Hailay commited on
Commit
922b995
·
verified ·
1 Parent(s): 973ed98

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -163
README.md CHANGED
@@ -4,180 +4,40 @@ license: apache-2.0
4
  language:
5
  - am
6
  - ti
7
- ---
8
-
9
- # Model Card for Model ID
10
-
11
- <!-- Provide a quick summary of what the model is/does. -->
12
-
13
-
14
-
15
- ## Model Details
16
-
17
- ### Model Description
18
-
19
- <!-- Provide a longer summary of what this model is. -->
20
-
21
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
22
-
23
- Developed by: [Your Name or Organization]
24
- Funded by: [Optional: Funding Information]
25
- Shared by: [Optional: Sharing Information]
26
- Model type: XLM-RoBERTa for Sequence Classification
27
- Language(s) (NLP): [Language(s) of the dataset, e.g., Tigrinya, Amharic]
28
- License: [ Apache 2.0]
29
- Finetuned from model: xlm-roberta-base
30
-
31
-
32
-
33
- ### Model Sources [optional]
34
-
35
- Repository: [soon will be available]
36
- Paper: [soon will be available]
37
- Demo: [soon will be available]
38
- ## Uses
39
-
40
-
41
- ### Direct Use
42
-
43
- This model can be used for sequence classification tasks, such as sentiment analysis or text classification.
44
-
45
- ### Downstream Use [optional]
46
-
47
- Can be fine-tuned further for specific classification tasks or domains.
48
-
49
- ### Out-of-Scope Use
50
-
51
- Ensure not to use this model for tasks where biased or sensitive language handling is crucial without further validation.
52
-
53
-
54
-
55
- ## Bias, Risks, and Limitations
56
-
57
- The model may exhibit biases present in the training data. Users should evaluate its performance carefully in their specific application to avoid reinforcing unwanted biases.
58
-
59
-
60
- ### Recommendations
61
-
62
- Users should assess the model's performance in their specific use case, especially considering any potential biases or limitations.
63
-
64
- Users (both direct and downstream) should be made aware of the risks, biases, and limitations of the model. More information needed for further recommendations.
65
-
66
- ## How to Get Started with the Model
67
-
68
- Use the provided tokenizer and model to load and use the model for sequence classification tasks. Fine-tuning on your dataset can be achieved using the provided code snippet.
69
-
70
- from transformers import XLMRobertaTokenizer, XLMRobertaForSequenceClassification
71
 
72
  model_name = "Hailay/FT_EXLMR"
73
  tokenizer = XLMRobertaTokenizer.from_pretrained(model_name)
74
  model = XLMRobertaForSequenceClassification.from_pretrained(model_name)
75
 
76
- # Example usage
77
  inputs = tokenizer("Your text here", return_tensors="pt")
78
  outputs = model(**inputs)
 
79
 
80
- ## Training Details
81
-
82
- ### Training Data
83
- First, the model was extended the original tokenizer scaling to handle low resource languages then, The model was fine-tuned using a custom dataset consisting of text and labels in a CSV format. Data includes sentences labeled for binary classification.
84
-
85
-
86
- ### Training Procedure
87
- ####PreprocessingThe dataset was tokenized using the XLM-RoBERTa tokenizer. The text was padded and truncated to a fixed length of 128 tokens.
88
-
89
-
90
- #### Training Hyperparameters
91
-
92
- - **Training regime:** Fine-tuned for 3 epochs with a learning rate of 1e-5.
93
-
94
- #### Speeds, Sizes, Times [optional]
95
-
96
-
97
- ## Evaluation
98
-
99
- <!-- This section describes the evaluation protocols and provides the results. -->
100
-
101
- ### Testing Data, Factors & Metrics
102
-
103
- #### Testing Data
104
-
105
- Evaluated on a separate test dataset using the same preprocessing as the training data.
106
-
107
- [More Information Needed]
108
-
109
- #### Factors
110
-
111
- Factors such as text length and class imbalance were considered during evaluation.
112
- [More Information Needed]
113
-
114
- #### Metrics
115
-
116
- Metrics include accuracy and loss during training and evaluation.
117
-
118
- ### Results
119
-
120
-
121
-
122
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
123
-
124
- - **Hardware Type:** [More Information Needed]
125
- - **Hours used:** [More Information Needed]
126
- - **Cloud Provider:** [More Information Needed]
127
- - **Compute Region:** [More Information Needed]
128
- - **Carbon Emitted:** [More Information Needed]
129
-
130
- ## Technical Specifications [optional]
131
-
132
- ### Model Architecture and Objective
133
-
134
- [More Information Needed]
135
-
136
- ### Compute Infrastructure
137
-
138
- [More Information Needed]
139
-
140
- #### Hardware
141
-
142
- [More Information Needed]
143
-
144
- #### Software
145
-
146
- [More Information Needed]
147
-
148
- ## Citation [optional]
149
- **BibTeX:**
150
- @misc{hailay_ft_exlm,
151
- author = {Your Name},
152
- title = {Hailay/FT_EXLMR},
153
- year = {2024},
154
- publisher = {Hugging Face},
155
- how published = {\url{https://huggingface.co/Hailay/FT_EXLMR}},
156
- }
157
-
158
-
159
-
160
- Hailay. (2024). *Hailay/FT_EXLMR*. Hugging Face. Retrieved from https://huggingface.co/Hailay/FT_EXLMR
161
-
162
-
163
- **APA:**
164
-
165
- [More Information Needed]
166
-
167
- ## Glossary [optional]
168
-
169
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
170
-
171
- [More Information Needed]
172
 
173
- ## More Information [optional]
 
 
174
 
175
- [More Information Needed]
 
 
 
176
 
177
- ## Model Card Authors [optional]
 
178
 
179
- [More Information Needed]
 
 
180
 
181
- ## Model Card Contact
182
 
183
- [More Information Needed]
 
4
  language:
5
  - am
6
  - ti
7
+ ---from transformers import XLMRobertaTokenizer, XLMRobertaForSequenceClassification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  model_name = "Hailay/FT_EXLMR"
10
  tokenizer = XLMRobertaTokenizer.from_pretrained(model_name)
11
  model = XLMRobertaForSequenceClassification.from_pretrained(model_name)
12
 
 
13
  inputs = tokenizer("Your text here", return_tensors="pt")
14
  outputs = model(**inputs)
15
+ ------
16
 
17
+ # Model Card for Model ID
18
+ Model Card Summary: Hailay/FT_EXLMR
19
+ Model Name: Hailay/FT_EXLMR
20
+ Type: XLM-RoBERTa model for sequence classification
21
+ Language(s): [Languages supported by the model]
22
+ License: [License type, e.g., Apache 2.0]
23
+ Pre-trained Model: xlm-roberta-base
24
+ Uses:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
+ Primary: Text classification (e.g., sentiment analysis)
27
+ Additional: Can be fine-tuned for specific tasks
28
+ Key Features:
29
 
30
+ Trained Data: Custom dataset with text and labels
31
+ Training Details: 3 epochs, learning rate of 1e-5
32
+ Evaluation: Accuracy and loss metrics
33
+ Getting Started:
34
 
35
+ Code Example: Load the model and tokenizer, then use them for text classification.
36
+ Considerations:
37
 
38
+ Bias & Risks: Assess for biases; evaluate suitability for specific applications
39
+ Environmental Impact: [Details about hardware and training time]
40
+ Citation:
41
 
42
+ BibTeX & APA formats available
43