gabriel-p commited on
Commit
b6e8a5f
1 Parent(s): 8d005b7

Upload model

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google/mt5-small",
3
+ "architectures": [
4
+ "MT5ForConditionalGeneration"
5
+ ],
6
+ "d_ff": 1024,
7
+ "d_kv": 64,
8
+ "d_model": 512,
9
+ "decoder_start_token_id": 0,
10
+ "dense_act_fn": "gelu_new",
11
+ "dropout_rate": 0.1,
12
+ "eos_token_id": 1,
13
+ "feed_forward_proj": "gated-gelu",
14
+ "initializer_factor": 1.0,
15
+ "is_encoder_decoder": true,
16
+ "is_gated_act": true,
17
+ "layer_norm_epsilon": 1e-06,
18
+ "model_type": "mt5",
19
+ "num_decoder_layers": 8,
20
+ "num_heads": 6,
21
+ "num_layers": 8,
22
+ "pad_token_id": 0,
23
+ "relative_attention_max_distance": 128,
24
+ "relative_attention_num_buckets": 32,
25
+ "tie_word_embeddings": false,
26
+ "tokenizer_class": "T5Tokenizer",
27
+ "torch_dtype": "bfloat16",
28
+ "transformers_version": "4.23.0.dev0",
29
+ "use_cache": true,
30
+ "vocab_size": 250100
31
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step11400
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e2995b5128e86f8cad57af7249371d9ac4d22bcdb290dc61313362a5d850344
3
+ size 600356075
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3581f24b21aff97eddbb4e839feb42bc13bd5d0c5ea2970f39df72a3dc6d23e4
3
+ size 14503
special_tokens_map.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "eos_token": "</s>",
3
+ "pad_token": "<pad>",
4
+ "unk_token": "<unk>"
5
+ }
spiece.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef78f86560d809067d12bac6c09f19a462cb3af3f54d2b8acbba26e1433125d6
3
+ size 4309802
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93c3578052e1605d8332eb961bc08d72e246071974e4cc54aa6991826b802aa5
3
+ size 16330369
tokenizer_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": null,
3
+ "eos_token": "</s>",
4
+ "extra_ids": 0,
5
+ "name_or_path": "google/mt5-small",
6
+ "pad_token": "<pad>",
7
+ "sp_model_kwargs": {},
8
+ "special_tokens_map_file": "/home/txau/.cache/huggingface/hub/models--google--mt5-small/snapshots/f03a52d3eaa650878b6f52e443bc4d5b385e786e/special_tokens_map.json",
9
+ "tokenizer_class": "T5Tokenizer",
10
+ "unk_token": "<unk>"
11
+ }
trainer_state.json ADDED
@@ -0,0 +1,1972 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.453662604578592,
5
+ "global_step": 11400,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.02,
12
+ "eval_exact_match": 14.738231412230533,
13
+ "eval_f1": 19.992446610541194,
14
+ "step": 100
15
+ },
16
+ {
17
+ "epoch": 0.04,
18
+ "learning_rate": 0.0005,
19
+ "loss": 3.6292,
20
+ "step": 200
21
+ },
22
+ {
23
+ "epoch": 0.04,
24
+ "eval_exact_match": 21.381434227892655,
25
+ "eval_f1": 31.43956554541397,
26
+ "step": 200
27
+ },
28
+ {
29
+ "epoch": 0.05,
30
+ "eval_exact_match": 24.175098988121427,
31
+ "eval_f1": 34.101042049094296,
32
+ "step": 300
33
+ },
34
+ {
35
+ "epoch": 0.07,
36
+ "learning_rate": 0.0005,
37
+ "loss": 2.7193,
38
+ "step": 400
39
+ },
40
+ {
41
+ "epoch": 0.07,
42
+ "eval_exact_match": 24.950592885375492,
43
+ "eval_f1": 38.217244544211226,
44
+ "step": 400
45
+ },
46
+ {
47
+ "epoch": 0.11,
48
+ "learning_rate": 0.0005,
49
+ "loss": 2.4559,
50
+ "step": 600
51
+ },
52
+ {
53
+ "epoch": 0.11,
54
+ "eval_exact_match": 28.40909090909091,
55
+ "eval_f1": 44.64064089265683,
56
+ "step": 600
57
+ },
58
+ {
59
+ "epoch": 0.14,
60
+ "learning_rate": 0.0005,
61
+ "loss": 2.2801,
62
+ "step": 800
63
+ },
64
+ {
65
+ "epoch": 0.14,
66
+ "eval_exact_match": 26.630434782608695,
67
+ "eval_f1": 45.504003307885625,
68
+ "step": 800
69
+ },
70
+ {
71
+ "epoch": 0.18,
72
+ "learning_rate": 0.0005,
73
+ "loss": 2.1285,
74
+ "step": 1000
75
+ },
76
+ {
77
+ "epoch": 0.18,
78
+ "eval_exact_match": 30.8300395256917,
79
+ "eval_f1": 50.359736600917515,
80
+ "step": 1000
81
+ },
82
+ {
83
+ "epoch": 0.21,
84
+ "learning_rate": 0.0005,
85
+ "loss": 2.026,
86
+ "step": 1200
87
+ },
88
+ {
89
+ "epoch": 0.21,
90
+ "eval_exact_match": 31.175889328063242,
91
+ "eval_f1": 51.623685774579855,
92
+ "step": 1200
93
+ },
94
+ {
95
+ "epoch": 0.25,
96
+ "learning_rate": 0.0005,
97
+ "loss": 1.9281,
98
+ "step": 1400
99
+ },
100
+ {
101
+ "epoch": 0.25,
102
+ "eval_exact_match": 35.869565217391305,
103
+ "eval_f1": 56.21242269358832,
104
+ "step": 1400
105
+ },
106
+ {
107
+ "epoch": 0.28,
108
+ "learning_rate": 0.0005,
109
+ "loss": 1.8836,
110
+ "step": 1600
111
+ },
112
+ {
113
+ "epoch": 0.28,
114
+ "eval_exact_match": 35.0296442687747,
115
+ "eval_f1": 57.21764925319378,
116
+ "step": 1600
117
+ },
118
+ {
119
+ "epoch": 0.32,
120
+ "learning_rate": 0.0005,
121
+ "loss": 1.8377,
122
+ "step": 1800
123
+ },
124
+ {
125
+ "epoch": 0.32,
126
+ "eval_exact_match": 36.61067193675889,
127
+ "eval_f1": 58.4380904170952,
128
+ "step": 1800
129
+ },
130
+ {
131
+ "epoch": 0.35,
132
+ "learning_rate": 0.0005,
133
+ "loss": 1.7926,
134
+ "step": 2000
135
+ },
136
+ {
137
+ "epoch": 0.35,
138
+ "eval_exact_match": 36.85770750988142,
139
+ "eval_f1": 59.677808943848156,
140
+ "step": 2000
141
+ },
142
+ {
143
+ "epoch": 0.39,
144
+ "learning_rate": 0.0005,
145
+ "loss": 1.7356,
146
+ "step": 2200
147
+ },
148
+ {
149
+ "epoch": 0.39,
150
+ "eval_exact_match": 35.62252964426877,
151
+ "eval_f1": 59.02520911162799,
152
+ "step": 2200
153
+ },
154
+ {
155
+ "epoch": 0.42,
156
+ "learning_rate": 0.0005,
157
+ "loss": 1.7001,
158
+ "step": 2400
159
+ },
160
+ {
161
+ "epoch": 0.42,
162
+ "eval_exact_match": 36.31422924901186,
163
+ "eval_f1": 60.89754377178488,
164
+ "step": 2400
165
+ },
166
+ {
167
+ "epoch": 0.46,
168
+ "learning_rate": 0.0005,
169
+ "loss": 1.675,
170
+ "step": 2600
171
+ },
172
+ {
173
+ "epoch": 0.46,
174
+ "eval_exact_match": 36.26482213438735,
175
+ "eval_f1": 59.783069358423525,
176
+ "step": 2600
177
+ },
178
+ {
179
+ "epoch": 0.49,
180
+ "learning_rate": 0.0005,
181
+ "loss": 1.6594,
182
+ "step": 2800
183
+ },
184
+ {
185
+ "epoch": 0.49,
186
+ "eval_exact_match": 36.56126482213439,
187
+ "eval_f1": 61.449547007432926,
188
+ "step": 2800
189
+ },
190
+ {
191
+ "epoch": 0.53,
192
+ "learning_rate": 0.0005,
193
+ "loss": 1.6435,
194
+ "step": 3000
195
+ },
196
+ {
197
+ "epoch": 0.53,
198
+ "eval_exact_match": 39.92094861660079,
199
+ "eval_f1": 63.03510761568375,
200
+ "step": 3000
201
+ },
202
+ {
203
+ "epoch": 0.56,
204
+ "learning_rate": 0.0005,
205
+ "loss": 1.6116,
206
+ "step": 3200
207
+ },
208
+ {
209
+ "epoch": 0.56,
210
+ "eval_exact_match": 37.30237154150198,
211
+ "eval_f1": 62.953985227470696,
212
+ "step": 3200
213
+ },
214
+ {
215
+ "epoch": 0.6,
216
+ "learning_rate": 0.0005,
217
+ "loss": 1.5701,
218
+ "step": 3400
219
+ },
220
+ {
221
+ "epoch": 0.6,
222
+ "eval_exact_match": 36.6600790513834,
223
+ "eval_f1": 61.820603199741704,
224
+ "step": 3400
225
+ },
226
+ {
227
+ "epoch": 0.63,
228
+ "learning_rate": 0.0005,
229
+ "loss": 1.5627,
230
+ "step": 3600
231
+ },
232
+ {
233
+ "epoch": 0.63,
234
+ "eval_exact_match": 38.04347826086956,
235
+ "eval_f1": 63.56696764038496,
236
+ "step": 3600
237
+ },
238
+ {
239
+ "epoch": 0.67,
240
+ "learning_rate": 0.0005,
241
+ "loss": 1.5525,
242
+ "step": 3800
243
+ },
244
+ {
245
+ "epoch": 0.67,
246
+ "eval_exact_match": 39.03162055335969,
247
+ "eval_f1": 64.72028168259759,
248
+ "step": 3800
249
+ },
250
+ {
251
+ "epoch": 0.83,
252
+ "learning_rate": 0.0005,
253
+ "loss": 1.4518,
254
+ "step": 3850
255
+ },
256
+ {
257
+ "epoch": 0.84,
258
+ "learning_rate": 0.0005,
259
+ "loss": 1.4245,
260
+ "step": 3900
261
+ },
262
+ {
263
+ "epoch": 0.85,
264
+ "learning_rate": 0.0005,
265
+ "loss": 1.4164,
266
+ "step": 3950
267
+ },
268
+ {
269
+ "epoch": 0.86,
270
+ "learning_rate": 0.0005,
271
+ "loss": 1.4627,
272
+ "step": 4000
273
+ },
274
+ {
275
+ "epoch": 0.86,
276
+ "eval_exact_match": 42.5,
277
+ "eval_f1": 67.3159921257088,
278
+ "step": 4000
279
+ },
280
+ {
281
+ "epoch": 0.87,
282
+ "learning_rate": 0.0005,
283
+ "loss": 1.4369,
284
+ "step": 4050
285
+ },
286
+ {
287
+ "epoch": 0.88,
288
+ "learning_rate": 0.0005,
289
+ "loss": 1.4205,
290
+ "step": 4100
291
+ },
292
+ {
293
+ "epoch": 0.89,
294
+ "learning_rate": 0.0005,
295
+ "loss": 1.4189,
296
+ "step": 4150
297
+ },
298
+ {
299
+ "epoch": 0.9,
300
+ "learning_rate": 0.0005,
301
+ "loss": 1.4127,
302
+ "step": 4200
303
+ },
304
+ {
305
+ "epoch": 0.9,
306
+ "eval_exact_match": 44.95,
307
+ "eval_f1": 68.47203537029696,
308
+ "step": 4200
309
+ },
310
+ {
311
+ "epoch": 0.91,
312
+ "learning_rate": 0.0005,
313
+ "loss": 1.4329,
314
+ "step": 4250
315
+ },
316
+ {
317
+ "epoch": 0.93,
318
+ "learning_rate": 0.0005,
319
+ "loss": 1.4233,
320
+ "step": 4300
321
+ },
322
+ {
323
+ "epoch": 0.94,
324
+ "learning_rate": 0.0005,
325
+ "loss": 1.4426,
326
+ "step": 4350
327
+ },
328
+ {
329
+ "epoch": 0.95,
330
+ "learning_rate": 0.0005,
331
+ "loss": 1.3969,
332
+ "step": 4400
333
+ },
334
+ {
335
+ "epoch": 0.95,
336
+ "eval_exact_match": 46.9,
337
+ "eval_f1": 69.7906665651929,
338
+ "step": 4400
339
+ },
340
+ {
341
+ "epoch": 0.96,
342
+ "learning_rate": 0.0005,
343
+ "loss": 1.4589,
344
+ "step": 4450
345
+ },
346
+ {
347
+ "epoch": 0.97,
348
+ "learning_rate": 0.0005,
349
+ "loss": 1.4199,
350
+ "step": 4500
351
+ },
352
+ {
353
+ "epoch": 0.98,
354
+ "learning_rate": 0.0005,
355
+ "loss": 1.3795,
356
+ "step": 4550
357
+ },
358
+ {
359
+ "epoch": 0.99,
360
+ "learning_rate": 0.0005,
361
+ "loss": 1.3794,
362
+ "step": 4600
363
+ },
364
+ {
365
+ "epoch": 0.99,
366
+ "eval_exact_match": 50.95,
367
+ "eval_f1": 71.26934663680022,
368
+ "step": 4600
369
+ },
370
+ {
371
+ "epoch": 1.0,
372
+ "learning_rate": 0.0005,
373
+ "loss": 1.3577,
374
+ "step": 4650
375
+ },
376
+ {
377
+ "epoch": 1.01,
378
+ "learning_rate": 0.0005,
379
+ "loss": 1.3633,
380
+ "step": 4700
381
+ },
382
+ {
383
+ "epoch": 1.02,
384
+ "learning_rate": 0.0005,
385
+ "loss": 1.3672,
386
+ "step": 4750
387
+ },
388
+ {
389
+ "epoch": 1.03,
390
+ "learning_rate": 0.0005,
391
+ "loss": 1.3568,
392
+ "step": 4800
393
+ },
394
+ {
395
+ "epoch": 1.03,
396
+ "eval_exact_match": 49.5,
397
+ "eval_f1": 71.44716194869687,
398
+ "step": 4800
399
+ },
400
+ {
401
+ "epoch": 1.04,
402
+ "learning_rate": 0.0005,
403
+ "loss": 1.334,
404
+ "step": 4850
405
+ },
406
+ {
407
+ "epoch": 1.05,
408
+ "learning_rate": 0.0005,
409
+ "loss": 1.3173,
410
+ "step": 4900
411
+ },
412
+ {
413
+ "epoch": 1.07,
414
+ "learning_rate": 0.0005,
415
+ "loss": 1.3332,
416
+ "step": 4950
417
+ },
418
+ {
419
+ "epoch": 1.08,
420
+ "learning_rate": 0.0005,
421
+ "loss": 1.3858,
422
+ "step": 5000
423
+ },
424
+ {
425
+ "epoch": 1.08,
426
+ "eval_exact_match": 50.6,
427
+ "eval_f1": 71.4031953884389,
428
+ "step": 5000
429
+ },
430
+ {
431
+ "epoch": 1.09,
432
+ "learning_rate": 0.0005,
433
+ "loss": 1.3724,
434
+ "step": 5050
435
+ },
436
+ {
437
+ "epoch": 1.1,
438
+ "learning_rate": 0.0005,
439
+ "loss": 1.3356,
440
+ "step": 5100
441
+ },
442
+ {
443
+ "epoch": 1.11,
444
+ "learning_rate": 0.0005,
445
+ "loss": 1.4173,
446
+ "step": 5150
447
+ },
448
+ {
449
+ "epoch": 1.12,
450
+ "learning_rate": 0.0005,
451
+ "loss": 1.3499,
452
+ "step": 5200
453
+ },
454
+ {
455
+ "epoch": 1.12,
456
+ "eval_exact_match": 50.45,
457
+ "eval_f1": 70.96365965036652,
458
+ "step": 5200
459
+ },
460
+ {
461
+ "epoch": 1.13,
462
+ "learning_rate": 0.0005,
463
+ "loss": 1.3853,
464
+ "step": 5250
465
+ },
466
+ {
467
+ "epoch": 1.14,
468
+ "learning_rate": 0.0005,
469
+ "loss": 1.337,
470
+ "step": 5300
471
+ },
472
+ {
473
+ "epoch": 1.15,
474
+ "learning_rate": 0.0005,
475
+ "loss": 1.3366,
476
+ "step": 5350
477
+ },
478
+ {
479
+ "epoch": 1.16,
480
+ "learning_rate": 0.0005,
481
+ "loss": 1.342,
482
+ "step": 5400
483
+ },
484
+ {
485
+ "epoch": 1.16,
486
+ "eval_exact_match": 51.25,
487
+ "eval_f1": 72.29202655492661,
488
+ "step": 5400
489
+ },
490
+ {
491
+ "epoch": 1.17,
492
+ "learning_rate": 0.0005,
493
+ "loss": 1.3289,
494
+ "step": 5450
495
+ },
496
+ {
497
+ "epoch": 1.18,
498
+ "learning_rate": 0.0005,
499
+ "loss": 1.3894,
500
+ "step": 5500
501
+ },
502
+ {
503
+ "epoch": 1.19,
504
+ "learning_rate": 0.0005,
505
+ "loss": 1.3393,
506
+ "step": 5550
507
+ },
508
+ {
509
+ "epoch": 1.21,
510
+ "learning_rate": 0.0005,
511
+ "loss": 1.2983,
512
+ "step": 5600
513
+ },
514
+ {
515
+ "epoch": 1.21,
516
+ "eval_exact_match": 52.15,
517
+ "eval_f1": 72.57033769389315,
518
+ "step": 5600
519
+ },
520
+ {
521
+ "epoch": 1.22,
522
+ "learning_rate": 0.0005,
523
+ "loss": 1.3181,
524
+ "step": 5650
525
+ },
526
+ {
527
+ "epoch": 1.23,
528
+ "learning_rate": 0.0005,
529
+ "loss": 1.3672,
530
+ "step": 5700
531
+ },
532
+ {
533
+ "epoch": 1.24,
534
+ "learning_rate": 0.0005,
535
+ "loss": 1.3064,
536
+ "step": 5750
537
+ },
538
+ {
539
+ "epoch": 1.25,
540
+ "learning_rate": 0.0005,
541
+ "loss": 1.3316,
542
+ "step": 5800
543
+ },
544
+ {
545
+ "epoch": 1.25,
546
+ "eval_exact_match": 52.6,
547
+ "eval_f1": 72.91182293082619,
548
+ "step": 5800
549
+ },
550
+ {
551
+ "epoch": 1.26,
552
+ "learning_rate": 0.0005,
553
+ "loss": 1.3099,
554
+ "step": 5850
555
+ },
556
+ {
557
+ "epoch": 1.27,
558
+ "learning_rate": 0.0005,
559
+ "loss": 1.293,
560
+ "step": 5900
561
+ },
562
+ {
563
+ "epoch": 1.28,
564
+ "learning_rate": 0.0005,
565
+ "loss": 1.3386,
566
+ "step": 5950
567
+ },
568
+ {
569
+ "epoch": 1.29,
570
+ "learning_rate": 0.0005,
571
+ "loss": 1.3475,
572
+ "step": 6000
573
+ },
574
+ {
575
+ "epoch": 1.29,
576
+ "eval_exact_match": 50.7,
577
+ "eval_f1": 72.13671184582012,
578
+ "step": 6000
579
+ },
580
+ {
581
+ "epoch": 1.3,
582
+ "learning_rate": 0.0005,
583
+ "loss": 1.2548,
584
+ "step": 6050
585
+ },
586
+ {
587
+ "epoch": 1.31,
588
+ "learning_rate": 0.0005,
589
+ "loss": 1.3243,
590
+ "step": 6100
591
+ },
592
+ {
593
+ "epoch": 1.32,
594
+ "learning_rate": 0.0005,
595
+ "loss": 1.322,
596
+ "step": 6150
597
+ },
598
+ {
599
+ "epoch": 1.33,
600
+ "learning_rate": 0.0005,
601
+ "loss": 1.3049,
602
+ "step": 6200
603
+ },
604
+ {
605
+ "epoch": 1.33,
606
+ "eval_exact_match": 51.25,
607
+ "eval_f1": 72.62424474108035,
608
+ "step": 6200
609
+ },
610
+ {
611
+ "epoch": 1.35,
612
+ "learning_rate": 0.0005,
613
+ "loss": 1.274,
614
+ "step": 6250
615
+ },
616
+ {
617
+ "epoch": 1.36,
618
+ "learning_rate": 0.0005,
619
+ "loss": 1.3015,
620
+ "step": 6300
621
+ },
622
+ {
623
+ "epoch": 1.37,
624
+ "learning_rate": 0.0005,
625
+ "loss": 1.303,
626
+ "step": 6350
627
+ },
628
+ {
629
+ "epoch": 1.38,
630
+ "learning_rate": 0.0005,
631
+ "loss": 1.2727,
632
+ "step": 6400
633
+ },
634
+ {
635
+ "epoch": 1.38,
636
+ "eval_exact_match": 52.35,
637
+ "eval_f1": 73.1319111267331,
638
+ "step": 6400
639
+ },
640
+ {
641
+ "epoch": 1.39,
642
+ "learning_rate": 0.0005,
643
+ "loss": 1.2866,
644
+ "step": 6450
645
+ },
646
+ {
647
+ "epoch": 1.4,
648
+ "learning_rate": 0.0005,
649
+ "loss": 1.3302,
650
+ "step": 6500
651
+ },
652
+ {
653
+ "epoch": 1.41,
654
+ "learning_rate": 0.0005,
655
+ "loss": 1.2281,
656
+ "step": 6550
657
+ },
658
+ {
659
+ "epoch": 1.42,
660
+ "learning_rate": 0.0005,
661
+ "loss": 1.3037,
662
+ "step": 6600
663
+ },
664
+ {
665
+ "epoch": 1.42,
666
+ "eval_exact_match": 53.2,
667
+ "eval_f1": 73.01971722088678,
668
+ "step": 6600
669
+ },
670
+ {
671
+ "epoch": 1.43,
672
+ "learning_rate": 0.0005,
673
+ "loss": 1.2822,
674
+ "step": 6650
675
+ },
676
+ {
677
+ "epoch": 1.44,
678
+ "learning_rate": 0.0005,
679
+ "loss": 1.2871,
680
+ "step": 6700
681
+ },
682
+ {
683
+ "epoch": 1.45,
684
+ "learning_rate": 0.0005,
685
+ "loss": 1.3176,
686
+ "step": 6750
687
+ },
688
+ {
689
+ "epoch": 1.46,
690
+ "learning_rate": 0.0005,
691
+ "loss": 1.2828,
692
+ "step": 6800
693
+ },
694
+ {
695
+ "epoch": 1.46,
696
+ "eval_exact_match": 52.85,
697
+ "eval_f1": 73.01360270382577,
698
+ "step": 6800
699
+ },
700
+ {
701
+ "epoch": 1.47,
702
+ "learning_rate": 0.0005,
703
+ "loss": 1.3448,
704
+ "step": 6850
705
+ },
706
+ {
707
+ "epoch": 1.49,
708
+ "learning_rate": 0.0005,
709
+ "loss": 1.3102,
710
+ "step": 6900
711
+ },
712
+ {
713
+ "epoch": 1.5,
714
+ "learning_rate": 0.0005,
715
+ "loss": 1.3273,
716
+ "step": 6950
717
+ },
718
+ {
719
+ "epoch": 1.51,
720
+ "learning_rate": 0.0005,
721
+ "loss": 1.3016,
722
+ "step": 7000
723
+ },
724
+ {
725
+ "epoch": 1.51,
726
+ "eval_exact_match": 54.0,
727
+ "eval_f1": 73.98223052649728,
728
+ "step": 7000
729
+ },
730
+ {
731
+ "epoch": 1.52,
732
+ "learning_rate": 0.0005,
733
+ "loss": 1.2767,
734
+ "step": 7050
735
+ },
736
+ {
737
+ "epoch": 1.53,
738
+ "learning_rate": 0.0005,
739
+ "loss": 1.262,
740
+ "step": 7100
741
+ },
742
+ {
743
+ "epoch": 1.54,
744
+ "learning_rate": 0.0005,
745
+ "loss": 1.2846,
746
+ "step": 7150
747
+ },
748
+ {
749
+ "epoch": 1.55,
750
+ "learning_rate": 0.0005,
751
+ "loss": 1.2642,
752
+ "step": 7200
753
+ },
754
+ {
755
+ "epoch": 1.55,
756
+ "eval_exact_match": 52.45,
757
+ "eval_f1": 73.66687625952305,
758
+ "step": 7200
759
+ },
760
+ {
761
+ "epoch": 1.56,
762
+ "learning_rate": 0.0005,
763
+ "loss": 1.2875,
764
+ "step": 7250
765
+ },
766
+ {
767
+ "epoch": 1.57,
768
+ "learning_rate": 0.0005,
769
+ "loss": 1.247,
770
+ "step": 7300
771
+ },
772
+ {
773
+ "epoch": 1.58,
774
+ "learning_rate": 0.0005,
775
+ "loss": 1.2501,
776
+ "step": 7350
777
+ },
778
+ {
779
+ "epoch": 1.59,
780
+ "learning_rate": 0.0005,
781
+ "loss": 1.293,
782
+ "step": 7400
783
+ },
784
+ {
785
+ "epoch": 1.59,
786
+ "eval_exact_match": 52.3,
787
+ "eval_f1": 73.46398897242841,
788
+ "step": 7400
789
+ },
790
+ {
791
+ "epoch": 1.6,
792
+ "learning_rate": 0.0005,
793
+ "loss": 1.2373,
794
+ "step": 7450
795
+ },
796
+ {
797
+ "epoch": 1.61,
798
+ "learning_rate": 0.0005,
799
+ "loss": 1.2477,
800
+ "step": 7500
801
+ },
802
+ {
803
+ "epoch": 1.62,
804
+ "learning_rate": 0.0005,
805
+ "loss": 1.2647,
806
+ "step": 7550
807
+ },
808
+ {
809
+ "epoch": 1.64,
810
+ "learning_rate": 0.0005,
811
+ "loss": 1.2947,
812
+ "step": 7600
813
+ },
814
+ {
815
+ "epoch": 1.64,
816
+ "eval_exact_match": 53.05,
817
+ "eval_f1": 73.40471749318357,
818
+ "step": 7600
819
+ },
820
+ {
821
+ "epoch": 1.65,
822
+ "learning_rate": 0.0005,
823
+ "loss": 1.2237,
824
+ "step": 7650
825
+ },
826
+ {
827
+ "epoch": 1.66,
828
+ "learning_rate": 0.0005,
829
+ "loss": 1.2996,
830
+ "step": 7700
831
+ },
832
+ {
833
+ "epoch": 1.67,
834
+ "learning_rate": 0.0005,
835
+ "loss": 1.2833,
836
+ "step": 7750
837
+ },
838
+ {
839
+ "epoch": 1.68,
840
+ "learning_rate": 0.0005,
841
+ "loss": 1.2663,
842
+ "step": 7800
843
+ },
844
+ {
845
+ "epoch": 1.68,
846
+ "eval_exact_match": 53.95,
847
+ "eval_f1": 74.59089034170034,
848
+ "step": 7800
849
+ },
850
+ {
851
+ "epoch": 1.69,
852
+ "learning_rate": 0.0005,
853
+ "loss": 1.2519,
854
+ "step": 7850
855
+ },
856
+ {
857
+ "epoch": 1.7,
858
+ "learning_rate": 0.0005,
859
+ "loss": 1.2365,
860
+ "step": 7900
861
+ },
862
+ {
863
+ "epoch": 1.71,
864
+ "learning_rate": 0.0005,
865
+ "loss": 1.2152,
866
+ "step": 7950
867
+ },
868
+ {
869
+ "epoch": 1.72,
870
+ "learning_rate": 0.0005,
871
+ "loss": 1.2309,
872
+ "step": 8000
873
+ },
874
+ {
875
+ "epoch": 1.72,
876
+ "eval_exact_match": 53.35,
877
+ "eval_f1": 74.02883287579421,
878
+ "step": 8000
879
+ },
880
+ {
881
+ "epoch": 1.73,
882
+ "learning_rate": 0.0005,
883
+ "loss": 1.2532,
884
+ "step": 8050
885
+ },
886
+ {
887
+ "epoch": 1.74,
888
+ "learning_rate": 0.0005,
889
+ "loss": 1.2607,
890
+ "step": 8100
891
+ },
892
+ {
893
+ "epoch": 1.75,
894
+ "learning_rate": 0.0005,
895
+ "loss": 1.1885,
896
+ "step": 8150
897
+ },
898
+ {
899
+ "epoch": 1.76,
900
+ "learning_rate": 0.0005,
901
+ "loss": 1.2169,
902
+ "step": 8200
903
+ },
904
+ {
905
+ "epoch": 1.76,
906
+ "eval_exact_match": 54.35,
907
+ "eval_f1": 74.273655582778,
908
+ "step": 8200
909
+ },
910
+ {
911
+ "epoch": 1.78,
912
+ "learning_rate": 0.0005,
913
+ "loss": 1.2543,
914
+ "step": 8250
915
+ },
916
+ {
917
+ "epoch": 1.79,
918
+ "learning_rate": 0.0005,
919
+ "loss": 1.2352,
920
+ "step": 8300
921
+ },
922
+ {
923
+ "epoch": 1.8,
924
+ "learning_rate": 0.0005,
925
+ "loss": 1.2142,
926
+ "step": 8350
927
+ },
928
+ {
929
+ "epoch": 1.81,
930
+ "learning_rate": 0.0005,
931
+ "loss": 1.223,
932
+ "step": 8400
933
+ },
934
+ {
935
+ "epoch": 1.81,
936
+ "eval_exact_match": 52.7,
937
+ "eval_f1": 73.99393883664169,
938
+ "step": 8400
939
+ },
940
+ {
941
+ "epoch": 1.82,
942
+ "learning_rate": 0.0005,
943
+ "loss": 1.2145,
944
+ "step": 8450
945
+ },
946
+ {
947
+ "epoch": 1.83,
948
+ "learning_rate": 0.0005,
949
+ "loss": 1.1973,
950
+ "step": 8500
951
+ },
952
+ {
953
+ "epoch": 1.84,
954
+ "learning_rate": 0.0005,
955
+ "loss": 1.2277,
956
+ "step": 8550
957
+ },
958
+ {
959
+ "epoch": 1.85,
960
+ "learning_rate": 0.0005,
961
+ "loss": 1.2552,
962
+ "step": 8600
963
+ },
964
+ {
965
+ "epoch": 1.85,
966
+ "eval_exact_match": 53.8,
967
+ "eval_f1": 74.61861738151018,
968
+ "step": 8600
969
+ },
970
+ {
971
+ "epoch": 1.86,
972
+ "learning_rate": 0.0005,
973
+ "loss": 1.228,
974
+ "step": 8650
975
+ },
976
+ {
977
+ "epoch": 1.87,
978
+ "learning_rate": 0.0005,
979
+ "loss": 1.2117,
980
+ "step": 8700
981
+ },
982
+ {
983
+ "epoch": 1.88,
984
+ "learning_rate": 0.0005,
985
+ "loss": 1.2429,
986
+ "step": 8750
987
+ },
988
+ {
989
+ "epoch": 1.89,
990
+ "learning_rate": 0.0005,
991
+ "loss": 1.2279,
992
+ "step": 8800
993
+ },
994
+ {
995
+ "epoch": 1.89,
996
+ "eval_exact_match": 54.4,
997
+ "eval_f1": 74.93345914261613,
998
+ "step": 8800
999
+ },
1000
+ {
1001
+ "epoch": 1.9,
1002
+ "learning_rate": 0.0005,
1003
+ "loss": 1.2134,
1004
+ "step": 8850
1005
+ },
1006
+ {
1007
+ "epoch": 1.92,
1008
+ "learning_rate": 0.0005,
1009
+ "loss": 1.245,
1010
+ "step": 8900
1011
+ },
1012
+ {
1013
+ "epoch": 1.93,
1014
+ "learning_rate": 0.0005,
1015
+ "loss": 1.2179,
1016
+ "step": 8950
1017
+ },
1018
+ {
1019
+ "epoch": 1.94,
1020
+ "learning_rate": 0.0005,
1021
+ "loss": 1.2006,
1022
+ "step": 9000
1023
+ },
1024
+ {
1025
+ "epoch": 1.94,
1026
+ "eval_exact_match": 55.4,
1027
+ "eval_f1": 75.75427604493635,
1028
+ "step": 9000
1029
+ },
1030
+ {
1031
+ "epoch": 1.95,
1032
+ "learning_rate": 0.0005,
1033
+ "loss": 1.2037,
1034
+ "step": 9050
1035
+ },
1036
+ {
1037
+ "epoch": 1.96,
1038
+ "learning_rate": 0.0005,
1039
+ "loss": 1.1985,
1040
+ "step": 9100
1041
+ },
1042
+ {
1043
+ "epoch": 1.97,
1044
+ "learning_rate": 0.0005,
1045
+ "loss": 1.2012,
1046
+ "step": 9150
1047
+ },
1048
+ {
1049
+ "epoch": 1.98,
1050
+ "learning_rate": 0.0005,
1051
+ "loss": 1.2194,
1052
+ "step": 9200
1053
+ },
1054
+ {
1055
+ "epoch": 1.98,
1056
+ "eval_exact_match": 54.0,
1057
+ "eval_f1": 74.89545612203896,
1058
+ "step": 9200
1059
+ },
1060
+ {
1061
+ "epoch": 1.99,
1062
+ "learning_rate": 0.0005,
1063
+ "loss": 1.2173,
1064
+ "step": 9250
1065
+ },
1066
+ {
1067
+ "epoch": 2.0,
1068
+ "learning_rate": 0.0005,
1069
+ "loss": 1.2616,
1070
+ "step": 9300
1071
+ },
1072
+ {
1073
+ "epoch": 2.01,
1074
+ "learning_rate": 0.0005,
1075
+ "loss": 1.1785,
1076
+ "step": 9350
1077
+ },
1078
+ {
1079
+ "epoch": 2.02,
1080
+ "learning_rate": 0.0005,
1081
+ "loss": 1.1664,
1082
+ "step": 9400
1083
+ },
1084
+ {
1085
+ "epoch": 2.02,
1086
+ "eval_exact_match": 55.2,
1087
+ "eval_f1": 75.50544659346157,
1088
+ "step": 9400
1089
+ },
1090
+ {
1091
+ "epoch": 2.03,
1092
+ "learning_rate": 0.0005,
1093
+ "loss": 1.1271,
1094
+ "step": 9450
1095
+ },
1096
+ {
1097
+ "epoch": 2.04,
1098
+ "learning_rate": 0.0005,
1099
+ "loss": 1.1806,
1100
+ "step": 9500
1101
+ },
1102
+ {
1103
+ "epoch": 2.06,
1104
+ "learning_rate": 0.0005,
1105
+ "loss": 1.1865,
1106
+ "step": 9550
1107
+ },
1108
+ {
1109
+ "epoch": 2.07,
1110
+ "learning_rate": 0.0005,
1111
+ "loss": 1.198,
1112
+ "step": 9600
1113
+ },
1114
+ {
1115
+ "epoch": 2.07,
1116
+ "eval_exact_match": 54.65,
1117
+ "eval_f1": 75.02151439633785,
1118
+ "step": 9600
1119
+ },
1120
+ {
1121
+ "epoch": 2.08,
1122
+ "learning_rate": 0.0005,
1123
+ "loss": 1.1726,
1124
+ "step": 9650
1125
+ },
1126
+ {
1127
+ "epoch": 2.09,
1128
+ "learning_rate": 0.0005,
1129
+ "loss": 1.1799,
1130
+ "step": 9700
1131
+ },
1132
+ {
1133
+ "epoch": 2.1,
1134
+ "learning_rate": 0.0005,
1135
+ "loss": 1.1107,
1136
+ "step": 9750
1137
+ },
1138
+ {
1139
+ "epoch": 2.11,
1140
+ "learning_rate": 0.0005,
1141
+ "loss": 1.1585,
1142
+ "step": 9800
1143
+ },
1144
+ {
1145
+ "epoch": 2.11,
1146
+ "eval_exact_match": 53.9,
1147
+ "eval_f1": 74.15646190187827,
1148
+ "step": 9800
1149
+ },
1150
+ {
1151
+ "epoch": 2.12,
1152
+ "learning_rate": 0.0005,
1153
+ "loss": 1.1436,
1154
+ "step": 9850
1155
+ },
1156
+ {
1157
+ "epoch": 2.13,
1158
+ "learning_rate": 0.0005,
1159
+ "loss": 1.1806,
1160
+ "step": 9900
1161
+ },
1162
+ {
1163
+ "epoch": 2.14,
1164
+ "learning_rate": 0.0005,
1165
+ "loss": 1.1444,
1166
+ "step": 9950
1167
+ },
1168
+ {
1169
+ "epoch": 2.15,
1170
+ "learning_rate": 0.0005,
1171
+ "loss": 1.1738,
1172
+ "step": 10000
1173
+ },
1174
+ {
1175
+ "epoch": 2.15,
1176
+ "eval_exact_match": 54.85,
1177
+ "eval_f1": 75.11255802008874,
1178
+ "step": 10000
1179
+ },
1180
+ {
1181
+ "epoch": 2.16,
1182
+ "learning_rate": 0.0005,
1183
+ "loss": 1.1095,
1184
+ "step": 10050
1185
+ },
1186
+ {
1187
+ "epoch": 2.17,
1188
+ "learning_rate": 0.0005,
1189
+ "loss": 1.1511,
1190
+ "step": 10100
1191
+ },
1192
+ {
1193
+ "epoch": 2.18,
1194
+ "learning_rate": 0.0005,
1195
+ "loss": 1.1297,
1196
+ "step": 10150
1197
+ },
1198
+ {
1199
+ "epoch": 2.2,
1200
+ "learning_rate": 0.0005,
1201
+ "loss": 1.1505,
1202
+ "step": 10200
1203
+ },
1204
+ {
1205
+ "epoch": 2.2,
1206
+ "eval_exact_match": 54.85,
1207
+ "eval_f1": 75.52882358671673,
1208
+ "step": 10200
1209
+ },
1210
+ {
1211
+ "epoch": 2.2,
1212
+ "learning_rate": 5e-05,
1213
+ "loss": 1.1081,
1214
+ "step": 10210
1215
+ },
1216
+ {
1217
+ "epoch": 2.2,
1218
+ "learning_rate": 5e-05,
1219
+ "loss": 1.1572,
1220
+ "step": 10220
1221
+ },
1222
+ {
1223
+ "epoch": 2.2,
1224
+ "learning_rate": 5e-05,
1225
+ "loss": 1.0839,
1226
+ "step": 10230
1227
+ },
1228
+ {
1229
+ "epoch": 2.2,
1230
+ "learning_rate": 5e-05,
1231
+ "loss": 1.0971,
1232
+ "step": 10240
1233
+ },
1234
+ {
1235
+ "epoch": 2.21,
1236
+ "learning_rate": 5e-05,
1237
+ "loss": 1.0737,
1238
+ "step": 10250
1239
+ },
1240
+ {
1241
+ "epoch": 2.21,
1242
+ "learning_rate": 5e-05,
1243
+ "loss": 1.1049,
1244
+ "step": 10260
1245
+ },
1246
+ {
1247
+ "epoch": 2.21,
1248
+ "learning_rate": 5e-05,
1249
+ "loss": 1.202,
1250
+ "step": 10270
1251
+ },
1252
+ {
1253
+ "epoch": 2.21,
1254
+ "learning_rate": 5e-05,
1255
+ "loss": 1.1848,
1256
+ "step": 10280
1257
+ },
1258
+ {
1259
+ "epoch": 2.21,
1260
+ "learning_rate": 5e-05,
1261
+ "loss": 1.1095,
1262
+ "step": 10290
1263
+ },
1264
+ {
1265
+ "epoch": 2.22,
1266
+ "learning_rate": 5e-05,
1267
+ "loss": 1.2268,
1268
+ "step": 10300
1269
+ },
1270
+ {
1271
+ "epoch": 2.22,
1272
+ "learning_rate": 5e-05,
1273
+ "loss": 1.1422,
1274
+ "step": 10310
1275
+ },
1276
+ {
1277
+ "epoch": 2.22,
1278
+ "learning_rate": 5e-05,
1279
+ "loss": 1.1222,
1280
+ "step": 10320
1281
+ },
1282
+ {
1283
+ "epoch": 2.22,
1284
+ "learning_rate": 5e-05,
1285
+ "loss": 1.1251,
1286
+ "step": 10330
1287
+ },
1288
+ {
1289
+ "epoch": 2.23,
1290
+ "learning_rate": 5e-05,
1291
+ "loss": 1.0694,
1292
+ "step": 10340
1293
+ },
1294
+ {
1295
+ "epoch": 2.23,
1296
+ "learning_rate": 5e-05,
1297
+ "loss": 1.1571,
1298
+ "step": 10350
1299
+ },
1300
+ {
1301
+ "epoch": 2.23,
1302
+ "learning_rate": 5e-05,
1303
+ "loss": 1.1546,
1304
+ "step": 10360
1305
+ },
1306
+ {
1307
+ "epoch": 2.23,
1308
+ "learning_rate": 5e-05,
1309
+ "loss": 1.2171,
1310
+ "step": 10370
1311
+ },
1312
+ {
1313
+ "epoch": 2.23,
1314
+ "learning_rate": 5e-05,
1315
+ "loss": 1.1283,
1316
+ "step": 10380
1317
+ },
1318
+ {
1319
+ "epoch": 2.24,
1320
+ "learning_rate": 5e-05,
1321
+ "loss": 1.1215,
1322
+ "step": 10390
1323
+ },
1324
+ {
1325
+ "epoch": 2.24,
1326
+ "learning_rate": 5e-05,
1327
+ "loss": 1.127,
1328
+ "step": 10400
1329
+ },
1330
+ {
1331
+ "epoch": 2.24,
1332
+ "eval_exact_match": 55.35,
1333
+ "eval_f1": 75.70498337751204,
1334
+ "step": 10400
1335
+ },
1336
+ {
1337
+ "epoch": 2.24,
1338
+ "learning_rate": 5e-05,
1339
+ "loss": 1.0492,
1340
+ "step": 10410
1341
+ },
1342
+ {
1343
+ "epoch": 2.24,
1344
+ "learning_rate": 5e-05,
1345
+ "loss": 1.1658,
1346
+ "step": 10420
1347
+ },
1348
+ {
1349
+ "epoch": 2.24,
1350
+ "learning_rate": 5e-05,
1351
+ "loss": 1.1677,
1352
+ "step": 10430
1353
+ },
1354
+ {
1355
+ "epoch": 2.25,
1356
+ "learning_rate": 5e-05,
1357
+ "loss": 1.1758,
1358
+ "step": 10440
1359
+ },
1360
+ {
1361
+ "epoch": 2.25,
1362
+ "learning_rate": 5e-05,
1363
+ "loss": 1.1968,
1364
+ "step": 10450
1365
+ },
1366
+ {
1367
+ "epoch": 2.25,
1368
+ "learning_rate": 5e-05,
1369
+ "loss": 1.1315,
1370
+ "step": 10460
1371
+ },
1372
+ {
1373
+ "epoch": 2.25,
1374
+ "learning_rate": 5e-05,
1375
+ "loss": 1.1138,
1376
+ "step": 10470
1377
+ },
1378
+ {
1379
+ "epoch": 2.26,
1380
+ "learning_rate": 5e-05,
1381
+ "loss": 1.1375,
1382
+ "step": 10480
1383
+ },
1384
+ {
1385
+ "epoch": 2.26,
1386
+ "learning_rate": 5e-05,
1387
+ "loss": 1.1892,
1388
+ "step": 10490
1389
+ },
1390
+ {
1391
+ "epoch": 2.26,
1392
+ "learning_rate": 5e-05,
1393
+ "loss": 1.131,
1394
+ "step": 10500
1395
+ },
1396
+ {
1397
+ "epoch": 2.26,
1398
+ "learning_rate": 5e-05,
1399
+ "loss": 1.1195,
1400
+ "step": 10510
1401
+ },
1402
+ {
1403
+ "epoch": 2.26,
1404
+ "learning_rate": 5e-05,
1405
+ "loss": 1.1044,
1406
+ "step": 10520
1407
+ },
1408
+ {
1409
+ "epoch": 2.27,
1410
+ "learning_rate": 5e-05,
1411
+ "loss": 1.1371,
1412
+ "step": 10530
1413
+ },
1414
+ {
1415
+ "epoch": 2.27,
1416
+ "learning_rate": 5e-05,
1417
+ "loss": 1.1382,
1418
+ "step": 10540
1419
+ },
1420
+ {
1421
+ "epoch": 2.27,
1422
+ "learning_rate": 5e-05,
1423
+ "loss": 1.1273,
1424
+ "step": 10550
1425
+ },
1426
+ {
1427
+ "epoch": 2.27,
1428
+ "learning_rate": 5e-05,
1429
+ "loss": 1.1566,
1430
+ "step": 10560
1431
+ },
1432
+ {
1433
+ "epoch": 2.28,
1434
+ "learning_rate": 5e-05,
1435
+ "loss": 1.209,
1436
+ "step": 10570
1437
+ },
1438
+ {
1439
+ "epoch": 2.28,
1440
+ "learning_rate": 5e-05,
1441
+ "loss": 1.1336,
1442
+ "step": 10580
1443
+ },
1444
+ {
1445
+ "epoch": 2.28,
1446
+ "learning_rate": 5e-05,
1447
+ "loss": 1.0522,
1448
+ "step": 10590
1449
+ },
1450
+ {
1451
+ "epoch": 2.28,
1452
+ "learning_rate": 5e-05,
1453
+ "loss": 1.2019,
1454
+ "step": 10600
1455
+ },
1456
+ {
1457
+ "epoch": 2.28,
1458
+ "eval_exact_match": 55.55,
1459
+ "eval_f1": 76.02151178378499,
1460
+ "step": 10600
1461
+ },
1462
+ {
1463
+ "epoch": 2.28,
1464
+ "learning_rate": 5e-05,
1465
+ "loss": 1.1227,
1466
+ "step": 10610
1467
+ },
1468
+ {
1469
+ "epoch": 2.29,
1470
+ "learning_rate": 5e-05,
1471
+ "loss": 1.2202,
1472
+ "step": 10620
1473
+ },
1474
+ {
1475
+ "epoch": 2.29,
1476
+ "learning_rate": 5e-05,
1477
+ "loss": 1.0762,
1478
+ "step": 10630
1479
+ },
1480
+ {
1481
+ "epoch": 2.29,
1482
+ "learning_rate": 5e-05,
1483
+ "loss": 1.2074,
1484
+ "step": 10640
1485
+ },
1486
+ {
1487
+ "epoch": 2.29,
1488
+ "learning_rate": 5e-05,
1489
+ "loss": 1.1283,
1490
+ "step": 10650
1491
+ },
1492
+ {
1493
+ "epoch": 2.29,
1494
+ "learning_rate": 5e-05,
1495
+ "loss": 1.1631,
1496
+ "step": 10660
1497
+ },
1498
+ {
1499
+ "epoch": 2.3,
1500
+ "learning_rate": 5e-05,
1501
+ "loss": 1.0954,
1502
+ "step": 10670
1503
+ },
1504
+ {
1505
+ "epoch": 2.3,
1506
+ "learning_rate": 5e-05,
1507
+ "loss": 1.2253,
1508
+ "step": 10680
1509
+ },
1510
+ {
1511
+ "epoch": 2.3,
1512
+ "learning_rate": 5e-05,
1513
+ "loss": 1.1141,
1514
+ "step": 10690
1515
+ },
1516
+ {
1517
+ "epoch": 2.3,
1518
+ "learning_rate": 5e-05,
1519
+ "loss": 1.2454,
1520
+ "step": 10700
1521
+ },
1522
+ {
1523
+ "epoch": 2.31,
1524
+ "learning_rate": 5e-05,
1525
+ "loss": 1.0997,
1526
+ "step": 10710
1527
+ },
1528
+ {
1529
+ "epoch": 2.31,
1530
+ "learning_rate": 5e-05,
1531
+ "loss": 1.1408,
1532
+ "step": 10720
1533
+ },
1534
+ {
1535
+ "epoch": 2.31,
1536
+ "learning_rate": 5e-05,
1537
+ "loss": 1.098,
1538
+ "step": 10730
1539
+ },
1540
+ {
1541
+ "epoch": 2.31,
1542
+ "learning_rate": 5e-05,
1543
+ "loss": 1.2331,
1544
+ "step": 10740
1545
+ },
1546
+ {
1547
+ "epoch": 2.31,
1548
+ "learning_rate": 5e-05,
1549
+ "loss": 1.1006,
1550
+ "step": 10750
1551
+ },
1552
+ {
1553
+ "epoch": 2.32,
1554
+ "learning_rate": 5e-05,
1555
+ "loss": 1.1057,
1556
+ "step": 10760
1557
+ },
1558
+ {
1559
+ "epoch": 2.32,
1560
+ "learning_rate": 5e-05,
1561
+ "loss": 1.2075,
1562
+ "step": 10770
1563
+ },
1564
+ {
1565
+ "epoch": 2.32,
1566
+ "learning_rate": 5e-05,
1567
+ "loss": 1.0302,
1568
+ "step": 10780
1569
+ },
1570
+ {
1571
+ "epoch": 2.32,
1572
+ "learning_rate": 5e-05,
1573
+ "loss": 1.1484,
1574
+ "step": 10790
1575
+ },
1576
+ {
1577
+ "epoch": 2.32,
1578
+ "learning_rate": 5e-05,
1579
+ "loss": 1.1272,
1580
+ "step": 10800
1581
+ },
1582
+ {
1583
+ "epoch": 2.32,
1584
+ "eval_exact_match": 55.6,
1585
+ "eval_f1": 75.90896740958824,
1586
+ "step": 10800
1587
+ },
1588
+ {
1589
+ "epoch": 2.33,
1590
+ "learning_rate": 5e-05,
1591
+ "loss": 1.1306,
1592
+ "step": 10810
1593
+ },
1594
+ {
1595
+ "epoch": 2.33,
1596
+ "learning_rate": 5e-05,
1597
+ "loss": 1.1356,
1598
+ "step": 10820
1599
+ },
1600
+ {
1601
+ "epoch": 2.33,
1602
+ "learning_rate": 5e-05,
1603
+ "loss": 1.1776,
1604
+ "step": 10830
1605
+ },
1606
+ {
1607
+ "epoch": 2.33,
1608
+ "learning_rate": 5e-05,
1609
+ "loss": 1.1216,
1610
+ "step": 10840
1611
+ },
1612
+ {
1613
+ "epoch": 2.34,
1614
+ "learning_rate": 5e-05,
1615
+ "loss": 1.1211,
1616
+ "step": 10850
1617
+ },
1618
+ {
1619
+ "epoch": 2.34,
1620
+ "learning_rate": 5e-05,
1621
+ "loss": 1.2693,
1622
+ "step": 10860
1623
+ },
1624
+ {
1625
+ "epoch": 2.34,
1626
+ "learning_rate": 5e-05,
1627
+ "loss": 1.1473,
1628
+ "step": 10870
1629
+ },
1630
+ {
1631
+ "epoch": 2.34,
1632
+ "learning_rate": 5e-05,
1633
+ "loss": 1.0641,
1634
+ "step": 10880
1635
+ },
1636
+ {
1637
+ "epoch": 2.34,
1638
+ "learning_rate": 5e-05,
1639
+ "loss": 1.2424,
1640
+ "step": 10890
1641
+ },
1642
+ {
1643
+ "epoch": 2.35,
1644
+ "learning_rate": 5e-05,
1645
+ "loss": 1.1371,
1646
+ "step": 10900
1647
+ },
1648
+ {
1649
+ "epoch": 2.35,
1650
+ "learning_rate": 5e-05,
1651
+ "loss": 1.1217,
1652
+ "step": 10910
1653
+ },
1654
+ {
1655
+ "epoch": 2.35,
1656
+ "learning_rate": 5e-05,
1657
+ "loss": 1.2007,
1658
+ "step": 10920
1659
+ },
1660
+ {
1661
+ "epoch": 2.35,
1662
+ "learning_rate": 5e-05,
1663
+ "loss": 1.1501,
1664
+ "step": 10930
1665
+ },
1666
+ {
1667
+ "epoch": 2.35,
1668
+ "learning_rate": 5e-05,
1669
+ "loss": 1.1135,
1670
+ "step": 10940
1671
+ },
1672
+ {
1673
+ "epoch": 2.36,
1674
+ "learning_rate": 5e-05,
1675
+ "loss": 1.137,
1676
+ "step": 10950
1677
+ },
1678
+ {
1679
+ "epoch": 2.36,
1680
+ "learning_rate": 5e-05,
1681
+ "loss": 1.1422,
1682
+ "step": 10960
1683
+ },
1684
+ {
1685
+ "epoch": 2.36,
1686
+ "learning_rate": 5e-05,
1687
+ "loss": 1.1248,
1688
+ "step": 10970
1689
+ },
1690
+ {
1691
+ "epoch": 2.36,
1692
+ "learning_rate": 5e-05,
1693
+ "loss": 1.1899,
1694
+ "step": 10980
1695
+ },
1696
+ {
1697
+ "epoch": 2.37,
1698
+ "learning_rate": 5e-05,
1699
+ "loss": 1.102,
1700
+ "step": 10990
1701
+ },
1702
+ {
1703
+ "epoch": 2.37,
1704
+ "learning_rate": 5e-05,
1705
+ "loss": 1.1877,
1706
+ "step": 11000
1707
+ },
1708
+ {
1709
+ "epoch": 2.37,
1710
+ "eval_exact_match": 55.95,
1711
+ "eval_f1": 76.45373153349801,
1712
+ "step": 11000
1713
+ },
1714
+ {
1715
+ "epoch": 2.37,
1716
+ "learning_rate": 5e-05,
1717
+ "loss": 1.1474,
1718
+ "step": 11010
1719
+ },
1720
+ {
1721
+ "epoch": 2.37,
1722
+ "learning_rate": 5e-05,
1723
+ "loss": 1.1536,
1724
+ "step": 11020
1725
+ },
1726
+ {
1727
+ "epoch": 2.37,
1728
+ "learning_rate": 5e-05,
1729
+ "loss": 1.2218,
1730
+ "step": 11030
1731
+ },
1732
+ {
1733
+ "epoch": 2.38,
1734
+ "learning_rate": 5e-05,
1735
+ "loss": 1.0967,
1736
+ "step": 11040
1737
+ },
1738
+ {
1739
+ "epoch": 2.38,
1740
+ "learning_rate": 5e-05,
1741
+ "loss": 1.1305,
1742
+ "step": 11050
1743
+ },
1744
+ {
1745
+ "epoch": 2.38,
1746
+ "learning_rate": 5e-05,
1747
+ "loss": 1.087,
1748
+ "step": 11060
1749
+ },
1750
+ {
1751
+ "epoch": 2.38,
1752
+ "learning_rate": 5e-05,
1753
+ "loss": 1.0908,
1754
+ "step": 11070
1755
+ },
1756
+ {
1757
+ "epoch": 2.38,
1758
+ "learning_rate": 5e-05,
1759
+ "loss": 1.0134,
1760
+ "step": 11080
1761
+ },
1762
+ {
1763
+ "epoch": 2.39,
1764
+ "learning_rate": 5e-05,
1765
+ "loss": 1.0997,
1766
+ "step": 11090
1767
+ },
1768
+ {
1769
+ "epoch": 2.39,
1770
+ "learning_rate": 5e-05,
1771
+ "loss": 1.066,
1772
+ "step": 11100
1773
+ },
1774
+ {
1775
+ "epoch": 2.39,
1776
+ "learning_rate": 5e-05,
1777
+ "loss": 1.2601,
1778
+ "step": 11110
1779
+ },
1780
+ {
1781
+ "epoch": 2.39,
1782
+ "learning_rate": 5e-05,
1783
+ "loss": 1.1191,
1784
+ "step": 11120
1785
+ },
1786
+ {
1787
+ "epoch": 2.4,
1788
+ "learning_rate": 5e-05,
1789
+ "loss": 1.1025,
1790
+ "step": 11130
1791
+ },
1792
+ {
1793
+ "epoch": 2.4,
1794
+ "learning_rate": 5e-05,
1795
+ "loss": 1.112,
1796
+ "step": 11140
1797
+ },
1798
+ {
1799
+ "epoch": 2.4,
1800
+ "learning_rate": 5e-05,
1801
+ "loss": 1.0794,
1802
+ "step": 11150
1803
+ },
1804
+ {
1805
+ "epoch": 2.4,
1806
+ "learning_rate": 5e-05,
1807
+ "loss": 1.112,
1808
+ "step": 11160
1809
+ },
1810
+ {
1811
+ "epoch": 2.4,
1812
+ "learning_rate": 5e-05,
1813
+ "loss": 1.1411,
1814
+ "step": 11170
1815
+ },
1816
+ {
1817
+ "epoch": 2.41,
1818
+ "learning_rate": 5e-05,
1819
+ "loss": 1.1118,
1820
+ "step": 11180
1821
+ },
1822
+ {
1823
+ "epoch": 2.41,
1824
+ "learning_rate": 5e-05,
1825
+ "loss": 1.1464,
1826
+ "step": 11190
1827
+ },
1828
+ {
1829
+ "epoch": 2.41,
1830
+ "learning_rate": 5e-05,
1831
+ "loss": 1.1496,
1832
+ "step": 11200
1833
+ },
1834
+ {
1835
+ "epoch": 2.41,
1836
+ "eval_exact_match": 56.15,
1837
+ "eval_f1": 76.4356306603872,
1838
+ "step": 11200
1839
+ },
1840
+ {
1841
+ "epoch": 2.41,
1842
+ "learning_rate": 5e-05,
1843
+ "loss": 1.1588,
1844
+ "step": 11210
1845
+ },
1846
+ {
1847
+ "epoch": 2.41,
1848
+ "learning_rate": 5e-05,
1849
+ "loss": 1.1369,
1850
+ "step": 11220
1851
+ },
1852
+ {
1853
+ "epoch": 2.42,
1854
+ "learning_rate": 5e-05,
1855
+ "loss": 1.1026,
1856
+ "step": 11230
1857
+ },
1858
+ {
1859
+ "epoch": 2.42,
1860
+ "learning_rate": 5e-05,
1861
+ "loss": 1.1764,
1862
+ "step": 11240
1863
+ },
1864
+ {
1865
+ "epoch": 2.42,
1866
+ "learning_rate": 5e-05,
1867
+ "loss": 1.1449,
1868
+ "step": 11250
1869
+ },
1870
+ {
1871
+ "epoch": 2.42,
1872
+ "learning_rate": 5e-05,
1873
+ "loss": 1.1712,
1874
+ "step": 11260
1875
+ },
1876
+ {
1877
+ "epoch": 2.43,
1878
+ "learning_rate": 5e-05,
1879
+ "loss": 1.0465,
1880
+ "step": 11270
1881
+ },
1882
+ {
1883
+ "epoch": 2.43,
1884
+ "learning_rate": 5e-05,
1885
+ "loss": 1.1362,
1886
+ "step": 11280
1887
+ },
1888
+ {
1889
+ "epoch": 2.43,
1890
+ "learning_rate": 5e-05,
1891
+ "loss": 1.1022,
1892
+ "step": 11290
1893
+ },
1894
+ {
1895
+ "epoch": 2.43,
1896
+ "learning_rate": 5e-05,
1897
+ "loss": 1.1401,
1898
+ "step": 11300
1899
+ },
1900
+ {
1901
+ "epoch": 2.43,
1902
+ "learning_rate": 5e-05,
1903
+ "loss": 1.0913,
1904
+ "step": 11310
1905
+ },
1906
+ {
1907
+ "epoch": 2.44,
1908
+ "learning_rate": 5e-05,
1909
+ "loss": 1.1922,
1910
+ "step": 11320
1911
+ },
1912
+ {
1913
+ "epoch": 2.44,
1914
+ "learning_rate": 5e-05,
1915
+ "loss": 1.101,
1916
+ "step": 11330
1917
+ },
1918
+ {
1919
+ "epoch": 2.44,
1920
+ "learning_rate": 5e-05,
1921
+ "loss": 1.0261,
1922
+ "step": 11340
1923
+ },
1924
+ {
1925
+ "epoch": 2.44,
1926
+ "learning_rate": 5e-05,
1927
+ "loss": 1.1109,
1928
+ "step": 11350
1929
+ },
1930
+ {
1931
+ "epoch": 2.45,
1932
+ "learning_rate": 5e-05,
1933
+ "loss": 1.0958,
1934
+ "step": 11360
1935
+ },
1936
+ {
1937
+ "epoch": 2.45,
1938
+ "learning_rate": 5e-05,
1939
+ "loss": 1.027,
1940
+ "step": 11370
1941
+ },
1942
+ {
1943
+ "epoch": 2.45,
1944
+ "learning_rate": 5e-05,
1945
+ "loss": 1.117,
1946
+ "step": 11380
1947
+ },
1948
+ {
1949
+ "epoch": 2.45,
1950
+ "learning_rate": 5e-05,
1951
+ "loss": 1.1295,
1952
+ "step": 11390
1953
+ },
1954
+ {
1955
+ "epoch": 2.45,
1956
+ "learning_rate": 5e-05,
1957
+ "loss": 1.1344,
1958
+ "step": 11400
1959
+ },
1960
+ {
1961
+ "epoch": 2.45,
1962
+ "eval_exact_match": 56.45,
1963
+ "eval_f1": 76.81870981288014,
1964
+ "step": 11400
1965
+ }
1966
+ ],
1967
+ "max_steps": 92920,
1968
+ "num_train_epochs": 20,
1969
+ "total_flos": 3.858021871727411e+17,
1970
+ "trial_name": null,
1971
+ "trial_params": null
1972
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a786dd68f2e8e10a738c3db218d056e17d76ec9e58bf6cc1a3e984cb86422ae3
3
+ size 4591
zero_to_fp32.py ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
4
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
5
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
6
+ # application.
7
+ #
8
+ # example: python zero_to_fp32.py . pytorch_model.bin
9
+
10
+ import argparse
11
+ import torch
12
+ import glob
13
+ import math
14
+ import os
15
+ import re
16
+ from collections import OrderedDict
17
+
18
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
19
+ # DeepSpeed data structures it has to be available in the current python environment.
20
+ from deepspeed.utils import logger
21
+ from deepspeed.checkpoint.constants import (DS_VERSION,
22
+ OPTIMIZER_STATE_DICT,
23
+ SINGLE_PARTITION_OF_FP32_GROUPS,
24
+ FP32_FLAT_GROUPS,
25
+ ZERO_STAGE,
26
+ PARTITION_COUNT,
27
+ PARAM_SHAPES,
28
+ BUFFER_NAMES)
29
+
30
+ debug = 0
31
+
32
+ # load to cpu
33
+ device = torch.device('cpu')
34
+
35
+
36
+ def atoi(text):
37
+ return int(text) if text.isdigit() else text
38
+
39
+
40
+ def natural_keys(text):
41
+ '''
42
+ alist.sort(key=natural_keys) sorts in human order
43
+ http://nedbatchelder.com/blog/200712/human_sorting.html
44
+ (See Toothy's implementation in the comments)
45
+ '''
46
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
47
+
48
+
49
+ def get_model_state_file(checkpoint_dir, zero_stage):
50
+ if not os.path.isdir(checkpoint_dir):
51
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
52
+
53
+ # there should be only one file
54
+ if zero_stage == 2:
55
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
56
+ elif zero_stage == 3:
57
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
58
+
59
+ if not os.path.exists(file):
60
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
61
+
62
+ return file
63
+
64
+
65
+ def get_optim_files(checkpoint_dir):
66
+ # XXX: need to test that this simple glob rule works for multi-node setup too
67
+ optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
68
+ "*_optim_states.pt")),
69
+ key=natural_keys)
70
+
71
+ if len(optim_files) == 0:
72
+ raise FileNotFoundError(
73
+ f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
74
+
75
+ return optim_files
76
+
77
+
78
+ def parse_model_state(file):
79
+ state_dict = torch.load(file, map_location=device)
80
+
81
+ if BUFFER_NAMES not in state_dict:
82
+ raise ValueError(f"{file} is not a model state checkpoint")
83
+ buffer_names = state_dict[BUFFER_NAMES]
84
+ if debug:
85
+ print("Found buffers:", buffer_names)
86
+
87
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
88
+ buffers = {
89
+ k: v.float()
90
+ for k,
91
+ v in state_dict["module"].items() if k in buffer_names
92
+ }
93
+ param_shapes = state_dict[PARAM_SHAPES]
94
+
95
+ ds_version = state_dict.get(DS_VERSION, None)
96
+
97
+ return buffers, param_shapes, ds_version
98
+
99
+
100
+ def parse_optim_states(files, ds_checkpoint_dir):
101
+
102
+ total_files = len(files)
103
+ state_dicts = []
104
+ for f in files:
105
+ state_dicts.append(torch.load(f, map_location=device))
106
+
107
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
108
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
109
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
110
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
111
+
112
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
113
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
114
+ # use the max of the partition_count to get the dp world_size.
115
+
116
+ if type(world_size) is list:
117
+ world_size = max(world_size)
118
+
119
+ if world_size != total_files:
120
+ raise ValueError(
121
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
122
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
123
+ )
124
+
125
+ # the groups are named differently in each stage
126
+ if zero_stage == 2:
127
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
128
+ elif zero_stage == 3:
129
+ fp32_groups_key = FP32_FLAT_GROUPS
130
+ else:
131
+ raise ValueError(f"unknown zero stage {zero_stage}")
132
+
133
+ if zero_stage == 2:
134
+ fp32_flat_groups = [
135
+ state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
136
+ for i in range(len(state_dicts))
137
+ ]
138
+ elif zero_stage == 3:
139
+ # if there is more than one param group, there will be multiple flattened tensors - one
140
+ # flattened tensor per group - for simplicity merge them into a single tensor
141
+ #
142
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
143
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
144
+
145
+ fp32_flat_groups = [
146
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
147
+ 0) for i in range(len(state_dicts))
148
+ ]
149
+
150
+ return zero_stage, world_size, fp32_flat_groups
151
+
152
+
153
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
154
+ """
155
+ Returns fp32 state_dict reconstructed from ds checkpoint
156
+
157
+ Args:
158
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
159
+
160
+ """
161
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
162
+
163
+ optim_files = get_optim_files(ds_checkpoint_dir)
164
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
165
+ print(
166
+ f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
167
+
168
+ model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
169
+ buffers, param_shapes, ds_version = parse_model_state(model_file)
170
+ print(f'Parsing checkpoint created by deepspeed=={ds_version}')
171
+
172
+ if zero_stage == 2:
173
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
174
+ param_shapes,
175
+ fp32_flat_groups,
176
+ buffers)
177
+ elif zero_stage == 3:
178
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
179
+ param_shapes,
180
+ fp32_flat_groups,
181
+ buffers)
182
+
183
+
184
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
185
+ param_shapes,
186
+ fp32_flat_groups,
187
+ buffers):
188
+
189
+ # Reconstruction protocol:
190
+ #
191
+ # XXX: document this
192
+
193
+ if debug:
194
+ for i in range(world_size):
195
+ for j in range(len(fp32_flat_groups[0])):
196
+ print(
197
+ f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
198
+
199
+ # XXX: memory usage doubles here (zero2)
200
+ num_param_groups = len(fp32_flat_groups[0])
201
+ merged_single_partition_of_fp32_groups = []
202
+ for i in range(num_param_groups):
203
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
204
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
205
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
206
+ avail_numel = sum([
207
+ full_single_fp32_vector.numel()
208
+ for full_single_fp32_vector in merged_single_partition_of_fp32_groups
209
+ ])
210
+
211
+ if debug:
212
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
213
+ wanted_numel = sum(
214
+ [sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
215
+ # not asserting if there is a mismatch due to possible padding
216
+ print(f"Have {avail_numel} numels to process.")
217
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
218
+
219
+ state_dict = OrderedDict()
220
+
221
+ # buffers
222
+ state_dict.update(buffers)
223
+ if debug:
224
+ print(f"added {len(buffers)} buffers")
225
+
226
+ # params
227
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
228
+ # out-of-core computing solution
229
+ total_numel = 0
230
+ total_params = 0
231
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
232
+ offset = 0
233
+ avail_numel = full_single_fp32_vector.numel()
234
+ for name, shape in shapes.items():
235
+
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+ total_params += 1
239
+
240
+ if debug:
241
+ print(
242
+ f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
243
+ )
244
+ state_dict[name] = full_single_fp32_vector.narrow(
245
+ 0,
246
+ offset,
247
+ unpartitioned_numel).view(shape)
248
+ offset += unpartitioned_numel
249
+
250
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
251
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
252
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
253
+ # live optimizer object, so we are checking that the numbers are within the right range
254
+ align_to = 2 * world_size
255
+
256
+ def zero2_align(x):
257
+ return align_to * math.ceil(x / align_to)
258
+
259
+ if debug:
260
+ print(f"original offset={offset}, avail_numel={avail_numel}")
261
+
262
+ offset = zero2_align(offset)
263
+ avail_numel = zero2_align(avail_numel)
264
+
265
+ if debug:
266
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
267
+
268
+ # Sanity check
269
+ if offset != avail_numel:
270
+ raise ValueError(
271
+ f"consumed {offset} numels out of {avail_numel} - something is wrong")
272
+
273
+ print(
274
+ f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
275
+ )
276
+
277
+ return state_dict
278
+
279
+
280
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
281
+ remainder = unpartitioned_numel % world_size
282
+ padding_numel = (world_size - remainder) if remainder else 0
283
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
284
+ return partitioned_numel, padding_numel
285
+
286
+
287
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
288
+ param_shapes,
289
+ fp32_flat_groups,
290
+ buffers):
291
+
292
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
293
+ # param, re-consolidating each param, while dealing with padding if any
294
+
295
+ avail_numel = fp32_flat_groups[0].numel() * world_size
296
+ # merge list of dicts, preserving order
297
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
298
+
299
+ if debug:
300
+ for i in range(world_size):
301
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
302
+
303
+ wanted_params = len(param_shapes)
304
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
305
+ # not asserting if there is a mismatch due to possible padding
306
+ print(f"Have {avail_numel} numels to process.")
307
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
308
+
309
+ state_dict = OrderedDict()
310
+
311
+ # buffers
312
+ state_dict.update(buffers)
313
+ if debug:
314
+ print(f"added {len(buffers)} buffers")
315
+
316
+ # params
317
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
318
+ # out-of-core computing solution
319
+ offset = 0
320
+ total_numel = 0
321
+ total_params = 0
322
+ for name, shape in param_shapes.items():
323
+
324
+ unpartitioned_numel = shape.numel()
325
+ total_numel += unpartitioned_numel
326
+ total_params += 1
327
+
328
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
329
+
330
+ if debug:
331
+ print(
332
+ f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
333
+ )
334
+
335
+ # XXX: memory usage doubles here
336
+ state_dict[name] = torch.cat(
337
+ tuple(fp32_flat_groups[i].narrow(0,
338
+ offset,
339
+ partitioned_numel)
340
+ for i in range(world_size)),
341
+ 0).narrow(0,
342
+ 0,
343
+ unpartitioned_numel).view(shape)
344
+ offset += partitioned_numel
345
+
346
+ offset *= world_size
347
+
348
+ # Sanity check
349
+ if offset != avail_numel:
350
+ raise ValueError(
351
+ f"consumed {offset} numels out of {avail_numel} - something is wrong")
352
+
353
+ print(
354
+ f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
355
+ )
356
+
357
+ return state_dict
358
+
359
+
360
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
361
+ """
362
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
363
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
364
+ via a model hub.
365
+
366
+ Args:
367
+ - ``checkpoint_dir``: path to the desired checkpoint folder
368
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
369
+
370
+ Returns:
371
+ - pytorch ``state_dict``
372
+
373
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
374
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
375
+ the checkpoint.
376
+
377
+ A typical usage might be ::
378
+
379
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
380
+ # do the training and checkpoint saving
381
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
382
+ model = model.cpu() # move to cpu
383
+ model.load_state_dict(state_dict)
384
+ # submit to model hub or save the model to share with others
385
+
386
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
387
+ application. i.e. you will need to re-initialize the deepspeed engine, since
388
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
389
+
390
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
391
+
392
+ """
393
+ if tag is None:
394
+ latest_path = os.path.join(checkpoint_dir, 'latest')
395
+ if os.path.isfile(latest_path):
396
+ with open(latest_path, 'r') as fd:
397
+ tag = fd.read().strip()
398
+ else:
399
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
400
+
401
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
402
+
403
+ if not os.path.isdir(ds_checkpoint_dir):
404
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
405
+
406
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
407
+
408
+
409
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
410
+ """
411
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
412
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
413
+
414
+ Args:
415
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
416
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
417
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
418
+ """
419
+
420
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
421
+ print(f"Saving fp32 state dict to {output_file}")
422
+ torch.save(state_dict, output_file)
423
+
424
+
425
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
426
+ """
427
+ 1. Put the provided model to cpu
428
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
429
+ 3. Load it into the provided model
430
+
431
+ Args:
432
+ - ``model``: the model object to update
433
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
434
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
435
+
436
+ Returns:
437
+ - ``model`: modified model
438
+
439
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
440
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
441
+ conveniently placed for you in the checkpoint folder.
442
+
443
+ A typical usage might be ::
444
+
445
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
446
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
447
+ # submit to model hub or save the model to share with others
448
+
449
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
450
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
451
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
452
+
453
+ """
454
+ logger.info(f"Extracting fp32 weights")
455
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
456
+
457
+ logger.info(f"Overwriting model with fp32 weights")
458
+ model = model.cpu()
459
+ model.load_state_dict(state_dict, strict=False)
460
+
461
+ return model
462
+
463
+
464
+ if __name__ == "__main__":
465
+
466
+ parser = argparse.ArgumentParser()
467
+ parser.add_argument(
468
+ "checkpoint_dir",
469
+ type=str,
470
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
471
+ parser.add_argument(
472
+ "output_file",
473
+ type=str,
474
+ help=
475
+ "path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
476
+ )
477
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
478
+ args = parser.parse_args()
479
+
480
+ debug = args.debug
481
+
482
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)