Upload model
Browse files
README.md
CHANGED
@@ -1,53 +1,9 @@
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
-
datasets:
|
4 |
-
- HachiML/databricks-dolly-15k-ja-for-peft
|
5 |
-
language:
|
6 |
-
- en
|
7 |
-
- ja
|
8 |
---
|
9 |
-
## JGLUE Score
|
10 |
-
We evaluated our model using the following JGLUE tasks. Here are the scores:
|
11 |
-
| Task | Score |
|
12 |
-
|---------------------|----------:|
|
13 |
-
| JCOMMONSENSEQA(acc) | 75.78 |
|
14 |
-
| JNLI(acc) | 50.69 |
|
15 |
-
| MARC_JA(acc) | 79.64 |
|
16 |
-
| JSQUAD(exact_match) | 62.83 |
|
17 |
-
| **Average** | **67.23** |
|
18 |
-
- Note: Use v0.3 prompt template
|
19 |
-
- The JGLUE scores were measured using the following script:
|
20 |
-
[Stability-AI/lm-evaluation-harness](https://github.com/Stability-AI/lm-evaluation-harness/tree/jp-stable)
|
21 |
-
|
22 |
-
## How to use
|
23 |
-
|
24 |
-
```python
|
25 |
-
import torch
|
26 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoTokenizer
|
27 |
-
from peft import PeftModel
|
28 |
-
|
29 |
-
model_name = "meta-llama/Llama-2-13b-hf"
|
30 |
-
bnb_config = BitsAndBytesConfig(
|
31 |
-
load_in_4bit=True,
|
32 |
-
bnb_4bit_use_double_quant=True,
|
33 |
-
bnb_4bit_quant_type="nf4",
|
34 |
-
bnb_4bit_compute_dtype=torch.float16,
|
35 |
-
)
|
36 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
37 |
-
pt_model = AutoModelForCausalLM.from_pretrained(
|
38 |
-
model_name,
|
39 |
-
quantization_config=bnb_config,
|
40 |
-
)
|
41 |
-
|
42 |
-
peft_name = "HachiML/Llama-2-13b-hf-qlora-dolly-ja-2ep"
|
43 |
-
model = PeftModel.from_pretrained(
|
44 |
-
pt_model,
|
45 |
-
peft_name,
|
46 |
-
)
|
47 |
-
```
|
48 |
-
|
49 |
## Training procedure
|
50 |
|
|
|
51 |
The following `bitsandbytes` quantization config was used during training:
|
52 |
- load_in_8bit: False
|
53 |
- load_in_4bit: True
|
@@ -61,4 +17,4 @@ The following `bitsandbytes` quantization config was used during training:
|
|
61 |
### Framework versions
|
62 |
|
63 |
|
64 |
-
- PEFT 0.4.0
|
|
|
1 |
---
|
2 |
library_name: peft
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
## Training procedure
|
5 |
|
6 |
+
|
7 |
The following `bitsandbytes` quantization config was used during training:
|
8 |
- load_in_8bit: False
|
9 |
- load_in_4bit: True
|
|
|
17 |
### Framework versions
|
18 |
|
19 |
|
20 |
+
- PEFT 0.4.0
|