checkpoint was saved without `effective_batch_size`, assuming current value (will save with next checkpoint). This is used for correcting `iter_num` when the effetive batch size is changed.")
checkpoint['config']['effective_batch_size'] = effective_batch_size
iter_num = int(round(checkpoint['iter_num'] * (checkpoint['config']['effective_batch_size'] / effective_batch_size)))
if 'games_seen' in checkpoint:
games_seen = checkpoint['games_seen']
else:
games_seen = checkpoint['config']['effective_batch_size'] * checkpoint['iter_num']
checkpoint['games_seen'] = games_seen
print(f"Checkpoint was saved without `games_seen`, assuming checkpoint's effective batch size * iters (will save with next checkpoint). {games_seen}")
best_val_loss = checkpoint['best_val_loss']
print(f"Best val loss: {best_val_loss}")
if auto_clip:
grad_clip = checkpoint['config']['grad_clip']
config['grad_clip'] = grad_clip
#grad_norm_history = [t.item() if torch.is_tensor(t) else t for t in checkpoint.get('grad_norm_history', [])]
grad_norm_history = checkpoint.get('grad_norm_history', [])
if init_from == 'anneal':
print(f"\n\nANNEAL STARTING/RESUMING FROM ITERNUM: {iter_num} ({games_seen} games)\n\n")
anneal_start_iters = iter_num if 'anneal_start_iters' not in checkpoint else checkpoint['anneal_start_iters']
anneal_decay_iters = iter_num / 7.0 if 'anneal_decay_iters' not in checkpoint else checkpoint['anneal_decay_iters'] # / 9 is og
print(anneal_start_iters)
print(anneal_decay_iters)
if 'anneal_start_iters' not in checkpoint:
grad_clip = 0
config['grad_clip'] = 0
grad_norm_history = []
print(f"Starting anneal. Resumed from anneal_me.pt, will now decay learning rate for {anneal_decay_iters} / until iter_num {anneal_start_iters + anneal_decay_iters}.")
out_dir = anneal_dir
weight_decay = weight_decay / 10.0 # / 17.0
beta2 = np.sqrt(beta2) * beta2
auto_clip = True
grad_clip_percentile = 6.3333 # 6.75
elif init_from.startswith('state-spaces'):
print(f"Initializing from Mamba pre-trained weights: {init_from}")
model = from_pretrained(init_from)
mamba_config = model.config
else:
raise ValueError("Invalid init_from value")
model.to(device)
print(f'Model with {sum([p.numel() for p in model.parameters()])} parameters loaded.')
# Optimizer and GradScaler
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay, betas=(beta1, beta2))
scaler = torch.cuda.amp.GradScaler(enabled=dtype == 'float16')
if init_from == 'resume':
optimizer.load_state_dict(checkpoint['optimizer'])
checkpoint = None
# Compile the model if using PyTorch 2.0
if compile:
print("compiling the model... (takes a ~minute)")
model = torch.compile(model)
# Wrap model in DDP container if necessary
if ddp:
model = DDP(model, device_ids=[ddp_local_rank])
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ['train']: #['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
tokens = get_batch(split) # Fetch tokens in the correct format
logits = model(tokens[:, :-1]) # Predict next tokens (ignore last token)
# The targets are the tokens shifted by one position
targets = tokens[:, 1:].reshape(-1) # Flatten targets for cross-entropy
# Compute cross-entropy loss between logits and targets
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets)
losses[k] = loss.item()
split = 'val' # Temporary hack
out[split] = losses.mean()
model.train()
return out
# WSD scheduler
def get_lr(it):
if init_from == 'anneal':
# Linear decay from max LR to min LR over (anneal_start_iters / 9) iters
decay_ratio = min(it - anneal_start_iters, anneal_decay_iters) / anneal_decay_iters
return learning_rate - decay_ratio * (learning_rate - min_lr)
if it < warmup_iters:
# Warmup
return learning_rate * it / warmup_iters
# Stable max LR
return learning_rate
# Logging setup
if wandb_log and master_process:
import wandb
wandb.init(project=wandb_project, name=wandb_run_name, config=config)
# Training loop
local_iter_num = 0 # Number of iterations in the lifetime of this process
last_crossed_multiple = 0
save_every_n_games = 150000
raw_model = model.module if ddp else model # Unwrap DDP container if needed
t0 = time.time()
while True:
# Determine and set the learning rate for this iteration
lr = get_lr(iter_num) if decay_lr else learning_rate
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# Evaluate the loss on train/val sets and write checkpoints
if iter_num % eval_interval == 0 and master_process:
losses = estimate_loss()
print(f"\ngame {games_seen} ({iter_num}, {(iter_num / max_iters)*100.0:.3f}%): 'val' loss {losses['val']:.4f}") # Temporary hack
#print(f"game {games_seen} ({iter_num}): train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
if auto_clip and len(grad_norm_history) >= grad_clip_start_size:
grad_clip = np.percentile(grad_norm_history, grad_clip_percentile)
config['grad_clip'] = grad_clip
print(f"Auto adjusted grad_clip to {grad_clip}")
if wandb_log:
wandb.log({
"iter": iter_num,
"games": games_seen,
#"train/loss": losses['train'], # Temporary hack
"grad_clip": grad_clip,
"val/loss": losses['val'],
"lr": lr,
})
if losses['val'] < best_val_loss or always_save_checkpoint:
if iter_num > 0:
checkpoint = {
'model': raw_model.state_dict(),
'optimizer': optimizer.state_dict(),
'model_args': mamba_config,
'iter_num': iter_num,
"games_seen": games_seen,
'best_val_loss': min(best_val_loss, losses['val']),
'config': config,
}
checkpoint['grad_norm_history'] = grad_norm_history
if init_from == 'anneal':
checkpoint['anneal_start_iters'] = anneal_start_iters
checkpoint['anneal_decay_iters'] = anneal_decay_iters
print(f"saving checkpoint to {out_dir}\n")
torch.save(checkpoint, os.path.join(out_dir, 'ckpt.pt'))
current_nearest_multiple = (games_seen // save_every_n_games) * save_every_n_games
if losses['val'] < best_val_loss: # Temporary / only good after it's settled
best_val_loss = losses['val']
torch.save(checkpoint, os.path.join(out_dir, f'ckpt_{int(games_seen)}b.pt'))
elif current_nearest_multiple != last_crossed_multiple: # elif so we don't double up
last_crossed_multiple = current_nearest_multiple
torch.save(checkpoint, os.path.join(out_dir, f'ckpt_{int(games_seen)}.pt'))
if iter_num == 0 and eval_only:
break
# Forward and backward pass
for micro_step in range(gradient_accumulation_steps):
if ddp:
model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1)
sequences = get_batch('train') # Fetch the training data
with ctx:
logits = model(sequences[:, :-1]) # Forward pass, exclude last token for input
# Compute loss (assuming next token prediction task)
targets = sequences[:, 1:].reshape(-1) # Shifted by one for next token prediction
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets)
loss = loss / gradient_accumulation_steps
scaler.scale(loss).backward()
#print('.', end='')
# clip the gradient
if grad_clip != 0.0 or auto_clip:
scaler.unscale_(optimizer)
total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip if grad_clip != 0.0 else 999.9) # The 0 check is for auto_clip enabled but not enough history
grad_norm_history.append(total_norm.item())
grad_norm_history = grad_norm_history[-grad_clip_max_size:]
# step the optimizer and scaler if training in fp16
scaler.step(optimizer)
scaler.update()
# flush the gradients as soon as we can, no need for this memory anymore
optimizer.zero_grad(set_to_none=True)
# timing and logging
t1 = time.time()
dt = t1 - t0
t0 = t1
if iter_num % log_interval == 0 and master_process:
# get loss as float. note: this is a CPU-GPU sync point
# scale up to undo the division above, approximating the true total loss (exact would have been a sum)
lossf = loss.item() * gradient_accumulation_steps
print(f"game {games_seen} ({iter_num}, {(iter_num / max_iters)*100.0:.3f}%): loss {lossf:.4f}, time {dt*1000:.2f}ms")
if wandb_log:
wandb.log({
"iter": iter_num,
"games": games_seen,
"grad_norm": grad_norm_history[-1] if grad_norm_history else 0,
"train/loss": lossf,
"lr": lr,
})
iter_num += 1
local_iter_num += 1
games_seen += effective_batch_size
# termination conditions
if iter_num > max_iters:
checkpoint = {
'model': raw_model.state_dict(),
'optimizer': optimizer.state_dict(),
'model_args': mamba_config,
'iter_num': iter_num,
"games_seen": games_seen,
'best_val_loss': best_val_loss,
'config': config,
}
checkpoint['grad_norm_history'] = grad_norm_history
if init_from == 'anneal':
checkpoint['anneal_start_iters'] = anneal_start_iters
checkpoint['anneal_decay_iters'] = anneal_decay_iters
print(f"Max_iters reached. Saving checkpoint to {out_dir}")
torch.save(checkpoint, os.path.join(out_dir, 'ckpt_final.pt'))
break
if init_from == 'anneal' and iter_num >= anneal_start_iters + anneal_decay_iters:
checkpoint = {
'model': raw_model.state_dict(),
'optimizer': optimizer.state_dict(),
'model_args': mamba_config,
'iter_num': iter_num,
"games_seen": games_seen,
'best_val_loss': best_val_loss,
'config': config,
}
checkpoint['grad_norm_history'] = grad_norm_history
if init_from == 'anneal':
checkpoint['anneal_start_iters'] = anneal_start_iters
checkpoint['anneal_decay_iters'] = anneal_decay_iters
print(f"Anneal complete. Saving checkpoint to {out_dir}")
torch.save(checkpoint, os.path.join(out_dir, 'anneal_complete.pt'))
break
if ddp:
destroy_process_group()