Release model
Browse files- inference.ipynb +167 -0
- input_images/.DS_Store +0 -0
- input_images/img0027_0000.nii.gz +3 -0
- nnUNet_weights/dataset.json +23 -0
- nnUNet_weights/fold_0/checkpoint_best.pth +3 -0
- nnUNet_weights/fold_1/checkpoint_best.pth +3 -0
- nnUNet_weights/fold_2/checkpoint_best.pth +3 -0
- nnUNet_weights/fold_3/checkpoint_best.pth +3 -0
- nnUNet_weights/fold_4/checkpoint_best.pth +3 -0
- nnUNet_weights/plans.json +294 -0
- output_images/dataset.json +22 -0
- output_images/img0027_gt.nii.gz +3 -0
- output_images/img0027_pred.nii.gz +3 -0
- output_images/plans.json +294 -0
- output_images/predict_from_raw_data_args.json +17 -0
inference.ipynb
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 6,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import torch\n",
|
10 |
+
"from batchgenerators.utilities.file_and_folder_operations import join\n",
|
11 |
+
"from nnunetv2.inference.predict_from_raw_data import nnUNetPredictor\n",
|
12 |
+
"from nnunetv2.imageio.simpleitk_reader_writer import SimpleITKIO"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "code",
|
17 |
+
"execution_count": 2,
|
18 |
+
"metadata": {},
|
19 |
+
"outputs": [],
|
20 |
+
"source": [
|
21 |
+
"# instantiate the nnUNetPredictor\n",
|
22 |
+
"predictor = nnUNetPredictor(\n",
|
23 |
+
" tile_step_size=0.5, # 50% overlap between adjacent tiles\n",
|
24 |
+
" use_gaussian=True, # Apply Gaussian weighting to smooth tile edges\n",
|
25 |
+
" use_mirroring=True, # Enable test-time augmentation via flipping\n",
|
26 |
+
" perform_everything_on_device=True, # Perform all steps (preprocessing, prediction) on GPU\n",
|
27 |
+
" device=torch.device('cuda', 0), # Use the first GPU (cuda:0) for computations\n",
|
28 |
+
" verbose=False, # Disable detailed output logs during prediction\n",
|
29 |
+
" verbose_preprocessing=False, # Disable logs during preprocessing\n",
|
30 |
+
" allow_tqdm=True # Show progress bar during long tasks\n",
|
31 |
+
")"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "code",
|
36 |
+
"execution_count": null,
|
37 |
+
"metadata": {},
|
38 |
+
"outputs": [],
|
39 |
+
"source": [
|
40 |
+
"# initializes the network architecture, loads the checkpoint\n",
|
41 |
+
"predictor.initialize_from_trained_model_folder(\n",
|
42 |
+
" \"./nnUNet_weights\", # Path to the model weights\n",
|
43 |
+
" use_folds=(0,1,2,3,4), # Use all 5 folds (for cross-validation)\n",
|
44 |
+
" checkpoint_name='checkpoint_best.pth', # File name of model checkpoints (all must be equal)\n",
|
45 |
+
")"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"execution_count": null,
|
51 |
+
"metadata": {},
|
52 |
+
"outputs": [],
|
53 |
+
"source": [
|
54 |
+
"# variant 1: give input and output folders\n",
|
55 |
+
"# Note: if specific file path is provided, no need for \"_0000.nii.gz\" file ending;\n",
|
56 |
+
"# Note: if input folder path is provided, the input files MUST include \"_0000.nii.gz\" ending.\n",
|
57 |
+
"predictor.predict_from_files(\n",
|
58 |
+
" \"./input_images\", # Input folder with image files\n",
|
59 |
+
" \"./output_images\", # Output folder for predictions\n",
|
60 |
+
" save_probabilities=False, # Do not save the predicted probabilities, just the segmentation\n",
|
61 |
+
" overwrite=False, # Do not overwrite existing results in the output folder\n",
|
62 |
+
" num_processes_preprocessing=2, # Number of processes for preprocessing\n",
|
63 |
+
" num_processes_segmentation_export=2, # Number of processes for exporting the segmentation\n",
|
64 |
+
" folder_with_segs_from_prev_stage=None, # No previous stage segmentations used\n",
|
65 |
+
" num_parts=1, # Number of parts to divide the prediction task into\n",
|
66 |
+
" part_id=0 # ID of the current part (only one part in this case)\n",
|
67 |
+
")"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"cell_type": "code",
|
72 |
+
"execution_count": null,
|
73 |
+
"metadata": {},
|
74 |
+
"outputs": [],
|
75 |
+
"source": [
|
76 |
+
"# variant 2.1, use list of files as inputs. Note how we use nested lists!!!\n",
|
77 |
+
"indir = \"./input_images\" # Input folder with image files\n",
|
78 |
+
"outdir = \"./output_images\" # Output folder for predictions\n",
|
79 |
+
"predictor.predict_from_files(\n",
|
80 |
+
" [[join(indir, 'img0027_0000.nii.gz')]],\n",
|
81 |
+
" [join(outdir, 'img0027_pred.nii.gz')],\n",
|
82 |
+
" save_probabilities=False,\n",
|
83 |
+
" overwrite=False,\n",
|
84 |
+
" num_processes_preprocessing=2,\n",
|
85 |
+
" num_processes_segmentation_export=2,\n",
|
86 |
+
" folder_with_segs_from_prev_stage=None,\n",
|
87 |
+
" num_parts=1,\n",
|
88 |
+
" part_id=0\n",
|
89 |
+
")"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"execution_count": null,
|
95 |
+
"metadata": {},
|
96 |
+
"outputs": [],
|
97 |
+
"source": [
|
98 |
+
"# variant 2.2, returns segmentations (The predicted segmentations will be returned if the output_files are not specified)\n",
|
99 |
+
"indir = \"./input_images\"\n",
|
100 |
+
"predicted_segmentations = predictor.predict_from_files(\n",
|
101 |
+
" [[join(indir, 'img0027_0000.nii.gz')], [join(indir, 'img0027_0000.nii.gz')]], # Example of several input images with repeated sample\n",
|
102 |
+
" None,\n",
|
103 |
+
" save_probabilities=False,\n",
|
104 |
+
" overwrite=True,\n",
|
105 |
+
" num_processes_preprocessing=2,\n",
|
106 |
+
" num_processes_segmentation_export=2,\n",
|
107 |
+
" folder_with_segs_from_prev_stage=None,\n",
|
108 |
+
" num_parts=1,\n",
|
109 |
+
" part_id=0)"
|
110 |
+
]
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"cell_type": "code",
|
114 |
+
"execution_count": null,
|
115 |
+
"metadata": {},
|
116 |
+
"outputs": [],
|
117 |
+
"source": [
|
118 |
+
"# variant 3.1, predict a list of numpy arrays\n",
|
119 |
+
"indir = \"./input_images\"\n",
|
120 |
+
"img, props = SimpleITKIO().read_images([join(indir, 'img0027_0000.nii.gz')])\n",
|
121 |
+
"\n",
|
122 |
+
"# we do not set output files so that the segmentations will be returned. You can of course also specify output\n",
|
123 |
+
"# files instead (no return value on that case)\n",
|
124 |
+
"ret = predictor.predict_from_list_of_npy_arrays(\n",
|
125 |
+
" [img,],\n",
|
126 |
+
" None,\n",
|
127 |
+
" [props,],\n",
|
128 |
+
" None,\n",
|
129 |
+
" 2,\n",
|
130 |
+
" save_probabilities=False,\n",
|
131 |
+
" num_processes_segmentation_export=2)"
|
132 |
+
]
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"cell_type": "code",
|
136 |
+
"execution_count": null,
|
137 |
+
"metadata": {},
|
138 |
+
"outputs": [],
|
139 |
+
"source": [
|
140 |
+
"# variant 3.2, predict a single numpy array\n",
|
141 |
+
"img, props = SimpleITKIO().read_images([\"./input_images/img0027_0000.nii.gz\"])\n",
|
142 |
+
"ret = predictor.predict_single_npy_array(img, props, None, None, False)"
|
143 |
+
]
|
144 |
+
}
|
145 |
+
],
|
146 |
+
"metadata": {
|
147 |
+
"kernelspec": {
|
148 |
+
"display_name": "Python 3 (ipykernel)",
|
149 |
+
"language": "python",
|
150 |
+
"name": "python3"
|
151 |
+
},
|
152 |
+
"language_info": {
|
153 |
+
"codemirror_mode": {
|
154 |
+
"name": "ipython",
|
155 |
+
"version": 3
|
156 |
+
},
|
157 |
+
"file_extension": ".py",
|
158 |
+
"mimetype": "text/x-python",
|
159 |
+
"name": "python",
|
160 |
+
"nbconvert_exporter": "python",
|
161 |
+
"pygments_lexer": "ipython3",
|
162 |
+
"version": "3.10.13"
|
163 |
+
}
|
164 |
+
},
|
165 |
+
"nbformat": 4,
|
166 |
+
"nbformat_minor": 4
|
167 |
+
}
|
input_images/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
input_images/img0027_0000.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed3f94687c40917563582fb3194d6842aaced08a7126a143e0cd615c29d3ac69
|
3 |
+
size 22328379
|
nnUNet_weights/dataset.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
{
|
3 |
+
"channel_names": {
|
4 |
+
"0": "CT"
|
5 |
+
},
|
6 |
+
"labels": {
|
7 |
+
"background": 0,
|
8 |
+
"spleen": 1,
|
9 |
+
"right_kidney": 2,
|
10 |
+
"left_kidney": 3,
|
11 |
+
"gallbladder": 4,
|
12 |
+
"esophagus": 5,
|
13 |
+
"liver": 6,
|
14 |
+
"stomach": 7,
|
15 |
+
"aorta": 8,
|
16 |
+
"inferior_vena_cava": 9,
|
17 |
+
"pancreas": 10,
|
18 |
+
"right_adrenal_gland": 11,
|
19 |
+
"left_adrenal_gland": 12
|
20 |
+
},
|
21 |
+
"numTraining": 680,
|
22 |
+
"file_ending": ".nii.gz"
|
23 |
+
}
|
nnUNet_weights/fold_0/checkpoint_best.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ceac674e7e799626a5e173d12222568d5cacbdc90d8708e4f86d43e7be27866
|
3 |
+
size 250815382
|
nnUNet_weights/fold_1/checkpoint_best.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a5d19b0069716fde0175c2329954a3b29ba15768be5b726008f3af3f0b06587
|
3 |
+
size 250799830
|
nnUNet_weights/fold_2/checkpoint_best.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6adce1b59eadf21aec0ff7f3ff516f98e688263bc12e3a7f6479e733cdeb83f5
|
3 |
+
size 250811286
|
nnUNet_weights/fold_3/checkpoint_best.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a132420a9fadd15776652d289c1b20750cda4c8c689644322ccedd00d7c494a
|
3 |
+
size 250788502
|
nnUNet_weights/fold_4/checkpoint_best.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e93d0d991a1ee5f2d57837437535a1c61ee5d97cf69d5d361a026f97271b6464
|
3 |
+
size 250804822
|
nnUNet_weights/plans.json
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_name": "Dataset060_Merged_Def",
|
3 |
+
"plans_name": "nnUNetPlans",
|
4 |
+
"original_median_spacing_after_transp": [
|
5 |
+
1.5,
|
6 |
+
1.5,
|
7 |
+
1.5
|
8 |
+
],
|
9 |
+
"original_median_shape_after_transp": [
|
10 |
+
237,
|
11 |
+
259,
|
12 |
+
319
|
13 |
+
],
|
14 |
+
"image_reader_writer": "SimpleITKIO",
|
15 |
+
"transpose_forward": [
|
16 |
+
0,
|
17 |
+
1,
|
18 |
+
2
|
19 |
+
],
|
20 |
+
"transpose_backward": [
|
21 |
+
0,
|
22 |
+
1,
|
23 |
+
2
|
24 |
+
],
|
25 |
+
"configurations": {
|
26 |
+
"2d": {
|
27 |
+
"data_identifier": "nnUNetPlans_2d",
|
28 |
+
"preprocessor_name": "DefaultPreprocessor",
|
29 |
+
"batch_size": 195,
|
30 |
+
"patch_size": [
|
31 |
+
224,
|
32 |
+
288
|
33 |
+
],
|
34 |
+
"median_image_size_in_voxels": [
|
35 |
+
206.0,
|
36 |
+
267.0
|
37 |
+
],
|
38 |
+
"spacing": [
|
39 |
+
1.5,
|
40 |
+
1.5
|
41 |
+
],
|
42 |
+
"normalization_schemes": [
|
43 |
+
"CTNormalization"
|
44 |
+
],
|
45 |
+
"use_mask_for_norm": [
|
46 |
+
false
|
47 |
+
],
|
48 |
+
"UNet_class_name": "PlainConvUNet",
|
49 |
+
"UNet_base_num_features": 32,
|
50 |
+
"n_conv_per_stage_encoder": [
|
51 |
+
2,
|
52 |
+
2,
|
53 |
+
2,
|
54 |
+
2,
|
55 |
+
2,
|
56 |
+
2
|
57 |
+
],
|
58 |
+
"n_conv_per_stage_decoder": [
|
59 |
+
2,
|
60 |
+
2,
|
61 |
+
2,
|
62 |
+
2,
|
63 |
+
2
|
64 |
+
],
|
65 |
+
"num_pool_per_axis": [
|
66 |
+
5,
|
67 |
+
5
|
68 |
+
],
|
69 |
+
"pool_op_kernel_sizes": [
|
70 |
+
[
|
71 |
+
1,
|
72 |
+
1
|
73 |
+
],
|
74 |
+
[
|
75 |
+
2,
|
76 |
+
2
|
77 |
+
],
|
78 |
+
[
|
79 |
+
2,
|
80 |
+
2
|
81 |
+
],
|
82 |
+
[
|
83 |
+
2,
|
84 |
+
2
|
85 |
+
],
|
86 |
+
[
|
87 |
+
2,
|
88 |
+
2
|
89 |
+
],
|
90 |
+
[
|
91 |
+
2,
|
92 |
+
2
|
93 |
+
]
|
94 |
+
],
|
95 |
+
"conv_kernel_sizes": [
|
96 |
+
[
|
97 |
+
3,
|
98 |
+
3
|
99 |
+
],
|
100 |
+
[
|
101 |
+
3,
|
102 |
+
3
|
103 |
+
],
|
104 |
+
[
|
105 |
+
3,
|
106 |
+
3
|
107 |
+
],
|
108 |
+
[
|
109 |
+
3,
|
110 |
+
3
|
111 |
+
],
|
112 |
+
[
|
113 |
+
3,
|
114 |
+
3
|
115 |
+
],
|
116 |
+
[
|
117 |
+
3,
|
118 |
+
3
|
119 |
+
]
|
120 |
+
],
|
121 |
+
"unet_max_num_features": 512,
|
122 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
123 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
124 |
+
"resampling_fn_data_kwargs": {
|
125 |
+
"is_seg": false,
|
126 |
+
"order": 3,
|
127 |
+
"order_z": 0,
|
128 |
+
"force_separate_z": null
|
129 |
+
},
|
130 |
+
"resampling_fn_seg_kwargs": {
|
131 |
+
"is_seg": true,
|
132 |
+
"order": 1,
|
133 |
+
"order_z": 0,
|
134 |
+
"force_separate_z": null
|
135 |
+
},
|
136 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
137 |
+
"resampling_fn_probabilities_kwargs": {
|
138 |
+
"is_seg": false,
|
139 |
+
"order": 1,
|
140 |
+
"order_z": 0,
|
141 |
+
"force_separate_z": null
|
142 |
+
},
|
143 |
+
"batch_dice": true
|
144 |
+
},
|
145 |
+
"3d_fullres": {
|
146 |
+
"data_identifier": "nnUNetPlans_3d_fullres",
|
147 |
+
"preprocessor_name": "DefaultPreprocessor",
|
148 |
+
"batch_size": 2,
|
149 |
+
"patch_size": [
|
150 |
+
256,
|
151 |
+
160,
|
152 |
+
224
|
153 |
+
],
|
154 |
+
"median_image_size_in_voxels": [
|
155 |
+
291.0,
|
156 |
+
206.0,
|
157 |
+
267.0
|
158 |
+
],
|
159 |
+
"spacing": [
|
160 |
+
1.5,
|
161 |
+
1.5,
|
162 |
+
1.5
|
163 |
+
],
|
164 |
+
"normalization_schemes": [
|
165 |
+
"CTNormalization"
|
166 |
+
],
|
167 |
+
"use_mask_for_norm": [
|
168 |
+
false
|
169 |
+
],
|
170 |
+
"UNet_class_name": "PlainConvUNet",
|
171 |
+
"UNet_base_num_features": 32,
|
172 |
+
"n_conv_per_stage_encoder": [
|
173 |
+
2,
|
174 |
+
2,
|
175 |
+
2,
|
176 |
+
2,
|
177 |
+
2,
|
178 |
+
2
|
179 |
+
],
|
180 |
+
"n_conv_per_stage_decoder": [
|
181 |
+
2,
|
182 |
+
2,
|
183 |
+
2,
|
184 |
+
2,
|
185 |
+
2
|
186 |
+
],
|
187 |
+
"num_pool_per_axis": [
|
188 |
+
5,
|
189 |
+
5,
|
190 |
+
5
|
191 |
+
],
|
192 |
+
"pool_op_kernel_sizes": [
|
193 |
+
[
|
194 |
+
1,
|
195 |
+
1,
|
196 |
+
1
|
197 |
+
],
|
198 |
+
[
|
199 |
+
2,
|
200 |
+
2,
|
201 |
+
2
|
202 |
+
],
|
203 |
+
[
|
204 |
+
2,
|
205 |
+
2,
|
206 |
+
2
|
207 |
+
],
|
208 |
+
[
|
209 |
+
2,
|
210 |
+
2,
|
211 |
+
2
|
212 |
+
],
|
213 |
+
[
|
214 |
+
2,
|
215 |
+
2,
|
216 |
+
2
|
217 |
+
],
|
218 |
+
[
|
219 |
+
2,
|
220 |
+
2,
|
221 |
+
2
|
222 |
+
]
|
223 |
+
],
|
224 |
+
"conv_kernel_sizes": [
|
225 |
+
[
|
226 |
+
3,
|
227 |
+
3,
|
228 |
+
3
|
229 |
+
],
|
230 |
+
[
|
231 |
+
3,
|
232 |
+
3,
|
233 |
+
3
|
234 |
+
],
|
235 |
+
[
|
236 |
+
3,
|
237 |
+
3,
|
238 |
+
3
|
239 |
+
],
|
240 |
+
[
|
241 |
+
3,
|
242 |
+
3,
|
243 |
+
3
|
244 |
+
],
|
245 |
+
[
|
246 |
+
3,
|
247 |
+
3,
|
248 |
+
3
|
249 |
+
],
|
250 |
+
[
|
251 |
+
3,
|
252 |
+
3,
|
253 |
+
3
|
254 |
+
]
|
255 |
+
],
|
256 |
+
"unet_max_num_features": 320,
|
257 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
258 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
259 |
+
"resampling_fn_data_kwargs": {
|
260 |
+
"is_seg": false,
|
261 |
+
"order": 3,
|
262 |
+
"order_z": 0,
|
263 |
+
"force_separate_z": null
|
264 |
+
},
|
265 |
+
"resampling_fn_seg_kwargs": {
|
266 |
+
"is_seg": true,
|
267 |
+
"order": 1,
|
268 |
+
"order_z": 0,
|
269 |
+
"force_separate_z": null
|
270 |
+
},
|
271 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
272 |
+
"resampling_fn_probabilities_kwargs": {
|
273 |
+
"is_seg": false,
|
274 |
+
"order": 1,
|
275 |
+
"order_z": 0,
|
276 |
+
"force_separate_z": null
|
277 |
+
},
|
278 |
+
"batch_dice": false
|
279 |
+
}
|
280 |
+
},
|
281 |
+
"experiment_planner_used": "ExperimentPlanner",
|
282 |
+
"label_manager": "LabelManager",
|
283 |
+
"foreground_intensity_properties_per_channel": {
|
284 |
+
"0": {
|
285 |
+
"max": 5805.0,
|
286 |
+
"mean": 64.62580871582031,
|
287 |
+
"median": 76.0,
|
288 |
+
"min": -2048.0,
|
289 |
+
"percentile_00_5": -981.9942016601562,
|
290 |
+
"percentile_99_5": 1093.97589111328125,
|
291 |
+
"std": 140.14614868164062
|
292 |
+
}
|
293 |
+
}
|
294 |
+
}
|
output_images/dataset.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"channel_names": {
|
3 |
+
"0": "CT"
|
4 |
+
},
|
5 |
+
"labels": {
|
6 |
+
"background": 0,
|
7 |
+
"spleen": 1,
|
8 |
+
"right_kidney": 2,
|
9 |
+
"left_kidney": 3,
|
10 |
+
"gallbladder": 4,
|
11 |
+
"esophagus": 5,
|
12 |
+
"liver": 6,
|
13 |
+
"stomach": 7,
|
14 |
+
"aorta": 8,
|
15 |
+
"inferior_vena_cava": 9,
|
16 |
+
"pancreas": 10,
|
17 |
+
"right_adrenal_gland": 11,
|
18 |
+
"left_adrenal_gland": 12
|
19 |
+
},
|
20 |
+
"numTraining": 680,
|
21 |
+
"file_ending": ".nii.gz"
|
22 |
+
}
|
output_images/img0027_gt.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b11fa6b2d42da7904204a74b06b739b3485d37316d8b396448a23502fc339c33
|
3 |
+
size 973825
|
output_images/img0027_pred.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1967b6064f316d0970abb90d38d013f3ceb770aec1e9982d0c3d9dda117120a
|
3 |
+
size 79942
|
output_images/plans.json
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_name": "Dataset060_Merged_Def",
|
3 |
+
"plans_name": "nnUNetPlans",
|
4 |
+
"original_median_spacing_after_transp": [
|
5 |
+
1.5,
|
6 |
+
1.5,
|
7 |
+
1.5
|
8 |
+
],
|
9 |
+
"original_median_shape_after_transp": [
|
10 |
+
237,
|
11 |
+
259,
|
12 |
+
319
|
13 |
+
],
|
14 |
+
"image_reader_writer": "SimpleITKIO",
|
15 |
+
"transpose_forward": [
|
16 |
+
0,
|
17 |
+
1,
|
18 |
+
2
|
19 |
+
],
|
20 |
+
"transpose_backward": [
|
21 |
+
0,
|
22 |
+
1,
|
23 |
+
2
|
24 |
+
],
|
25 |
+
"configurations": {
|
26 |
+
"2d": {
|
27 |
+
"data_identifier": "nnUNetPlans_2d",
|
28 |
+
"preprocessor_name": "DefaultPreprocessor",
|
29 |
+
"batch_size": 195,
|
30 |
+
"patch_size": [
|
31 |
+
224,
|
32 |
+
288
|
33 |
+
],
|
34 |
+
"median_image_size_in_voxels": [
|
35 |
+
206.0,
|
36 |
+
267.0
|
37 |
+
],
|
38 |
+
"spacing": [
|
39 |
+
1.5,
|
40 |
+
1.5
|
41 |
+
],
|
42 |
+
"normalization_schemes": [
|
43 |
+
"CTNormalization"
|
44 |
+
],
|
45 |
+
"use_mask_for_norm": [
|
46 |
+
false
|
47 |
+
],
|
48 |
+
"UNet_class_name": "PlainConvUNet",
|
49 |
+
"UNet_base_num_features": 32,
|
50 |
+
"n_conv_per_stage_encoder": [
|
51 |
+
2,
|
52 |
+
2,
|
53 |
+
2,
|
54 |
+
2,
|
55 |
+
2,
|
56 |
+
2
|
57 |
+
],
|
58 |
+
"n_conv_per_stage_decoder": [
|
59 |
+
2,
|
60 |
+
2,
|
61 |
+
2,
|
62 |
+
2,
|
63 |
+
2
|
64 |
+
],
|
65 |
+
"num_pool_per_axis": [
|
66 |
+
5,
|
67 |
+
5
|
68 |
+
],
|
69 |
+
"pool_op_kernel_sizes": [
|
70 |
+
[
|
71 |
+
1,
|
72 |
+
1
|
73 |
+
],
|
74 |
+
[
|
75 |
+
2,
|
76 |
+
2
|
77 |
+
],
|
78 |
+
[
|
79 |
+
2,
|
80 |
+
2
|
81 |
+
],
|
82 |
+
[
|
83 |
+
2,
|
84 |
+
2
|
85 |
+
],
|
86 |
+
[
|
87 |
+
2,
|
88 |
+
2
|
89 |
+
],
|
90 |
+
[
|
91 |
+
2,
|
92 |
+
2
|
93 |
+
]
|
94 |
+
],
|
95 |
+
"conv_kernel_sizes": [
|
96 |
+
[
|
97 |
+
3,
|
98 |
+
3
|
99 |
+
],
|
100 |
+
[
|
101 |
+
3,
|
102 |
+
3
|
103 |
+
],
|
104 |
+
[
|
105 |
+
3,
|
106 |
+
3
|
107 |
+
],
|
108 |
+
[
|
109 |
+
3,
|
110 |
+
3
|
111 |
+
],
|
112 |
+
[
|
113 |
+
3,
|
114 |
+
3
|
115 |
+
],
|
116 |
+
[
|
117 |
+
3,
|
118 |
+
3
|
119 |
+
]
|
120 |
+
],
|
121 |
+
"unet_max_num_features": 512,
|
122 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
123 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
124 |
+
"resampling_fn_data_kwargs": {
|
125 |
+
"is_seg": false,
|
126 |
+
"order": 3,
|
127 |
+
"order_z": 0,
|
128 |
+
"force_separate_z": null
|
129 |
+
},
|
130 |
+
"resampling_fn_seg_kwargs": {
|
131 |
+
"is_seg": true,
|
132 |
+
"order": 1,
|
133 |
+
"order_z": 0,
|
134 |
+
"force_separate_z": null
|
135 |
+
},
|
136 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
137 |
+
"resampling_fn_probabilities_kwargs": {
|
138 |
+
"is_seg": false,
|
139 |
+
"order": 1,
|
140 |
+
"order_z": 0,
|
141 |
+
"force_separate_z": null
|
142 |
+
},
|
143 |
+
"batch_dice": true
|
144 |
+
},
|
145 |
+
"3d_fullres": {
|
146 |
+
"data_identifier": "nnUNetPlans_3d_fullres",
|
147 |
+
"preprocessor_name": "DefaultPreprocessor",
|
148 |
+
"batch_size": 2,
|
149 |
+
"patch_size": [
|
150 |
+
256,
|
151 |
+
160,
|
152 |
+
224
|
153 |
+
],
|
154 |
+
"median_image_size_in_voxels": [
|
155 |
+
291.0,
|
156 |
+
206.0,
|
157 |
+
267.0
|
158 |
+
],
|
159 |
+
"spacing": [
|
160 |
+
1.5,
|
161 |
+
1.5,
|
162 |
+
1.5
|
163 |
+
],
|
164 |
+
"normalization_schemes": [
|
165 |
+
"CTNormalization"
|
166 |
+
],
|
167 |
+
"use_mask_for_norm": [
|
168 |
+
false
|
169 |
+
],
|
170 |
+
"UNet_class_name": "PlainConvUNet",
|
171 |
+
"UNet_base_num_features": 32,
|
172 |
+
"n_conv_per_stage_encoder": [
|
173 |
+
2,
|
174 |
+
2,
|
175 |
+
2,
|
176 |
+
2,
|
177 |
+
2,
|
178 |
+
2
|
179 |
+
],
|
180 |
+
"n_conv_per_stage_decoder": [
|
181 |
+
2,
|
182 |
+
2,
|
183 |
+
2,
|
184 |
+
2,
|
185 |
+
2
|
186 |
+
],
|
187 |
+
"num_pool_per_axis": [
|
188 |
+
5,
|
189 |
+
5,
|
190 |
+
5
|
191 |
+
],
|
192 |
+
"pool_op_kernel_sizes": [
|
193 |
+
[
|
194 |
+
1,
|
195 |
+
1,
|
196 |
+
1
|
197 |
+
],
|
198 |
+
[
|
199 |
+
2,
|
200 |
+
2,
|
201 |
+
2
|
202 |
+
],
|
203 |
+
[
|
204 |
+
2,
|
205 |
+
2,
|
206 |
+
2
|
207 |
+
],
|
208 |
+
[
|
209 |
+
2,
|
210 |
+
2,
|
211 |
+
2
|
212 |
+
],
|
213 |
+
[
|
214 |
+
2,
|
215 |
+
2,
|
216 |
+
2
|
217 |
+
],
|
218 |
+
[
|
219 |
+
2,
|
220 |
+
2,
|
221 |
+
2
|
222 |
+
]
|
223 |
+
],
|
224 |
+
"conv_kernel_sizes": [
|
225 |
+
[
|
226 |
+
3,
|
227 |
+
3,
|
228 |
+
3
|
229 |
+
],
|
230 |
+
[
|
231 |
+
3,
|
232 |
+
3,
|
233 |
+
3
|
234 |
+
],
|
235 |
+
[
|
236 |
+
3,
|
237 |
+
3,
|
238 |
+
3
|
239 |
+
],
|
240 |
+
[
|
241 |
+
3,
|
242 |
+
3,
|
243 |
+
3
|
244 |
+
],
|
245 |
+
[
|
246 |
+
3,
|
247 |
+
3,
|
248 |
+
3
|
249 |
+
],
|
250 |
+
[
|
251 |
+
3,
|
252 |
+
3,
|
253 |
+
3
|
254 |
+
]
|
255 |
+
],
|
256 |
+
"unet_max_num_features": 320,
|
257 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
258 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
259 |
+
"resampling_fn_data_kwargs": {
|
260 |
+
"is_seg": false,
|
261 |
+
"order": 3,
|
262 |
+
"order_z": 0,
|
263 |
+
"force_separate_z": null
|
264 |
+
},
|
265 |
+
"resampling_fn_seg_kwargs": {
|
266 |
+
"is_seg": true,
|
267 |
+
"order": 1,
|
268 |
+
"order_z": 0,
|
269 |
+
"force_separate_z": null
|
270 |
+
},
|
271 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
272 |
+
"resampling_fn_probabilities_kwargs": {
|
273 |
+
"is_seg": false,
|
274 |
+
"order": 1,
|
275 |
+
"order_z": 0,
|
276 |
+
"force_separate_z": null
|
277 |
+
},
|
278 |
+
"batch_dice": false
|
279 |
+
}
|
280 |
+
},
|
281 |
+
"experiment_planner_used": "ExperimentPlanner",
|
282 |
+
"label_manager": "LabelManager",
|
283 |
+
"foreground_intensity_properties_per_channel": {
|
284 |
+
"0": {
|
285 |
+
"max": 5805.0,
|
286 |
+
"mean": 64.62580871582031,
|
287 |
+
"median": 76.0,
|
288 |
+
"min": -2048.0,
|
289 |
+
"percentile_00_5": -981.9942016601562,
|
290 |
+
"percentile_99_5": 1093.9758911132812,
|
291 |
+
"std": 140.14614868164062
|
292 |
+
}
|
293 |
+
}
|
294 |
+
}
|
output_images/predict_from_raw_data_args.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"folder_with_segs_from_prev_stage": null,
|
3 |
+
"list_of_lists_or_source_folder": [
|
4 |
+
[
|
5 |
+
"./input_images/img0027_0000.nii.gz"
|
6 |
+
]
|
7 |
+
],
|
8 |
+
"num_parts": 1,
|
9 |
+
"num_processes_preprocessing": 2,
|
10 |
+
"num_processes_segmentation_export": 2,
|
11 |
+
"output_folder_or_list_of_truncated_output_files": [
|
12 |
+
"./output_images/img0027_pred.nii.gz"
|
13 |
+
],
|
14 |
+
"overwrite": false,
|
15 |
+
"part_id": 0,
|
16 |
+
"save_probabilities": false
|
17 |
+
}
|