Upload model
Browse files- .gitattributes +1 -0
- config.json +31 -0
- latest +1 -0
- pytorch_model.bin +3 -0
- rng_state.pth +3 -0
- special_tokens_map.json +5 -0
- spiece.model +3 -0
- tokenizer.json +3 -0
- tokenizer_config.json +11 -0
- trainer_state.json +1972 -0
- training_args.bin +3 -0
- zero_to_fp32.py +482 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "google/mt5-small",
|
3 |
+
"architectures": [
|
4 |
+
"MT5ForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"d_ff": 1024,
|
7 |
+
"d_kv": 64,
|
8 |
+
"d_model": 512,
|
9 |
+
"decoder_start_token_id": 0,
|
10 |
+
"dense_act_fn": "gelu_new",
|
11 |
+
"dropout_rate": 0.1,
|
12 |
+
"eos_token_id": 1,
|
13 |
+
"feed_forward_proj": "gated-gelu",
|
14 |
+
"initializer_factor": 1.0,
|
15 |
+
"is_encoder_decoder": true,
|
16 |
+
"is_gated_act": true,
|
17 |
+
"layer_norm_epsilon": 1e-06,
|
18 |
+
"model_type": "mt5",
|
19 |
+
"num_decoder_layers": 8,
|
20 |
+
"num_heads": 6,
|
21 |
+
"num_layers": 8,
|
22 |
+
"pad_token_id": 0,
|
23 |
+
"relative_attention_max_distance": 128,
|
24 |
+
"relative_attention_num_buckets": 32,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"tokenizer_class": "T5Tokenizer",
|
27 |
+
"torch_dtype": "bfloat16",
|
28 |
+
"transformers_version": "4.23.0.dev0",
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 250100
|
31 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step11400
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e2995b5128e86f8cad57af7249371d9ac4d22bcdb290dc61313362a5d850344
|
3 |
+
size 600356075
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3581f24b21aff97eddbb4e839feb42bc13bd5d0c5ea2970f39df72a3dc6d23e4
|
3 |
+
size 14503
|
special_tokens_map.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eos_token": "</s>",
|
3 |
+
"pad_token": "<pad>",
|
4 |
+
"unk_token": "<unk>"
|
5 |
+
}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef78f86560d809067d12bac6c09f19a462cb3af3f54d2b8acbba26e1433125d6
|
3 |
+
size 4309802
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93c3578052e1605d8332eb961bc08d72e246071974e4cc54aa6991826b802aa5
|
3 |
+
size 16330369
|
tokenizer_config.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": null,
|
3 |
+
"eos_token": "</s>",
|
4 |
+
"extra_ids": 0,
|
5 |
+
"name_or_path": "google/mt5-small",
|
6 |
+
"pad_token": "<pad>",
|
7 |
+
"sp_model_kwargs": {},
|
8 |
+
"special_tokens_map_file": "/home/txau/.cache/huggingface/hub/models--google--mt5-small/snapshots/f03a52d3eaa650878b6f52e443bc4d5b385e786e/special_tokens_map.json",
|
9 |
+
"tokenizer_class": "T5Tokenizer",
|
10 |
+
"unk_token": "<unk>"
|
11 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1972 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.453662604578592,
|
5 |
+
"global_step": 11400,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.02,
|
12 |
+
"eval_exact_match": 14.738231412230533,
|
13 |
+
"eval_f1": 19.992446610541194,
|
14 |
+
"step": 100
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.04,
|
18 |
+
"learning_rate": 0.0005,
|
19 |
+
"loss": 3.6292,
|
20 |
+
"step": 200
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.04,
|
24 |
+
"eval_exact_match": 21.381434227892655,
|
25 |
+
"eval_f1": 31.43956554541397,
|
26 |
+
"step": 200
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.05,
|
30 |
+
"eval_exact_match": 24.175098988121427,
|
31 |
+
"eval_f1": 34.101042049094296,
|
32 |
+
"step": 300
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.07,
|
36 |
+
"learning_rate": 0.0005,
|
37 |
+
"loss": 2.7193,
|
38 |
+
"step": 400
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.07,
|
42 |
+
"eval_exact_match": 24.950592885375492,
|
43 |
+
"eval_f1": 38.217244544211226,
|
44 |
+
"step": 400
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.11,
|
48 |
+
"learning_rate": 0.0005,
|
49 |
+
"loss": 2.4559,
|
50 |
+
"step": 600
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.11,
|
54 |
+
"eval_exact_match": 28.40909090909091,
|
55 |
+
"eval_f1": 44.64064089265683,
|
56 |
+
"step": 600
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.14,
|
60 |
+
"learning_rate": 0.0005,
|
61 |
+
"loss": 2.2801,
|
62 |
+
"step": 800
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.14,
|
66 |
+
"eval_exact_match": 26.630434782608695,
|
67 |
+
"eval_f1": 45.504003307885625,
|
68 |
+
"step": 800
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.18,
|
72 |
+
"learning_rate": 0.0005,
|
73 |
+
"loss": 2.1285,
|
74 |
+
"step": 1000
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.18,
|
78 |
+
"eval_exact_match": 30.8300395256917,
|
79 |
+
"eval_f1": 50.359736600917515,
|
80 |
+
"step": 1000
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.21,
|
84 |
+
"learning_rate": 0.0005,
|
85 |
+
"loss": 2.026,
|
86 |
+
"step": 1200
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.21,
|
90 |
+
"eval_exact_match": 31.175889328063242,
|
91 |
+
"eval_f1": 51.623685774579855,
|
92 |
+
"step": 1200
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.25,
|
96 |
+
"learning_rate": 0.0005,
|
97 |
+
"loss": 1.9281,
|
98 |
+
"step": 1400
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.25,
|
102 |
+
"eval_exact_match": 35.869565217391305,
|
103 |
+
"eval_f1": 56.21242269358832,
|
104 |
+
"step": 1400
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.28,
|
108 |
+
"learning_rate": 0.0005,
|
109 |
+
"loss": 1.8836,
|
110 |
+
"step": 1600
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.28,
|
114 |
+
"eval_exact_match": 35.0296442687747,
|
115 |
+
"eval_f1": 57.21764925319378,
|
116 |
+
"step": 1600
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.32,
|
120 |
+
"learning_rate": 0.0005,
|
121 |
+
"loss": 1.8377,
|
122 |
+
"step": 1800
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.32,
|
126 |
+
"eval_exact_match": 36.61067193675889,
|
127 |
+
"eval_f1": 58.4380904170952,
|
128 |
+
"step": 1800
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.35,
|
132 |
+
"learning_rate": 0.0005,
|
133 |
+
"loss": 1.7926,
|
134 |
+
"step": 2000
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.35,
|
138 |
+
"eval_exact_match": 36.85770750988142,
|
139 |
+
"eval_f1": 59.677808943848156,
|
140 |
+
"step": 2000
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.39,
|
144 |
+
"learning_rate": 0.0005,
|
145 |
+
"loss": 1.7356,
|
146 |
+
"step": 2200
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.39,
|
150 |
+
"eval_exact_match": 35.62252964426877,
|
151 |
+
"eval_f1": 59.02520911162799,
|
152 |
+
"step": 2200
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.42,
|
156 |
+
"learning_rate": 0.0005,
|
157 |
+
"loss": 1.7001,
|
158 |
+
"step": 2400
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.42,
|
162 |
+
"eval_exact_match": 36.31422924901186,
|
163 |
+
"eval_f1": 60.89754377178488,
|
164 |
+
"step": 2400
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.46,
|
168 |
+
"learning_rate": 0.0005,
|
169 |
+
"loss": 1.675,
|
170 |
+
"step": 2600
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.46,
|
174 |
+
"eval_exact_match": 36.26482213438735,
|
175 |
+
"eval_f1": 59.783069358423525,
|
176 |
+
"step": 2600
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.49,
|
180 |
+
"learning_rate": 0.0005,
|
181 |
+
"loss": 1.6594,
|
182 |
+
"step": 2800
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.49,
|
186 |
+
"eval_exact_match": 36.56126482213439,
|
187 |
+
"eval_f1": 61.449547007432926,
|
188 |
+
"step": 2800
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.53,
|
192 |
+
"learning_rate": 0.0005,
|
193 |
+
"loss": 1.6435,
|
194 |
+
"step": 3000
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.53,
|
198 |
+
"eval_exact_match": 39.92094861660079,
|
199 |
+
"eval_f1": 63.03510761568375,
|
200 |
+
"step": 3000
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.56,
|
204 |
+
"learning_rate": 0.0005,
|
205 |
+
"loss": 1.6116,
|
206 |
+
"step": 3200
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.56,
|
210 |
+
"eval_exact_match": 37.30237154150198,
|
211 |
+
"eval_f1": 62.953985227470696,
|
212 |
+
"step": 3200
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.6,
|
216 |
+
"learning_rate": 0.0005,
|
217 |
+
"loss": 1.5701,
|
218 |
+
"step": 3400
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.6,
|
222 |
+
"eval_exact_match": 36.6600790513834,
|
223 |
+
"eval_f1": 61.820603199741704,
|
224 |
+
"step": 3400
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.63,
|
228 |
+
"learning_rate": 0.0005,
|
229 |
+
"loss": 1.5627,
|
230 |
+
"step": 3600
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.63,
|
234 |
+
"eval_exact_match": 38.04347826086956,
|
235 |
+
"eval_f1": 63.56696764038496,
|
236 |
+
"step": 3600
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.67,
|
240 |
+
"learning_rate": 0.0005,
|
241 |
+
"loss": 1.5525,
|
242 |
+
"step": 3800
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.67,
|
246 |
+
"eval_exact_match": 39.03162055335969,
|
247 |
+
"eval_f1": 64.72028168259759,
|
248 |
+
"step": 3800
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.83,
|
252 |
+
"learning_rate": 0.0005,
|
253 |
+
"loss": 1.4518,
|
254 |
+
"step": 3850
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.84,
|
258 |
+
"learning_rate": 0.0005,
|
259 |
+
"loss": 1.4245,
|
260 |
+
"step": 3900
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.85,
|
264 |
+
"learning_rate": 0.0005,
|
265 |
+
"loss": 1.4164,
|
266 |
+
"step": 3950
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.86,
|
270 |
+
"learning_rate": 0.0005,
|
271 |
+
"loss": 1.4627,
|
272 |
+
"step": 4000
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.86,
|
276 |
+
"eval_exact_match": 42.5,
|
277 |
+
"eval_f1": 67.3159921257088,
|
278 |
+
"step": 4000
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.87,
|
282 |
+
"learning_rate": 0.0005,
|
283 |
+
"loss": 1.4369,
|
284 |
+
"step": 4050
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.88,
|
288 |
+
"learning_rate": 0.0005,
|
289 |
+
"loss": 1.4205,
|
290 |
+
"step": 4100
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.89,
|
294 |
+
"learning_rate": 0.0005,
|
295 |
+
"loss": 1.4189,
|
296 |
+
"step": 4150
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.9,
|
300 |
+
"learning_rate": 0.0005,
|
301 |
+
"loss": 1.4127,
|
302 |
+
"step": 4200
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.9,
|
306 |
+
"eval_exact_match": 44.95,
|
307 |
+
"eval_f1": 68.47203537029696,
|
308 |
+
"step": 4200
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.91,
|
312 |
+
"learning_rate": 0.0005,
|
313 |
+
"loss": 1.4329,
|
314 |
+
"step": 4250
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.93,
|
318 |
+
"learning_rate": 0.0005,
|
319 |
+
"loss": 1.4233,
|
320 |
+
"step": 4300
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.94,
|
324 |
+
"learning_rate": 0.0005,
|
325 |
+
"loss": 1.4426,
|
326 |
+
"step": 4350
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.95,
|
330 |
+
"learning_rate": 0.0005,
|
331 |
+
"loss": 1.3969,
|
332 |
+
"step": 4400
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.95,
|
336 |
+
"eval_exact_match": 46.9,
|
337 |
+
"eval_f1": 69.7906665651929,
|
338 |
+
"step": 4400
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.96,
|
342 |
+
"learning_rate": 0.0005,
|
343 |
+
"loss": 1.4589,
|
344 |
+
"step": 4450
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.97,
|
348 |
+
"learning_rate": 0.0005,
|
349 |
+
"loss": 1.4199,
|
350 |
+
"step": 4500
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 0.98,
|
354 |
+
"learning_rate": 0.0005,
|
355 |
+
"loss": 1.3795,
|
356 |
+
"step": 4550
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 0.99,
|
360 |
+
"learning_rate": 0.0005,
|
361 |
+
"loss": 1.3794,
|
362 |
+
"step": 4600
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.99,
|
366 |
+
"eval_exact_match": 50.95,
|
367 |
+
"eval_f1": 71.26934663680022,
|
368 |
+
"step": 4600
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 1.0,
|
372 |
+
"learning_rate": 0.0005,
|
373 |
+
"loss": 1.3577,
|
374 |
+
"step": 4650
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 1.01,
|
378 |
+
"learning_rate": 0.0005,
|
379 |
+
"loss": 1.3633,
|
380 |
+
"step": 4700
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 1.02,
|
384 |
+
"learning_rate": 0.0005,
|
385 |
+
"loss": 1.3672,
|
386 |
+
"step": 4750
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 1.03,
|
390 |
+
"learning_rate": 0.0005,
|
391 |
+
"loss": 1.3568,
|
392 |
+
"step": 4800
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 1.03,
|
396 |
+
"eval_exact_match": 49.5,
|
397 |
+
"eval_f1": 71.44716194869687,
|
398 |
+
"step": 4800
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 1.04,
|
402 |
+
"learning_rate": 0.0005,
|
403 |
+
"loss": 1.334,
|
404 |
+
"step": 4850
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 1.05,
|
408 |
+
"learning_rate": 0.0005,
|
409 |
+
"loss": 1.3173,
|
410 |
+
"step": 4900
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 1.07,
|
414 |
+
"learning_rate": 0.0005,
|
415 |
+
"loss": 1.3332,
|
416 |
+
"step": 4950
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 1.08,
|
420 |
+
"learning_rate": 0.0005,
|
421 |
+
"loss": 1.3858,
|
422 |
+
"step": 5000
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 1.08,
|
426 |
+
"eval_exact_match": 50.6,
|
427 |
+
"eval_f1": 71.4031953884389,
|
428 |
+
"step": 5000
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 1.09,
|
432 |
+
"learning_rate": 0.0005,
|
433 |
+
"loss": 1.3724,
|
434 |
+
"step": 5050
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 1.1,
|
438 |
+
"learning_rate": 0.0005,
|
439 |
+
"loss": 1.3356,
|
440 |
+
"step": 5100
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 1.11,
|
444 |
+
"learning_rate": 0.0005,
|
445 |
+
"loss": 1.4173,
|
446 |
+
"step": 5150
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 1.12,
|
450 |
+
"learning_rate": 0.0005,
|
451 |
+
"loss": 1.3499,
|
452 |
+
"step": 5200
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 1.12,
|
456 |
+
"eval_exact_match": 50.45,
|
457 |
+
"eval_f1": 70.96365965036652,
|
458 |
+
"step": 5200
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 1.13,
|
462 |
+
"learning_rate": 0.0005,
|
463 |
+
"loss": 1.3853,
|
464 |
+
"step": 5250
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 1.14,
|
468 |
+
"learning_rate": 0.0005,
|
469 |
+
"loss": 1.337,
|
470 |
+
"step": 5300
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 1.15,
|
474 |
+
"learning_rate": 0.0005,
|
475 |
+
"loss": 1.3366,
|
476 |
+
"step": 5350
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 1.16,
|
480 |
+
"learning_rate": 0.0005,
|
481 |
+
"loss": 1.342,
|
482 |
+
"step": 5400
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 1.16,
|
486 |
+
"eval_exact_match": 51.25,
|
487 |
+
"eval_f1": 72.29202655492661,
|
488 |
+
"step": 5400
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 1.17,
|
492 |
+
"learning_rate": 0.0005,
|
493 |
+
"loss": 1.3289,
|
494 |
+
"step": 5450
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 1.18,
|
498 |
+
"learning_rate": 0.0005,
|
499 |
+
"loss": 1.3894,
|
500 |
+
"step": 5500
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 1.19,
|
504 |
+
"learning_rate": 0.0005,
|
505 |
+
"loss": 1.3393,
|
506 |
+
"step": 5550
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 1.21,
|
510 |
+
"learning_rate": 0.0005,
|
511 |
+
"loss": 1.2983,
|
512 |
+
"step": 5600
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 1.21,
|
516 |
+
"eval_exact_match": 52.15,
|
517 |
+
"eval_f1": 72.57033769389315,
|
518 |
+
"step": 5600
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 1.22,
|
522 |
+
"learning_rate": 0.0005,
|
523 |
+
"loss": 1.3181,
|
524 |
+
"step": 5650
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 1.23,
|
528 |
+
"learning_rate": 0.0005,
|
529 |
+
"loss": 1.3672,
|
530 |
+
"step": 5700
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 1.24,
|
534 |
+
"learning_rate": 0.0005,
|
535 |
+
"loss": 1.3064,
|
536 |
+
"step": 5750
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 1.25,
|
540 |
+
"learning_rate": 0.0005,
|
541 |
+
"loss": 1.3316,
|
542 |
+
"step": 5800
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 1.25,
|
546 |
+
"eval_exact_match": 52.6,
|
547 |
+
"eval_f1": 72.91182293082619,
|
548 |
+
"step": 5800
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 1.26,
|
552 |
+
"learning_rate": 0.0005,
|
553 |
+
"loss": 1.3099,
|
554 |
+
"step": 5850
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 1.27,
|
558 |
+
"learning_rate": 0.0005,
|
559 |
+
"loss": 1.293,
|
560 |
+
"step": 5900
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 1.28,
|
564 |
+
"learning_rate": 0.0005,
|
565 |
+
"loss": 1.3386,
|
566 |
+
"step": 5950
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 1.29,
|
570 |
+
"learning_rate": 0.0005,
|
571 |
+
"loss": 1.3475,
|
572 |
+
"step": 6000
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 1.29,
|
576 |
+
"eval_exact_match": 50.7,
|
577 |
+
"eval_f1": 72.13671184582012,
|
578 |
+
"step": 6000
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 1.3,
|
582 |
+
"learning_rate": 0.0005,
|
583 |
+
"loss": 1.2548,
|
584 |
+
"step": 6050
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 1.31,
|
588 |
+
"learning_rate": 0.0005,
|
589 |
+
"loss": 1.3243,
|
590 |
+
"step": 6100
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 1.32,
|
594 |
+
"learning_rate": 0.0005,
|
595 |
+
"loss": 1.322,
|
596 |
+
"step": 6150
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 1.33,
|
600 |
+
"learning_rate": 0.0005,
|
601 |
+
"loss": 1.3049,
|
602 |
+
"step": 6200
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 1.33,
|
606 |
+
"eval_exact_match": 51.25,
|
607 |
+
"eval_f1": 72.62424474108035,
|
608 |
+
"step": 6200
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 1.35,
|
612 |
+
"learning_rate": 0.0005,
|
613 |
+
"loss": 1.274,
|
614 |
+
"step": 6250
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 1.36,
|
618 |
+
"learning_rate": 0.0005,
|
619 |
+
"loss": 1.3015,
|
620 |
+
"step": 6300
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 1.37,
|
624 |
+
"learning_rate": 0.0005,
|
625 |
+
"loss": 1.303,
|
626 |
+
"step": 6350
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 1.38,
|
630 |
+
"learning_rate": 0.0005,
|
631 |
+
"loss": 1.2727,
|
632 |
+
"step": 6400
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 1.38,
|
636 |
+
"eval_exact_match": 52.35,
|
637 |
+
"eval_f1": 73.1319111267331,
|
638 |
+
"step": 6400
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 1.39,
|
642 |
+
"learning_rate": 0.0005,
|
643 |
+
"loss": 1.2866,
|
644 |
+
"step": 6450
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 1.4,
|
648 |
+
"learning_rate": 0.0005,
|
649 |
+
"loss": 1.3302,
|
650 |
+
"step": 6500
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 1.41,
|
654 |
+
"learning_rate": 0.0005,
|
655 |
+
"loss": 1.2281,
|
656 |
+
"step": 6550
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 1.42,
|
660 |
+
"learning_rate": 0.0005,
|
661 |
+
"loss": 1.3037,
|
662 |
+
"step": 6600
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 1.42,
|
666 |
+
"eval_exact_match": 53.2,
|
667 |
+
"eval_f1": 73.01971722088678,
|
668 |
+
"step": 6600
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 1.43,
|
672 |
+
"learning_rate": 0.0005,
|
673 |
+
"loss": 1.2822,
|
674 |
+
"step": 6650
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 1.44,
|
678 |
+
"learning_rate": 0.0005,
|
679 |
+
"loss": 1.2871,
|
680 |
+
"step": 6700
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 1.45,
|
684 |
+
"learning_rate": 0.0005,
|
685 |
+
"loss": 1.3176,
|
686 |
+
"step": 6750
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 1.46,
|
690 |
+
"learning_rate": 0.0005,
|
691 |
+
"loss": 1.2828,
|
692 |
+
"step": 6800
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 1.46,
|
696 |
+
"eval_exact_match": 52.85,
|
697 |
+
"eval_f1": 73.01360270382577,
|
698 |
+
"step": 6800
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 1.47,
|
702 |
+
"learning_rate": 0.0005,
|
703 |
+
"loss": 1.3448,
|
704 |
+
"step": 6850
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 1.49,
|
708 |
+
"learning_rate": 0.0005,
|
709 |
+
"loss": 1.3102,
|
710 |
+
"step": 6900
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 1.5,
|
714 |
+
"learning_rate": 0.0005,
|
715 |
+
"loss": 1.3273,
|
716 |
+
"step": 6950
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 1.51,
|
720 |
+
"learning_rate": 0.0005,
|
721 |
+
"loss": 1.3016,
|
722 |
+
"step": 7000
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 1.51,
|
726 |
+
"eval_exact_match": 54.0,
|
727 |
+
"eval_f1": 73.98223052649728,
|
728 |
+
"step": 7000
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 1.52,
|
732 |
+
"learning_rate": 0.0005,
|
733 |
+
"loss": 1.2767,
|
734 |
+
"step": 7050
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 1.53,
|
738 |
+
"learning_rate": 0.0005,
|
739 |
+
"loss": 1.262,
|
740 |
+
"step": 7100
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 1.54,
|
744 |
+
"learning_rate": 0.0005,
|
745 |
+
"loss": 1.2846,
|
746 |
+
"step": 7150
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 1.55,
|
750 |
+
"learning_rate": 0.0005,
|
751 |
+
"loss": 1.2642,
|
752 |
+
"step": 7200
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 1.55,
|
756 |
+
"eval_exact_match": 52.45,
|
757 |
+
"eval_f1": 73.66687625952305,
|
758 |
+
"step": 7200
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 1.56,
|
762 |
+
"learning_rate": 0.0005,
|
763 |
+
"loss": 1.2875,
|
764 |
+
"step": 7250
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 1.57,
|
768 |
+
"learning_rate": 0.0005,
|
769 |
+
"loss": 1.247,
|
770 |
+
"step": 7300
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 1.58,
|
774 |
+
"learning_rate": 0.0005,
|
775 |
+
"loss": 1.2501,
|
776 |
+
"step": 7350
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 1.59,
|
780 |
+
"learning_rate": 0.0005,
|
781 |
+
"loss": 1.293,
|
782 |
+
"step": 7400
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 1.59,
|
786 |
+
"eval_exact_match": 52.3,
|
787 |
+
"eval_f1": 73.46398897242841,
|
788 |
+
"step": 7400
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 1.6,
|
792 |
+
"learning_rate": 0.0005,
|
793 |
+
"loss": 1.2373,
|
794 |
+
"step": 7450
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 1.61,
|
798 |
+
"learning_rate": 0.0005,
|
799 |
+
"loss": 1.2477,
|
800 |
+
"step": 7500
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 1.62,
|
804 |
+
"learning_rate": 0.0005,
|
805 |
+
"loss": 1.2647,
|
806 |
+
"step": 7550
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 1.64,
|
810 |
+
"learning_rate": 0.0005,
|
811 |
+
"loss": 1.2947,
|
812 |
+
"step": 7600
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 1.64,
|
816 |
+
"eval_exact_match": 53.05,
|
817 |
+
"eval_f1": 73.40471749318357,
|
818 |
+
"step": 7600
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 1.65,
|
822 |
+
"learning_rate": 0.0005,
|
823 |
+
"loss": 1.2237,
|
824 |
+
"step": 7650
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 1.66,
|
828 |
+
"learning_rate": 0.0005,
|
829 |
+
"loss": 1.2996,
|
830 |
+
"step": 7700
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 1.67,
|
834 |
+
"learning_rate": 0.0005,
|
835 |
+
"loss": 1.2833,
|
836 |
+
"step": 7750
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 1.68,
|
840 |
+
"learning_rate": 0.0005,
|
841 |
+
"loss": 1.2663,
|
842 |
+
"step": 7800
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 1.68,
|
846 |
+
"eval_exact_match": 53.95,
|
847 |
+
"eval_f1": 74.59089034170034,
|
848 |
+
"step": 7800
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 1.69,
|
852 |
+
"learning_rate": 0.0005,
|
853 |
+
"loss": 1.2519,
|
854 |
+
"step": 7850
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 1.7,
|
858 |
+
"learning_rate": 0.0005,
|
859 |
+
"loss": 1.2365,
|
860 |
+
"step": 7900
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 1.71,
|
864 |
+
"learning_rate": 0.0005,
|
865 |
+
"loss": 1.2152,
|
866 |
+
"step": 7950
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 1.72,
|
870 |
+
"learning_rate": 0.0005,
|
871 |
+
"loss": 1.2309,
|
872 |
+
"step": 8000
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 1.72,
|
876 |
+
"eval_exact_match": 53.35,
|
877 |
+
"eval_f1": 74.02883287579421,
|
878 |
+
"step": 8000
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 1.73,
|
882 |
+
"learning_rate": 0.0005,
|
883 |
+
"loss": 1.2532,
|
884 |
+
"step": 8050
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 1.74,
|
888 |
+
"learning_rate": 0.0005,
|
889 |
+
"loss": 1.2607,
|
890 |
+
"step": 8100
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 1.75,
|
894 |
+
"learning_rate": 0.0005,
|
895 |
+
"loss": 1.1885,
|
896 |
+
"step": 8150
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 1.76,
|
900 |
+
"learning_rate": 0.0005,
|
901 |
+
"loss": 1.2169,
|
902 |
+
"step": 8200
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"epoch": 1.76,
|
906 |
+
"eval_exact_match": 54.35,
|
907 |
+
"eval_f1": 74.273655582778,
|
908 |
+
"step": 8200
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 1.78,
|
912 |
+
"learning_rate": 0.0005,
|
913 |
+
"loss": 1.2543,
|
914 |
+
"step": 8250
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 1.79,
|
918 |
+
"learning_rate": 0.0005,
|
919 |
+
"loss": 1.2352,
|
920 |
+
"step": 8300
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 1.8,
|
924 |
+
"learning_rate": 0.0005,
|
925 |
+
"loss": 1.2142,
|
926 |
+
"step": 8350
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 1.81,
|
930 |
+
"learning_rate": 0.0005,
|
931 |
+
"loss": 1.223,
|
932 |
+
"step": 8400
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 1.81,
|
936 |
+
"eval_exact_match": 52.7,
|
937 |
+
"eval_f1": 73.99393883664169,
|
938 |
+
"step": 8400
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 1.82,
|
942 |
+
"learning_rate": 0.0005,
|
943 |
+
"loss": 1.2145,
|
944 |
+
"step": 8450
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 1.83,
|
948 |
+
"learning_rate": 0.0005,
|
949 |
+
"loss": 1.1973,
|
950 |
+
"step": 8500
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 1.84,
|
954 |
+
"learning_rate": 0.0005,
|
955 |
+
"loss": 1.2277,
|
956 |
+
"step": 8550
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 1.85,
|
960 |
+
"learning_rate": 0.0005,
|
961 |
+
"loss": 1.2552,
|
962 |
+
"step": 8600
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 1.85,
|
966 |
+
"eval_exact_match": 53.8,
|
967 |
+
"eval_f1": 74.61861738151018,
|
968 |
+
"step": 8600
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 1.86,
|
972 |
+
"learning_rate": 0.0005,
|
973 |
+
"loss": 1.228,
|
974 |
+
"step": 8650
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 1.87,
|
978 |
+
"learning_rate": 0.0005,
|
979 |
+
"loss": 1.2117,
|
980 |
+
"step": 8700
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 1.88,
|
984 |
+
"learning_rate": 0.0005,
|
985 |
+
"loss": 1.2429,
|
986 |
+
"step": 8750
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 1.89,
|
990 |
+
"learning_rate": 0.0005,
|
991 |
+
"loss": 1.2279,
|
992 |
+
"step": 8800
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 1.89,
|
996 |
+
"eval_exact_match": 54.4,
|
997 |
+
"eval_f1": 74.93345914261613,
|
998 |
+
"step": 8800
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 1.9,
|
1002 |
+
"learning_rate": 0.0005,
|
1003 |
+
"loss": 1.2134,
|
1004 |
+
"step": 8850
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 1.92,
|
1008 |
+
"learning_rate": 0.0005,
|
1009 |
+
"loss": 1.245,
|
1010 |
+
"step": 8900
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1.93,
|
1014 |
+
"learning_rate": 0.0005,
|
1015 |
+
"loss": 1.2179,
|
1016 |
+
"step": 8950
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 1.94,
|
1020 |
+
"learning_rate": 0.0005,
|
1021 |
+
"loss": 1.2006,
|
1022 |
+
"step": 9000
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 1.94,
|
1026 |
+
"eval_exact_match": 55.4,
|
1027 |
+
"eval_f1": 75.75427604493635,
|
1028 |
+
"step": 9000
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 1.95,
|
1032 |
+
"learning_rate": 0.0005,
|
1033 |
+
"loss": 1.2037,
|
1034 |
+
"step": 9050
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 1.96,
|
1038 |
+
"learning_rate": 0.0005,
|
1039 |
+
"loss": 1.1985,
|
1040 |
+
"step": 9100
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 1.97,
|
1044 |
+
"learning_rate": 0.0005,
|
1045 |
+
"loss": 1.2012,
|
1046 |
+
"step": 9150
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 1.98,
|
1050 |
+
"learning_rate": 0.0005,
|
1051 |
+
"loss": 1.2194,
|
1052 |
+
"step": 9200
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1.98,
|
1056 |
+
"eval_exact_match": 54.0,
|
1057 |
+
"eval_f1": 74.89545612203896,
|
1058 |
+
"step": 9200
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 1.99,
|
1062 |
+
"learning_rate": 0.0005,
|
1063 |
+
"loss": 1.2173,
|
1064 |
+
"step": 9250
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 2.0,
|
1068 |
+
"learning_rate": 0.0005,
|
1069 |
+
"loss": 1.2616,
|
1070 |
+
"step": 9300
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 2.01,
|
1074 |
+
"learning_rate": 0.0005,
|
1075 |
+
"loss": 1.1785,
|
1076 |
+
"step": 9350
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 2.02,
|
1080 |
+
"learning_rate": 0.0005,
|
1081 |
+
"loss": 1.1664,
|
1082 |
+
"step": 9400
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 2.02,
|
1086 |
+
"eval_exact_match": 55.2,
|
1087 |
+
"eval_f1": 75.50544659346157,
|
1088 |
+
"step": 9400
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 2.03,
|
1092 |
+
"learning_rate": 0.0005,
|
1093 |
+
"loss": 1.1271,
|
1094 |
+
"step": 9450
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 2.04,
|
1098 |
+
"learning_rate": 0.0005,
|
1099 |
+
"loss": 1.1806,
|
1100 |
+
"step": 9500
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 2.06,
|
1104 |
+
"learning_rate": 0.0005,
|
1105 |
+
"loss": 1.1865,
|
1106 |
+
"step": 9550
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 2.07,
|
1110 |
+
"learning_rate": 0.0005,
|
1111 |
+
"loss": 1.198,
|
1112 |
+
"step": 9600
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 2.07,
|
1116 |
+
"eval_exact_match": 54.65,
|
1117 |
+
"eval_f1": 75.02151439633785,
|
1118 |
+
"step": 9600
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 2.08,
|
1122 |
+
"learning_rate": 0.0005,
|
1123 |
+
"loss": 1.1726,
|
1124 |
+
"step": 9650
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 2.09,
|
1128 |
+
"learning_rate": 0.0005,
|
1129 |
+
"loss": 1.1799,
|
1130 |
+
"step": 9700
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 2.1,
|
1134 |
+
"learning_rate": 0.0005,
|
1135 |
+
"loss": 1.1107,
|
1136 |
+
"step": 9750
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 2.11,
|
1140 |
+
"learning_rate": 0.0005,
|
1141 |
+
"loss": 1.1585,
|
1142 |
+
"step": 9800
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 2.11,
|
1146 |
+
"eval_exact_match": 53.9,
|
1147 |
+
"eval_f1": 74.15646190187827,
|
1148 |
+
"step": 9800
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 2.12,
|
1152 |
+
"learning_rate": 0.0005,
|
1153 |
+
"loss": 1.1436,
|
1154 |
+
"step": 9850
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 2.13,
|
1158 |
+
"learning_rate": 0.0005,
|
1159 |
+
"loss": 1.1806,
|
1160 |
+
"step": 9900
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 2.14,
|
1164 |
+
"learning_rate": 0.0005,
|
1165 |
+
"loss": 1.1444,
|
1166 |
+
"step": 9950
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 2.15,
|
1170 |
+
"learning_rate": 0.0005,
|
1171 |
+
"loss": 1.1738,
|
1172 |
+
"step": 10000
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 2.15,
|
1176 |
+
"eval_exact_match": 54.85,
|
1177 |
+
"eval_f1": 75.11255802008874,
|
1178 |
+
"step": 10000
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 2.16,
|
1182 |
+
"learning_rate": 0.0005,
|
1183 |
+
"loss": 1.1095,
|
1184 |
+
"step": 10050
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 2.17,
|
1188 |
+
"learning_rate": 0.0005,
|
1189 |
+
"loss": 1.1511,
|
1190 |
+
"step": 10100
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 2.18,
|
1194 |
+
"learning_rate": 0.0005,
|
1195 |
+
"loss": 1.1297,
|
1196 |
+
"step": 10150
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 2.2,
|
1200 |
+
"learning_rate": 0.0005,
|
1201 |
+
"loss": 1.1505,
|
1202 |
+
"step": 10200
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 2.2,
|
1206 |
+
"eval_exact_match": 54.85,
|
1207 |
+
"eval_f1": 75.52882358671673,
|
1208 |
+
"step": 10200
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 2.2,
|
1212 |
+
"learning_rate": 5e-05,
|
1213 |
+
"loss": 1.1081,
|
1214 |
+
"step": 10210
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 2.2,
|
1218 |
+
"learning_rate": 5e-05,
|
1219 |
+
"loss": 1.1572,
|
1220 |
+
"step": 10220
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 2.2,
|
1224 |
+
"learning_rate": 5e-05,
|
1225 |
+
"loss": 1.0839,
|
1226 |
+
"step": 10230
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 2.2,
|
1230 |
+
"learning_rate": 5e-05,
|
1231 |
+
"loss": 1.0971,
|
1232 |
+
"step": 10240
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 2.21,
|
1236 |
+
"learning_rate": 5e-05,
|
1237 |
+
"loss": 1.0737,
|
1238 |
+
"step": 10250
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 2.21,
|
1242 |
+
"learning_rate": 5e-05,
|
1243 |
+
"loss": 1.1049,
|
1244 |
+
"step": 10260
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 2.21,
|
1248 |
+
"learning_rate": 5e-05,
|
1249 |
+
"loss": 1.202,
|
1250 |
+
"step": 10270
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"epoch": 2.21,
|
1254 |
+
"learning_rate": 5e-05,
|
1255 |
+
"loss": 1.1848,
|
1256 |
+
"step": 10280
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 2.21,
|
1260 |
+
"learning_rate": 5e-05,
|
1261 |
+
"loss": 1.1095,
|
1262 |
+
"step": 10290
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 2.22,
|
1266 |
+
"learning_rate": 5e-05,
|
1267 |
+
"loss": 1.2268,
|
1268 |
+
"step": 10300
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"epoch": 2.22,
|
1272 |
+
"learning_rate": 5e-05,
|
1273 |
+
"loss": 1.1422,
|
1274 |
+
"step": 10310
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 2.22,
|
1278 |
+
"learning_rate": 5e-05,
|
1279 |
+
"loss": 1.1222,
|
1280 |
+
"step": 10320
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 2.22,
|
1284 |
+
"learning_rate": 5e-05,
|
1285 |
+
"loss": 1.1251,
|
1286 |
+
"step": 10330
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 2.23,
|
1290 |
+
"learning_rate": 5e-05,
|
1291 |
+
"loss": 1.0694,
|
1292 |
+
"step": 10340
|
1293 |
+
},
|
1294 |
+
{
|
1295 |
+
"epoch": 2.23,
|
1296 |
+
"learning_rate": 5e-05,
|
1297 |
+
"loss": 1.1571,
|
1298 |
+
"step": 10350
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 2.23,
|
1302 |
+
"learning_rate": 5e-05,
|
1303 |
+
"loss": 1.1546,
|
1304 |
+
"step": 10360
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 2.23,
|
1308 |
+
"learning_rate": 5e-05,
|
1309 |
+
"loss": 1.2171,
|
1310 |
+
"step": 10370
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"epoch": 2.23,
|
1314 |
+
"learning_rate": 5e-05,
|
1315 |
+
"loss": 1.1283,
|
1316 |
+
"step": 10380
|
1317 |
+
},
|
1318 |
+
{
|
1319 |
+
"epoch": 2.24,
|
1320 |
+
"learning_rate": 5e-05,
|
1321 |
+
"loss": 1.1215,
|
1322 |
+
"step": 10390
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 2.24,
|
1326 |
+
"learning_rate": 5e-05,
|
1327 |
+
"loss": 1.127,
|
1328 |
+
"step": 10400
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 2.24,
|
1332 |
+
"eval_exact_match": 55.35,
|
1333 |
+
"eval_f1": 75.70498337751204,
|
1334 |
+
"step": 10400
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 2.24,
|
1338 |
+
"learning_rate": 5e-05,
|
1339 |
+
"loss": 1.0492,
|
1340 |
+
"step": 10410
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 2.24,
|
1344 |
+
"learning_rate": 5e-05,
|
1345 |
+
"loss": 1.1658,
|
1346 |
+
"step": 10420
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 2.24,
|
1350 |
+
"learning_rate": 5e-05,
|
1351 |
+
"loss": 1.1677,
|
1352 |
+
"step": 10430
|
1353 |
+
},
|
1354 |
+
{
|
1355 |
+
"epoch": 2.25,
|
1356 |
+
"learning_rate": 5e-05,
|
1357 |
+
"loss": 1.1758,
|
1358 |
+
"step": 10440
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 2.25,
|
1362 |
+
"learning_rate": 5e-05,
|
1363 |
+
"loss": 1.1968,
|
1364 |
+
"step": 10450
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 2.25,
|
1368 |
+
"learning_rate": 5e-05,
|
1369 |
+
"loss": 1.1315,
|
1370 |
+
"step": 10460
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 2.25,
|
1374 |
+
"learning_rate": 5e-05,
|
1375 |
+
"loss": 1.1138,
|
1376 |
+
"step": 10470
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"epoch": 2.26,
|
1380 |
+
"learning_rate": 5e-05,
|
1381 |
+
"loss": 1.1375,
|
1382 |
+
"step": 10480
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 2.26,
|
1386 |
+
"learning_rate": 5e-05,
|
1387 |
+
"loss": 1.1892,
|
1388 |
+
"step": 10490
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 2.26,
|
1392 |
+
"learning_rate": 5e-05,
|
1393 |
+
"loss": 1.131,
|
1394 |
+
"step": 10500
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 2.26,
|
1398 |
+
"learning_rate": 5e-05,
|
1399 |
+
"loss": 1.1195,
|
1400 |
+
"step": 10510
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 2.26,
|
1404 |
+
"learning_rate": 5e-05,
|
1405 |
+
"loss": 1.1044,
|
1406 |
+
"step": 10520
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 2.27,
|
1410 |
+
"learning_rate": 5e-05,
|
1411 |
+
"loss": 1.1371,
|
1412 |
+
"step": 10530
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 2.27,
|
1416 |
+
"learning_rate": 5e-05,
|
1417 |
+
"loss": 1.1382,
|
1418 |
+
"step": 10540
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 2.27,
|
1422 |
+
"learning_rate": 5e-05,
|
1423 |
+
"loss": 1.1273,
|
1424 |
+
"step": 10550
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 2.27,
|
1428 |
+
"learning_rate": 5e-05,
|
1429 |
+
"loss": 1.1566,
|
1430 |
+
"step": 10560
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 2.28,
|
1434 |
+
"learning_rate": 5e-05,
|
1435 |
+
"loss": 1.209,
|
1436 |
+
"step": 10570
|
1437 |
+
},
|
1438 |
+
{
|
1439 |
+
"epoch": 2.28,
|
1440 |
+
"learning_rate": 5e-05,
|
1441 |
+
"loss": 1.1336,
|
1442 |
+
"step": 10580
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 2.28,
|
1446 |
+
"learning_rate": 5e-05,
|
1447 |
+
"loss": 1.0522,
|
1448 |
+
"step": 10590
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 2.28,
|
1452 |
+
"learning_rate": 5e-05,
|
1453 |
+
"loss": 1.2019,
|
1454 |
+
"step": 10600
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 2.28,
|
1458 |
+
"eval_exact_match": 55.55,
|
1459 |
+
"eval_f1": 76.02151178378499,
|
1460 |
+
"step": 10600
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 2.28,
|
1464 |
+
"learning_rate": 5e-05,
|
1465 |
+
"loss": 1.1227,
|
1466 |
+
"step": 10610
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 2.29,
|
1470 |
+
"learning_rate": 5e-05,
|
1471 |
+
"loss": 1.2202,
|
1472 |
+
"step": 10620
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 2.29,
|
1476 |
+
"learning_rate": 5e-05,
|
1477 |
+
"loss": 1.0762,
|
1478 |
+
"step": 10630
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 2.29,
|
1482 |
+
"learning_rate": 5e-05,
|
1483 |
+
"loss": 1.2074,
|
1484 |
+
"step": 10640
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 2.29,
|
1488 |
+
"learning_rate": 5e-05,
|
1489 |
+
"loss": 1.1283,
|
1490 |
+
"step": 10650
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 2.29,
|
1494 |
+
"learning_rate": 5e-05,
|
1495 |
+
"loss": 1.1631,
|
1496 |
+
"step": 10660
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 2.3,
|
1500 |
+
"learning_rate": 5e-05,
|
1501 |
+
"loss": 1.0954,
|
1502 |
+
"step": 10670
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 2.3,
|
1506 |
+
"learning_rate": 5e-05,
|
1507 |
+
"loss": 1.2253,
|
1508 |
+
"step": 10680
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 2.3,
|
1512 |
+
"learning_rate": 5e-05,
|
1513 |
+
"loss": 1.1141,
|
1514 |
+
"step": 10690
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 2.3,
|
1518 |
+
"learning_rate": 5e-05,
|
1519 |
+
"loss": 1.2454,
|
1520 |
+
"step": 10700
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 2.31,
|
1524 |
+
"learning_rate": 5e-05,
|
1525 |
+
"loss": 1.0997,
|
1526 |
+
"step": 10710
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 2.31,
|
1530 |
+
"learning_rate": 5e-05,
|
1531 |
+
"loss": 1.1408,
|
1532 |
+
"step": 10720
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 2.31,
|
1536 |
+
"learning_rate": 5e-05,
|
1537 |
+
"loss": 1.098,
|
1538 |
+
"step": 10730
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 2.31,
|
1542 |
+
"learning_rate": 5e-05,
|
1543 |
+
"loss": 1.2331,
|
1544 |
+
"step": 10740
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 2.31,
|
1548 |
+
"learning_rate": 5e-05,
|
1549 |
+
"loss": 1.1006,
|
1550 |
+
"step": 10750
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 2.32,
|
1554 |
+
"learning_rate": 5e-05,
|
1555 |
+
"loss": 1.1057,
|
1556 |
+
"step": 10760
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 2.32,
|
1560 |
+
"learning_rate": 5e-05,
|
1561 |
+
"loss": 1.2075,
|
1562 |
+
"step": 10770
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 2.32,
|
1566 |
+
"learning_rate": 5e-05,
|
1567 |
+
"loss": 1.0302,
|
1568 |
+
"step": 10780
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 2.32,
|
1572 |
+
"learning_rate": 5e-05,
|
1573 |
+
"loss": 1.1484,
|
1574 |
+
"step": 10790
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 2.32,
|
1578 |
+
"learning_rate": 5e-05,
|
1579 |
+
"loss": 1.1272,
|
1580 |
+
"step": 10800
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 2.32,
|
1584 |
+
"eval_exact_match": 55.6,
|
1585 |
+
"eval_f1": 75.90896740958824,
|
1586 |
+
"step": 10800
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 2.33,
|
1590 |
+
"learning_rate": 5e-05,
|
1591 |
+
"loss": 1.1306,
|
1592 |
+
"step": 10810
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 2.33,
|
1596 |
+
"learning_rate": 5e-05,
|
1597 |
+
"loss": 1.1356,
|
1598 |
+
"step": 10820
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 2.33,
|
1602 |
+
"learning_rate": 5e-05,
|
1603 |
+
"loss": 1.1776,
|
1604 |
+
"step": 10830
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 2.33,
|
1608 |
+
"learning_rate": 5e-05,
|
1609 |
+
"loss": 1.1216,
|
1610 |
+
"step": 10840
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 2.34,
|
1614 |
+
"learning_rate": 5e-05,
|
1615 |
+
"loss": 1.1211,
|
1616 |
+
"step": 10850
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 2.34,
|
1620 |
+
"learning_rate": 5e-05,
|
1621 |
+
"loss": 1.2693,
|
1622 |
+
"step": 10860
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 2.34,
|
1626 |
+
"learning_rate": 5e-05,
|
1627 |
+
"loss": 1.1473,
|
1628 |
+
"step": 10870
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 2.34,
|
1632 |
+
"learning_rate": 5e-05,
|
1633 |
+
"loss": 1.0641,
|
1634 |
+
"step": 10880
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 2.34,
|
1638 |
+
"learning_rate": 5e-05,
|
1639 |
+
"loss": 1.2424,
|
1640 |
+
"step": 10890
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 2.35,
|
1644 |
+
"learning_rate": 5e-05,
|
1645 |
+
"loss": 1.1371,
|
1646 |
+
"step": 10900
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 2.35,
|
1650 |
+
"learning_rate": 5e-05,
|
1651 |
+
"loss": 1.1217,
|
1652 |
+
"step": 10910
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 2.35,
|
1656 |
+
"learning_rate": 5e-05,
|
1657 |
+
"loss": 1.2007,
|
1658 |
+
"step": 10920
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 2.35,
|
1662 |
+
"learning_rate": 5e-05,
|
1663 |
+
"loss": 1.1501,
|
1664 |
+
"step": 10930
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 2.35,
|
1668 |
+
"learning_rate": 5e-05,
|
1669 |
+
"loss": 1.1135,
|
1670 |
+
"step": 10940
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 2.36,
|
1674 |
+
"learning_rate": 5e-05,
|
1675 |
+
"loss": 1.137,
|
1676 |
+
"step": 10950
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 2.36,
|
1680 |
+
"learning_rate": 5e-05,
|
1681 |
+
"loss": 1.1422,
|
1682 |
+
"step": 10960
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 2.36,
|
1686 |
+
"learning_rate": 5e-05,
|
1687 |
+
"loss": 1.1248,
|
1688 |
+
"step": 10970
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 2.36,
|
1692 |
+
"learning_rate": 5e-05,
|
1693 |
+
"loss": 1.1899,
|
1694 |
+
"step": 10980
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 2.37,
|
1698 |
+
"learning_rate": 5e-05,
|
1699 |
+
"loss": 1.102,
|
1700 |
+
"step": 10990
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 2.37,
|
1704 |
+
"learning_rate": 5e-05,
|
1705 |
+
"loss": 1.1877,
|
1706 |
+
"step": 11000
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 2.37,
|
1710 |
+
"eval_exact_match": 55.95,
|
1711 |
+
"eval_f1": 76.45373153349801,
|
1712 |
+
"step": 11000
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 2.37,
|
1716 |
+
"learning_rate": 5e-05,
|
1717 |
+
"loss": 1.1474,
|
1718 |
+
"step": 11010
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 2.37,
|
1722 |
+
"learning_rate": 5e-05,
|
1723 |
+
"loss": 1.1536,
|
1724 |
+
"step": 11020
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 2.37,
|
1728 |
+
"learning_rate": 5e-05,
|
1729 |
+
"loss": 1.2218,
|
1730 |
+
"step": 11030
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 2.38,
|
1734 |
+
"learning_rate": 5e-05,
|
1735 |
+
"loss": 1.0967,
|
1736 |
+
"step": 11040
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 2.38,
|
1740 |
+
"learning_rate": 5e-05,
|
1741 |
+
"loss": 1.1305,
|
1742 |
+
"step": 11050
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 2.38,
|
1746 |
+
"learning_rate": 5e-05,
|
1747 |
+
"loss": 1.087,
|
1748 |
+
"step": 11060
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 2.38,
|
1752 |
+
"learning_rate": 5e-05,
|
1753 |
+
"loss": 1.0908,
|
1754 |
+
"step": 11070
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 2.38,
|
1758 |
+
"learning_rate": 5e-05,
|
1759 |
+
"loss": 1.0134,
|
1760 |
+
"step": 11080
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 2.39,
|
1764 |
+
"learning_rate": 5e-05,
|
1765 |
+
"loss": 1.0997,
|
1766 |
+
"step": 11090
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 2.39,
|
1770 |
+
"learning_rate": 5e-05,
|
1771 |
+
"loss": 1.066,
|
1772 |
+
"step": 11100
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"epoch": 2.39,
|
1776 |
+
"learning_rate": 5e-05,
|
1777 |
+
"loss": 1.2601,
|
1778 |
+
"step": 11110
|
1779 |
+
},
|
1780 |
+
{
|
1781 |
+
"epoch": 2.39,
|
1782 |
+
"learning_rate": 5e-05,
|
1783 |
+
"loss": 1.1191,
|
1784 |
+
"step": 11120
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"epoch": 2.4,
|
1788 |
+
"learning_rate": 5e-05,
|
1789 |
+
"loss": 1.1025,
|
1790 |
+
"step": 11130
|
1791 |
+
},
|
1792 |
+
{
|
1793 |
+
"epoch": 2.4,
|
1794 |
+
"learning_rate": 5e-05,
|
1795 |
+
"loss": 1.112,
|
1796 |
+
"step": 11140
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"epoch": 2.4,
|
1800 |
+
"learning_rate": 5e-05,
|
1801 |
+
"loss": 1.0794,
|
1802 |
+
"step": 11150
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 2.4,
|
1806 |
+
"learning_rate": 5e-05,
|
1807 |
+
"loss": 1.112,
|
1808 |
+
"step": 11160
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 2.4,
|
1812 |
+
"learning_rate": 5e-05,
|
1813 |
+
"loss": 1.1411,
|
1814 |
+
"step": 11170
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"epoch": 2.41,
|
1818 |
+
"learning_rate": 5e-05,
|
1819 |
+
"loss": 1.1118,
|
1820 |
+
"step": 11180
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 2.41,
|
1824 |
+
"learning_rate": 5e-05,
|
1825 |
+
"loss": 1.1464,
|
1826 |
+
"step": 11190
|
1827 |
+
},
|
1828 |
+
{
|
1829 |
+
"epoch": 2.41,
|
1830 |
+
"learning_rate": 5e-05,
|
1831 |
+
"loss": 1.1496,
|
1832 |
+
"step": 11200
|
1833 |
+
},
|
1834 |
+
{
|
1835 |
+
"epoch": 2.41,
|
1836 |
+
"eval_exact_match": 56.15,
|
1837 |
+
"eval_f1": 76.4356306603872,
|
1838 |
+
"step": 11200
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 2.41,
|
1842 |
+
"learning_rate": 5e-05,
|
1843 |
+
"loss": 1.1588,
|
1844 |
+
"step": 11210
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 2.41,
|
1848 |
+
"learning_rate": 5e-05,
|
1849 |
+
"loss": 1.1369,
|
1850 |
+
"step": 11220
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 2.42,
|
1854 |
+
"learning_rate": 5e-05,
|
1855 |
+
"loss": 1.1026,
|
1856 |
+
"step": 11230
|
1857 |
+
},
|
1858 |
+
{
|
1859 |
+
"epoch": 2.42,
|
1860 |
+
"learning_rate": 5e-05,
|
1861 |
+
"loss": 1.1764,
|
1862 |
+
"step": 11240
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 2.42,
|
1866 |
+
"learning_rate": 5e-05,
|
1867 |
+
"loss": 1.1449,
|
1868 |
+
"step": 11250
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"epoch": 2.42,
|
1872 |
+
"learning_rate": 5e-05,
|
1873 |
+
"loss": 1.1712,
|
1874 |
+
"step": 11260
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 2.43,
|
1878 |
+
"learning_rate": 5e-05,
|
1879 |
+
"loss": 1.0465,
|
1880 |
+
"step": 11270
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 2.43,
|
1884 |
+
"learning_rate": 5e-05,
|
1885 |
+
"loss": 1.1362,
|
1886 |
+
"step": 11280
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 2.43,
|
1890 |
+
"learning_rate": 5e-05,
|
1891 |
+
"loss": 1.1022,
|
1892 |
+
"step": 11290
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 2.43,
|
1896 |
+
"learning_rate": 5e-05,
|
1897 |
+
"loss": 1.1401,
|
1898 |
+
"step": 11300
|
1899 |
+
},
|
1900 |
+
{
|
1901 |
+
"epoch": 2.43,
|
1902 |
+
"learning_rate": 5e-05,
|
1903 |
+
"loss": 1.0913,
|
1904 |
+
"step": 11310
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 2.44,
|
1908 |
+
"learning_rate": 5e-05,
|
1909 |
+
"loss": 1.1922,
|
1910 |
+
"step": 11320
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 2.44,
|
1914 |
+
"learning_rate": 5e-05,
|
1915 |
+
"loss": 1.101,
|
1916 |
+
"step": 11330
|
1917 |
+
},
|
1918 |
+
{
|
1919 |
+
"epoch": 2.44,
|
1920 |
+
"learning_rate": 5e-05,
|
1921 |
+
"loss": 1.0261,
|
1922 |
+
"step": 11340
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 2.44,
|
1926 |
+
"learning_rate": 5e-05,
|
1927 |
+
"loss": 1.1109,
|
1928 |
+
"step": 11350
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 2.45,
|
1932 |
+
"learning_rate": 5e-05,
|
1933 |
+
"loss": 1.0958,
|
1934 |
+
"step": 11360
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 2.45,
|
1938 |
+
"learning_rate": 5e-05,
|
1939 |
+
"loss": 1.027,
|
1940 |
+
"step": 11370
|
1941 |
+
},
|
1942 |
+
{
|
1943 |
+
"epoch": 2.45,
|
1944 |
+
"learning_rate": 5e-05,
|
1945 |
+
"loss": 1.117,
|
1946 |
+
"step": 11380
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 2.45,
|
1950 |
+
"learning_rate": 5e-05,
|
1951 |
+
"loss": 1.1295,
|
1952 |
+
"step": 11390
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"epoch": 2.45,
|
1956 |
+
"learning_rate": 5e-05,
|
1957 |
+
"loss": 1.1344,
|
1958 |
+
"step": 11400
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 2.45,
|
1962 |
+
"eval_exact_match": 56.45,
|
1963 |
+
"eval_f1": 76.81870981288014,
|
1964 |
+
"step": 11400
|
1965 |
+
}
|
1966 |
+
],
|
1967 |
+
"max_steps": 92920,
|
1968 |
+
"num_train_epochs": 20,
|
1969 |
+
"total_flos": 3.858021871727411e+17,
|
1970 |
+
"trial_name": null,
|
1971 |
+
"trial_params": null
|
1972 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a786dd68f2e8e10a738c3db218d056e17d76ec9e58bf6cc1a3e984cb86422ae3
|
3 |
+
size 4591
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
4 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
5 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
6 |
+
# application.
|
7 |
+
#
|
8 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
9 |
+
|
10 |
+
import argparse
|
11 |
+
import torch
|
12 |
+
import glob
|
13 |
+
import math
|
14 |
+
import os
|
15 |
+
import re
|
16 |
+
from collections import OrderedDict
|
17 |
+
|
18 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
19 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
20 |
+
from deepspeed.utils import logger
|
21 |
+
from deepspeed.checkpoint.constants import (DS_VERSION,
|
22 |
+
OPTIMIZER_STATE_DICT,
|
23 |
+
SINGLE_PARTITION_OF_FP32_GROUPS,
|
24 |
+
FP32_FLAT_GROUPS,
|
25 |
+
ZERO_STAGE,
|
26 |
+
PARTITION_COUNT,
|
27 |
+
PARAM_SHAPES,
|
28 |
+
BUFFER_NAMES)
|
29 |
+
|
30 |
+
debug = 0
|
31 |
+
|
32 |
+
# load to cpu
|
33 |
+
device = torch.device('cpu')
|
34 |
+
|
35 |
+
|
36 |
+
def atoi(text):
|
37 |
+
return int(text) if text.isdigit() else text
|
38 |
+
|
39 |
+
|
40 |
+
def natural_keys(text):
|
41 |
+
'''
|
42 |
+
alist.sort(key=natural_keys) sorts in human order
|
43 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
44 |
+
(See Toothy's implementation in the comments)
|
45 |
+
'''
|
46 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
47 |
+
|
48 |
+
|
49 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
50 |
+
if not os.path.isdir(checkpoint_dir):
|
51 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
52 |
+
|
53 |
+
# there should be only one file
|
54 |
+
if zero_stage == 2:
|
55 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
56 |
+
elif zero_stage == 3:
|
57 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
58 |
+
|
59 |
+
if not os.path.exists(file):
|
60 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
61 |
+
|
62 |
+
return file
|
63 |
+
|
64 |
+
|
65 |
+
def get_optim_files(checkpoint_dir):
|
66 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
67 |
+
optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
|
68 |
+
"*_optim_states.pt")),
|
69 |
+
key=natural_keys)
|
70 |
+
|
71 |
+
if len(optim_files) == 0:
|
72 |
+
raise FileNotFoundError(
|
73 |
+
f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
|
74 |
+
|
75 |
+
return optim_files
|
76 |
+
|
77 |
+
|
78 |
+
def parse_model_state(file):
|
79 |
+
state_dict = torch.load(file, map_location=device)
|
80 |
+
|
81 |
+
if BUFFER_NAMES not in state_dict:
|
82 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
83 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
84 |
+
if debug:
|
85 |
+
print("Found buffers:", buffer_names)
|
86 |
+
|
87 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
88 |
+
buffers = {
|
89 |
+
k: v.float()
|
90 |
+
for k,
|
91 |
+
v in state_dict["module"].items() if k in buffer_names
|
92 |
+
}
|
93 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
94 |
+
|
95 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
96 |
+
|
97 |
+
return buffers, param_shapes, ds_version
|
98 |
+
|
99 |
+
|
100 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
101 |
+
|
102 |
+
total_files = len(files)
|
103 |
+
state_dicts = []
|
104 |
+
for f in files:
|
105 |
+
state_dicts.append(torch.load(f, map_location=device))
|
106 |
+
|
107 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
108 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
109 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
110 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
111 |
+
|
112 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
113 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
114 |
+
# use the max of the partition_count to get the dp world_size.
|
115 |
+
|
116 |
+
if type(world_size) is list:
|
117 |
+
world_size = max(world_size)
|
118 |
+
|
119 |
+
if world_size != total_files:
|
120 |
+
raise ValueError(
|
121 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
122 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
123 |
+
)
|
124 |
+
|
125 |
+
# the groups are named differently in each stage
|
126 |
+
if zero_stage == 2:
|
127 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
128 |
+
elif zero_stage == 3:
|
129 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
130 |
+
else:
|
131 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
132 |
+
|
133 |
+
if zero_stage == 2:
|
134 |
+
fp32_flat_groups = [
|
135 |
+
state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
|
136 |
+
for i in range(len(state_dicts))
|
137 |
+
]
|
138 |
+
elif zero_stage == 3:
|
139 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
140 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
141 |
+
#
|
142 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
143 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
144 |
+
|
145 |
+
fp32_flat_groups = [
|
146 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
|
147 |
+
0) for i in range(len(state_dicts))
|
148 |
+
]
|
149 |
+
|
150 |
+
return zero_stage, world_size, fp32_flat_groups
|
151 |
+
|
152 |
+
|
153 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
154 |
+
"""
|
155 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
156 |
+
|
157 |
+
Args:
|
158 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
159 |
+
|
160 |
+
"""
|
161 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
162 |
+
|
163 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
164 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
165 |
+
print(
|
166 |
+
f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
167 |
+
|
168 |
+
model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
|
169 |
+
buffers, param_shapes, ds_version = parse_model_state(model_file)
|
170 |
+
print(f'Parsing checkpoint created by deepspeed=={ds_version}')
|
171 |
+
|
172 |
+
if zero_stage == 2:
|
173 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
174 |
+
param_shapes,
|
175 |
+
fp32_flat_groups,
|
176 |
+
buffers)
|
177 |
+
elif zero_stage == 3:
|
178 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
179 |
+
param_shapes,
|
180 |
+
fp32_flat_groups,
|
181 |
+
buffers)
|
182 |
+
|
183 |
+
|
184 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
185 |
+
param_shapes,
|
186 |
+
fp32_flat_groups,
|
187 |
+
buffers):
|
188 |
+
|
189 |
+
# Reconstruction protocol:
|
190 |
+
#
|
191 |
+
# XXX: document this
|
192 |
+
|
193 |
+
if debug:
|
194 |
+
for i in range(world_size):
|
195 |
+
for j in range(len(fp32_flat_groups[0])):
|
196 |
+
print(
|
197 |
+
f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
198 |
+
|
199 |
+
# XXX: memory usage doubles here (zero2)
|
200 |
+
num_param_groups = len(fp32_flat_groups[0])
|
201 |
+
merged_single_partition_of_fp32_groups = []
|
202 |
+
for i in range(num_param_groups):
|
203 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
204 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
205 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
206 |
+
avail_numel = sum([
|
207 |
+
full_single_fp32_vector.numel()
|
208 |
+
for full_single_fp32_vector in merged_single_partition_of_fp32_groups
|
209 |
+
])
|
210 |
+
|
211 |
+
if debug:
|
212 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
213 |
+
wanted_numel = sum(
|
214 |
+
[sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
215 |
+
# not asserting if there is a mismatch due to possible padding
|
216 |
+
print(f"Have {avail_numel} numels to process.")
|
217 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
218 |
+
|
219 |
+
state_dict = OrderedDict()
|
220 |
+
|
221 |
+
# buffers
|
222 |
+
state_dict.update(buffers)
|
223 |
+
if debug:
|
224 |
+
print(f"added {len(buffers)} buffers")
|
225 |
+
|
226 |
+
# params
|
227 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
228 |
+
# out-of-core computing solution
|
229 |
+
total_numel = 0
|
230 |
+
total_params = 0
|
231 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
232 |
+
offset = 0
|
233 |
+
avail_numel = full_single_fp32_vector.numel()
|
234 |
+
for name, shape in shapes.items():
|
235 |
+
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
total_params += 1
|
239 |
+
|
240 |
+
if debug:
|
241 |
+
print(
|
242 |
+
f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
|
243 |
+
)
|
244 |
+
state_dict[name] = full_single_fp32_vector.narrow(
|
245 |
+
0,
|
246 |
+
offset,
|
247 |
+
unpartitioned_numel).view(shape)
|
248 |
+
offset += unpartitioned_numel
|
249 |
+
|
250 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
251 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
252 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
253 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
254 |
+
align_to = 2 * world_size
|
255 |
+
|
256 |
+
def zero2_align(x):
|
257 |
+
return align_to * math.ceil(x / align_to)
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
261 |
+
|
262 |
+
offset = zero2_align(offset)
|
263 |
+
avail_numel = zero2_align(avail_numel)
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
267 |
+
|
268 |
+
# Sanity check
|
269 |
+
if offset != avail_numel:
|
270 |
+
raise ValueError(
|
271 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
272 |
+
|
273 |
+
print(
|
274 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
275 |
+
)
|
276 |
+
|
277 |
+
return state_dict
|
278 |
+
|
279 |
+
|
280 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
281 |
+
remainder = unpartitioned_numel % world_size
|
282 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
283 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
284 |
+
return partitioned_numel, padding_numel
|
285 |
+
|
286 |
+
|
287 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
288 |
+
param_shapes,
|
289 |
+
fp32_flat_groups,
|
290 |
+
buffers):
|
291 |
+
|
292 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
293 |
+
# param, re-consolidating each param, while dealing with padding if any
|
294 |
+
|
295 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
296 |
+
# merge list of dicts, preserving order
|
297 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
for i in range(world_size):
|
301 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
302 |
+
|
303 |
+
wanted_params = len(param_shapes)
|
304 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
305 |
+
# not asserting if there is a mismatch due to possible padding
|
306 |
+
print(f"Have {avail_numel} numels to process.")
|
307 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
308 |
+
|
309 |
+
state_dict = OrderedDict()
|
310 |
+
|
311 |
+
# buffers
|
312 |
+
state_dict.update(buffers)
|
313 |
+
if debug:
|
314 |
+
print(f"added {len(buffers)} buffers")
|
315 |
+
|
316 |
+
# params
|
317 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
318 |
+
# out-of-core computing solution
|
319 |
+
offset = 0
|
320 |
+
total_numel = 0
|
321 |
+
total_params = 0
|
322 |
+
for name, shape in param_shapes.items():
|
323 |
+
|
324 |
+
unpartitioned_numel = shape.numel()
|
325 |
+
total_numel += unpartitioned_numel
|
326 |
+
total_params += 1
|
327 |
+
|
328 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
329 |
+
|
330 |
+
if debug:
|
331 |
+
print(
|
332 |
+
f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
333 |
+
)
|
334 |
+
|
335 |
+
# XXX: memory usage doubles here
|
336 |
+
state_dict[name] = torch.cat(
|
337 |
+
tuple(fp32_flat_groups[i].narrow(0,
|
338 |
+
offset,
|
339 |
+
partitioned_numel)
|
340 |
+
for i in range(world_size)),
|
341 |
+
0).narrow(0,
|
342 |
+
0,
|
343 |
+
unpartitioned_numel).view(shape)
|
344 |
+
offset += partitioned_numel
|
345 |
+
|
346 |
+
offset *= world_size
|
347 |
+
|
348 |
+
# Sanity check
|
349 |
+
if offset != avail_numel:
|
350 |
+
raise ValueError(
|
351 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
352 |
+
|
353 |
+
print(
|
354 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
355 |
+
)
|
356 |
+
|
357 |
+
return state_dict
|
358 |
+
|
359 |
+
|
360 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
361 |
+
"""
|
362 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
363 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
364 |
+
via a model hub.
|
365 |
+
|
366 |
+
Args:
|
367 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
368 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
369 |
+
|
370 |
+
Returns:
|
371 |
+
- pytorch ``state_dict``
|
372 |
+
|
373 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
374 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
375 |
+
the checkpoint.
|
376 |
+
|
377 |
+
A typical usage might be ::
|
378 |
+
|
379 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
380 |
+
# do the training and checkpoint saving
|
381 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
382 |
+
model = model.cpu() # move to cpu
|
383 |
+
model.load_state_dict(state_dict)
|
384 |
+
# submit to model hub or save the model to share with others
|
385 |
+
|
386 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
387 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
388 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
389 |
+
|
390 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
391 |
+
|
392 |
+
"""
|
393 |
+
if tag is None:
|
394 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
395 |
+
if os.path.isfile(latest_path):
|
396 |
+
with open(latest_path, 'r') as fd:
|
397 |
+
tag = fd.read().strip()
|
398 |
+
else:
|
399 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
400 |
+
|
401 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
402 |
+
|
403 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
404 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
405 |
+
|
406 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
407 |
+
|
408 |
+
|
409 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
410 |
+
"""
|
411 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
412 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
413 |
+
|
414 |
+
Args:
|
415 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
416 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
417 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
418 |
+
"""
|
419 |
+
|
420 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
421 |
+
print(f"Saving fp32 state dict to {output_file}")
|
422 |
+
torch.save(state_dict, output_file)
|
423 |
+
|
424 |
+
|
425 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
426 |
+
"""
|
427 |
+
1. Put the provided model to cpu
|
428 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
429 |
+
3. Load it into the provided model
|
430 |
+
|
431 |
+
Args:
|
432 |
+
- ``model``: the model object to update
|
433 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
434 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
435 |
+
|
436 |
+
Returns:
|
437 |
+
- ``model`: modified model
|
438 |
+
|
439 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
440 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
441 |
+
conveniently placed for you in the checkpoint folder.
|
442 |
+
|
443 |
+
A typical usage might be ::
|
444 |
+
|
445 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
446 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
447 |
+
# submit to model hub or save the model to share with others
|
448 |
+
|
449 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
450 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
451 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
452 |
+
|
453 |
+
"""
|
454 |
+
logger.info(f"Extracting fp32 weights")
|
455 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
456 |
+
|
457 |
+
logger.info(f"Overwriting model with fp32 weights")
|
458 |
+
model = model.cpu()
|
459 |
+
model.load_state_dict(state_dict, strict=False)
|
460 |
+
|
461 |
+
return model
|
462 |
+
|
463 |
+
|
464 |
+
if __name__ == "__main__":
|
465 |
+
|
466 |
+
parser = argparse.ArgumentParser()
|
467 |
+
parser.add_argument(
|
468 |
+
"checkpoint_dir",
|
469 |
+
type=str,
|
470 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
471 |
+
parser.add_argument(
|
472 |
+
"output_file",
|
473 |
+
type=str,
|
474 |
+
help=
|
475 |
+
"path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
|
476 |
+
)
|
477 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
478 |
+
args = parser.parse_args()
|
479 |
+
|
480 |
+
debug = args.debug
|
481 |
+
|
482 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|