HEN10 commited on
Commit
68e2b9e
1 Parent(s): 4aaa497

Push model using huggingface_hub.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,862 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: prlv sepa ecole montaigne cotisation scolaire
12
+ - text: facture carte du pharmacie pont neuf carte
13
+ - text: virement sortant facture soleil energie
14
+ - text: leçon de surf hossegor surf club carte
15
+ - text: virement initie application mobile vers comptes joints
16
+ pipeline_tag: text-classification
17
+ inference: true
18
+ model-index:
19
+ - name: SetFit
20
+ results:
21
+ - task:
22
+ type: text-classification
23
+ name: Text Classification
24
+ dataset:
25
+ name: Unknown
26
+ type: unknown
27
+ split: test
28
+ metrics:
29
+ - type: accuracy
30
+ value: 0.7007575757575758
31
+ name: Accuracy
32
+ ---
33
+
34
+ # SetFit
35
+
36
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
37
+
38
+ The model has been trained using an efficient few-shot learning technique that involves:
39
+
40
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
41
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
42
+
43
+ ## Model Details
44
+
45
+ ### Model Description
46
+ - **Model Type:** SetFit
47
+ <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
48
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
49
+ - **Maximum Sequence Length:** 512 tokens
50
+ - **Number of Classes:** 44 classes
51
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
52
+ <!-- - **Language:** Unknown -->
53
+ <!-- - **License:** Unknown -->
54
+
55
+ ### Model Sources
56
+
57
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
58
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
59
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
60
+
61
+ ### Model Labels
62
+ | Label | Examples |
63
+ |:-------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
64
+ | Other / kids | <ul><li>'cantine scolaire mars paiement carte'</li><li>'virement recu alouette garde d enfants'</li><li>'achat carte couture kids atelier carte'</li></ul> |
65
+ | Bank services / withdrawal | <ul><li>'retrait dab banque du peuple lille carte fr'</li><li>'retrait dab megastore electronix carte'</li><li>'retrait dab banqueville centre carte'</li></ul> |
66
+ | Housing / rent | <ul><li>'reglement loyer f nice carte'</li><li>'paiement loyer duplex nantes carte'</li><li>'loyer t bordeaux chartrons carte'</li></ul> |
67
+ | Leisure & Entertainment / sports & hobbies | <ul><li>'abonnement golf de roncevaux avril carte'</li><li>'paiement en ligne du adidas fr carte'</li><li>'cours de tennis indoor club fontenay carte'</li></ul> |
68
+ | Transportation / car loan & leasing | <ul><li>'prelevement leaseplan citroen c'</li><li>'loyer mensuel volkswagen polo carte'</li><li>'pret vehicule citroen c carte'</li></ul> |
69
+ | Healthy & Beauty / veterinary | <ul><li>'urgence digestive bibou urgencyvet carte'</li><li>'echoradiographie minette carte'</li><li>'consultation dermatologique canine vetderm carte'</li></ul> |
70
+ | Transportation / taxi & carpool | <ul><li>'facture carte du grab bangkok carte tha thb commission'</li><li>'prlv sepa bolt transport carte'</li><li>'facture carte du kakao taxi seoul carte kor krw commission'</li></ul> |
71
+ | Healthy & Beauty / doctor fees | <ul><li>'consultation dr lemoine carte'</li><li>'rdv pediatrie dr lenoir carte'</li><li>'rdv chirurgie esthetique dr martin carte'</li></ul> |
72
+ | Food & Drinks / eating out | <ul><li>'facture carte du vietnam delices strasbourg carte'</li><li>'facture carte du la cabane creole la reunion carte'</li><li>'facture carte du the green pub montpellier carte'</li></ul> |
73
+ | Transportation / other | <ul><li>'location velo elecgreen du paris carte'</li><li>'frais de lavage auto eco wash carte'</li><li>'frais post stationnement carte'</li></ul> |
74
+ | Healthy & Beauty / beauty & self-care | <ul><li>'achat lush cosmetiques lyon carte'</li><li>'facture carte du douglas beauty store carte'</li><li>'achat salon de coiffure elegance carte'</li></ul> |
75
+ | Bank services / other | <ul><li>'cotisation carte gold annuelle carte'</li><li>'frais emission duplicata rib iban carte'</li><li>'frais mise en place autorisation de decouvert carte'</li></ul> |
76
+ | Bank services / general fees | <ul><li>'frais de gestion compte epargne banqplus carte'</li><li>'abonnement service banque en ligne banqfacile carte'</li><li>'frais sur decouvert autorise'</li></ul> |
77
+ | Leisure & Entertainment / culture & events | <ul><li>'pass festival avignon off carte'</li><li>'reservation carte salon du livre paris carte'</li><li>'achat carte billet expo universselle carte'</li></ul> |
78
+ | Other / taxes | <ul><li>'taxe d amenagement projet xyz'</li><li>'taxe annuelle sur les locations meublees non professionnelles'</li><li>'impot sur le revenu prelevement sepa fiscal frzzz'</li></ul> |
79
+ | Housing / services & maintenance | <ul><li>'prlv sepa sos plombier paris'</li><li>'virement recu travaux peinture dupont michel'</li><li>'facture carte du vitrerie lumiere carte'</li></ul> |
80
+ | Housing / utilities & bills | <ul><li>'prlv sepa edf facture electricite'</li><li>'prlv sepa engie'</li><li>'facture carte du bouygues telecom carte'</li></ul> |
81
+ | Investment / real estate | <ul><li>'reservation studio montagne carte'</li><li>'virement sortant achat terrain bellevue carte'</li><li>'prlv sepa agence immobiliere commission vente'</li></ul> |
82
+ | Recurrent Payments / subscription | <ul><li>'abonnement annual magazine cuisine carte'</li><li>'abonnement plateforme d apprentissage en ligne skillex carte'</li><li>'adhesion annuelle amazon prime carte'</li></ul> |
83
+ | Other / other | <ul><li>'paiement service debrisage encombrants'</li><li>'stage de survie nature extreme carte'</li><li>'inscription marathon de paris'</li></ul> |
84
+ | Shopping / electronics & multimedia | <ul><li>'achat carte du gamerzone carte'</li><li>'facture carte du hightech store paris carte'</li><li>'achat en ligne hp store carte usa'</li></ul> |
85
+ | Bank services / transfers | <ul><li>'virement sortant facture soleil energie'</li><li>'transfer economies vers pel'</li><li>'virement initie application mobile vers comptes joints'</li></ul> |
86
+ | Investment / retirement & savings | <ul><li>'versement plan epargne retraite crédit agricole carte'</li><li>'achat parts cooperative eparco'</li><li>'souscription fonds pension'</li></ul> |
87
+ | Housing / other | <ul><li>'achat mobilier jardin bleutropic carte'</li><li>'douchette ecologique ecoflow carte'</li><li>'virement recu du remboursement depot de garantie'</li></ul> |
88
+ | Housing / house loan | <ul><li>'solde emprunt habitat fortuneo pret'</li><li>'remboursement emprunt logis credit agricole'</li><li>'transaction pret immo societe generale de prêteur frsge'</li></ul> |
89
+ | Recurrent Payments / other | <ul><li>'don mensuel a l ong environ actionfr transaction date'</li><li>'contribution trimestrielle revue culturelle lumières date'</li><li>'prlv sepa chess com premium'</li></ul> |
90
+ | Transportation / fuel | <ul><li>'facture carte du bp energy carte'</li><li>'depense s c agip lyon carte'</li><li>'debit carte circle k energy carte'</li></ul> |
91
+ | Other / pets | <ul><li>'debit automatique assurance chien fido protect'</li><li>'retrait dab ferme des lapinous carte commission'</li><li>'achat animalerie toutouplus lyon carte'</li></ul> |
92
+ | Transportation / maitenance | <ul><li>'reparation systeme de navigation gps auto tech dijon'</li><li>'vidange huile moteur garage du centre rennes'</li><li>'paiement carte du garage rénov clim reims carte'</li></ul> |
93
+ | Food & Drinks / groceries | <ul><li>'facture carte du fromagerie dupont carte'</li><li>'facture carte du cremerie des alpes carte'</li><li>'prlv sepa la ferme lorraine'</li></ul> |
94
+ | Recurrent Payments / insurance | <ul><li>'cotisation assurance multirisque domus secur frzzz'</li><li>'prelevement sepa assurance grand voyage worldtravel frzzz'</li><li>'prlv sepa assurance emprunteur bnp paribas'</li></ul> |
95
+ | Food & Drinks / other | <ul><li>'facture carte just press carte'</li><li>'achat card du tea box paris carte'</li><li>'facture carte du café de flore carte'</li></ul> |
96
+ | Recurrent Payments / loans | <ul><li>'prlv sepa monabanq pret amelioration habitat frzzz'</li><li>'prélèvement sepa credit agricole pret immoparc carte'</li><li>'prlv sepa sofinco pret conso carte'</li></ul> |
97
+ | Transportation / public transportation | <ul><li>'achat titres v ville de lille carte'</li><li>'navette aeroport orly bus carte'</li><li>'ticket voyages lyon transport carte'</li></ul> |
98
+ | Investment / securities | <ul><li>'souscription fonds pension carte'</li><li>'vente sicav monetaire carte'</li><li>'achat parts initiative europe carte'</li></ul> |
99
+ | Shopping / housing equipment | <ul><li>'paiement cb darty nice carte'</li><li>'achat au moulin des peintures nantes carte'</li><li>'achat cb castorama lille carte le'</li></ul> |
100
+ | Healthy & Beauty / other | <ul><li>'abonnement annuel gymnase formeplus carte'</li><li>'seance yoga luxe paris carte'</li><li>'soin relaxant doux jardin nantes carte'</li></ul> |
101
+ | Healthy & Beauty / pharmacy | <ul><li>'prlv sepa pharmacie azureech'</li><li>'facture carte du pharmacie centrale paris carte'</li><li>'achat pharmacie du parc carte le'</li></ul> |
102
+ | Shopping / clothing | <ul><li>'facture carte du levis store carte can cad commission'</li><li>'achat veste en cuir chez massimo dutti carte paris'</li><li>'facture carte converse paris carte'</li></ul> |
103
+ | Shopping / sporting goods | <ul><li>'achat decathlon besancon carte'</li><li>'achat carte nike store carte'</li><li>'paiement carte running store paris carte'</li></ul> |
104
+ | Leisure & Entertainment / travel | <ul><li>'facture carte du seaworld san diego carte'</li><li>'payment card louvre museum card'</li><li>'retrait dab cairo airport card egy egp commission'</li></ul> |
105
+ | Investment / other | <ul><li>'achat parts sociales cooperative agricole carte'</li><li>'achat actions ia revolution carte'</li><li>'investissement projet ecologique carte'</li></ul> |
106
+ | Leisure & Entertainment / other | <ul><li>'facture carte du hbo max carte usa'</li><li>'abonnement carte playstation plus carte eu'</li><li>'abonnement mensuel canal carte'</li></ul> |
107
+ | Shopping / other | <ul><li>'facture carte du fnac livres carte'</li><li>'facture carte du les tresors de sophie bordeaux carte'</li><li>'achat jouets et merveilles dijon carte'</li></ul> |
108
+
109
+ ## Evaluation
110
+
111
+ ### Metrics
112
+ | Label | Accuracy |
113
+ |:--------|:---------|
114
+ | **all** | 0.7008 |
115
+
116
+ ## Uses
117
+
118
+ ### Direct Use for Inference
119
+
120
+ First install the SetFit library:
121
+
122
+ ```bash
123
+ pip install setfit
124
+ ```
125
+
126
+ Then you can load this model and run inference.
127
+
128
+ ```python
129
+ from setfit import SetFitModel
130
+
131
+ # Download from the 🤗 Hub
132
+ model = SetFitModel.from_pretrained("HEN10/setfit-particular-transaction-solon-embeddings-labels-large-v4")
133
+ # Run inference
134
+ preds = model("leçon de surf hossegor surf club carte")
135
+ ```
136
+
137
+ <!--
138
+ ### Downstream Use
139
+
140
+ *List how someone could finetune this model on their own dataset.*
141
+ -->
142
+
143
+ <!--
144
+ ### Out-of-Scope Use
145
+
146
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
147
+ -->
148
+
149
+ <!--
150
+ ## Bias, Risks and Limitations
151
+
152
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
153
+ -->
154
+
155
+ <!--
156
+ ### Recommendations
157
+
158
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
159
+ -->
160
+
161
+ ## Training Details
162
+
163
+ ### Training Set Metrics
164
+ | Training set | Min | Median | Max |
165
+ |:-------------|:----|:-------|:----|
166
+ | Word count | 3 | 5.9159 | 12 |
167
+
168
+ | Label | Training Sample Count |
169
+ |:-------------------------------------------|:----------------------|
170
+ | Housing / rent | 20 |
171
+ | Housing / house loan | 20 |
172
+ | Housing / utilities & bills | 20 |
173
+ | Housing / services & maintenance | 20 |
174
+ | Housing / other | 20 |
175
+ | Food & Drinks / groceries | 20 |
176
+ | Food & Drinks / eating out | 20 |
177
+ | Food & Drinks / other | 20 |
178
+ | Leisure & Entertainment / sports & hobbies | 20 |
179
+ | Leisure & Entertainment / culture & events | 20 |
180
+ | Leisure & Entertainment / travel | 20 |
181
+ | Leisure & Entertainment / other | 20 |
182
+ | Transportation / car loan & leasing | 20 |
183
+ | Transportation / fuel | 20 |
184
+ | Transportation / public transportation | 20 |
185
+ | Transportation / taxi & carpool | 20 |
186
+ | Transportation / maitenance | 20 |
187
+ | Transportation / other | 20 |
188
+ | Recurrent Payments / loans | 20 |
189
+ | Recurrent Payments / insurance | 20 |
190
+ | Recurrent Payments / subscription | 20 |
191
+ | Recurrent Payments / other | 20 |
192
+ | Investment / securities | 20 |
193
+ | Investment / retirement & savings | 20 |
194
+ | Investment / real estate | 20 |
195
+ | Investment / other | 20 |
196
+ | Shopping / clothing | 20 |
197
+ | Shopping / electronics & multimedia | 20 |
198
+ | Shopping / sporting goods | 20 |
199
+ | Shopping / housing equipment | 20 |
200
+ | Shopping / other | 20 |
201
+ | Healthy & Beauty / doctor fees | 20 |
202
+ | Healthy & Beauty / pharmacy | 20 |
203
+ | Healthy & Beauty / beauty & self-care | 20 |
204
+ | Healthy & Beauty / veterinary | 20 |
205
+ | Healthy & Beauty / other | 20 |
206
+ | Bank services / transfers | 20 |
207
+ | Bank services / withdrawal | 20 |
208
+ | Bank services / general fees | 20 |
209
+ | Bank services / other | 20 |
210
+ | Other / taxes | 20 |
211
+ | Other / kids | 20 |
212
+ | Other / pets | 20 |
213
+ | Other / other | 20 |
214
+
215
+ ### Training Hyperparameters
216
+ - batch_size: (26, 26)
217
+ - num_epochs: (1, 1)
218
+ - max_steps: -1
219
+ - sampling_strategy: oversampling
220
+ - body_learning_rate: (2e-05, 1e-05)
221
+ - head_learning_rate: 0.01
222
+ - loss: CosineSimilarityLoss
223
+ - distance_metric: cosine_distance
224
+ - margin: 0.25
225
+ - end_to_end: True
226
+ - use_amp: False
227
+ - warmup_proportion: 0.1
228
+ - seed: 6
229
+ - eval_max_steps: -1
230
+ - load_best_model_at_end: False
231
+
232
+ ### Training Results
233
+ | Epoch | Step | Training Loss | Validation Loss |
234
+ |:------:|:-----:|:-------------:|:---------------:|
235
+ | 0.0000 | 1 | 0.2084 | - |
236
+ | 0.0012 | 50 | 0.2041 | - |
237
+ | 0.0000 | 1 | 0.1841 | - |
238
+ | 0.0017 | 50 | 0.219 | - |
239
+ | 0.0034 | 100 | 0.2197 | - |
240
+ | 0.0052 | 150 | 0.1724 | - |
241
+ | 0.0069 | 200 | 0.2291 | - |
242
+ | 0.0086 | 250 | 0.1693 | - |
243
+ | 0.0103 | 300 | 0.0832 | - |
244
+ | 0.0120 | 350 | 0.1414 | - |
245
+ | 0.0137 | 400 | 0.0989 | - |
246
+ | 0.0155 | 450 | 0.0962 | - |
247
+ | 0.0172 | 500 | 0.1132 | - |
248
+ | 0.0189 | 550 | 0.1 | - |
249
+ | 0.0206 | 600 | 0.0561 | - |
250
+ | 0.0223 | 650 | 0.0851 | - |
251
+ | 0.0240 | 700 | 0.0762 | - |
252
+ | 0.0258 | 750 | 0.0876 | - |
253
+ | 0.0275 | 800 | 0.0414 | - |
254
+ | 0.0292 | 850 | 0.0368 | - |
255
+ | 0.0309 | 900 | 0.0409 | - |
256
+ | 0.0326 | 950 | 0.0212 | - |
257
+ | 0.0344 | 1000 | 0.0175 | - |
258
+ | 0.0361 | 1050 | 0.05 | - |
259
+ | 0.0378 | 1100 | 0.0848 | - |
260
+ | 0.0395 | 1150 | 0.0549 | - |
261
+ | 0.0412 | 1200 | 0.0395 | - |
262
+ | 0.0429 | 1250 | 0.029 | - |
263
+ | 0.0447 | 1300 | 0.0047 | - |
264
+ | 0.0464 | 1350 | 0.0387 | - |
265
+ | 0.0481 | 1400 | 0.0268 | - |
266
+ | 0.0498 | 1450 | 0.0531 | - |
267
+ | 0.0515 | 1500 | 0.0038 | - |
268
+ | 0.0532 | 1550 | 0.0226 | - |
269
+ | 0.0550 | 1600 | 0.0349 | - |
270
+ | 0.0567 | 1650 | 0.0106 | - |
271
+ | 0.0584 | 1700 | 0.0049 | - |
272
+ | 0.0601 | 1750 | 0.0171 | - |
273
+ | 0.0618 | 1800 | 0.0066 | - |
274
+ | 0.0636 | 1850 | 0.0066 | - |
275
+ | 0.0653 | 1900 | 0.0039 | - |
276
+ | 0.0670 | 1950 | 0.0016 | - |
277
+ | 0.0687 | 2000 | 0.0414 | - |
278
+ | 0.0704 | 2050 | 0.0172 | - |
279
+ | 0.0721 | 2100 | 0.0039 | - |
280
+ | 0.0739 | 2150 | 0.0036 | - |
281
+ | 0.0756 | 2200 | 0.0334 | - |
282
+ | 0.0773 | 2250 | 0.0025 | - |
283
+ | 0.0790 | 2300 | 0.0022 | - |
284
+ | 0.0807 | 2350 | 0.0017 | - |
285
+ | 0.0825 | 2400 | 0.0015 | - |
286
+ | 0.0842 | 2450 | 0.0125 | - |
287
+ | 0.0859 | 2500 | 0.0023 | - |
288
+ | 0.0876 | 2550 | 0.0023 | - |
289
+ | 0.0893 | 2600 | 0.0013 | - |
290
+ | 0.0910 | 2650 | 0.0728 | - |
291
+ | 0.0928 | 2700 | 0.0141 | - |
292
+ | 0.0945 | 2750 | 0.0332 | - |
293
+ | 0.0962 | 2800 | 0.0632 | - |
294
+ | 0.0979 | 2850 | 0.0042 | - |
295
+ | 0.0996 | 2900 | 0.0117 | - |
296
+ | 0.1013 | 2950 | 0.0014 | - |
297
+ | 0.1031 | 3000 | 0.0013 | - |
298
+ | 0.1048 | 3050 | 0.0464 | - |
299
+ | 0.1065 | 3100 | 0.0031 | - |
300
+ | 0.1082 | 3150 | 0.0007 | - |
301
+ | 0.1099 | 3200 | 0.0008 | - |
302
+ | 0.1117 | 3250 | 0.001 | - |
303
+ | 0.1134 | 3300 | 0.001 | - |
304
+ | 0.1151 | 3350 | 0.0016 | - |
305
+ | 0.1168 | 3400 | 0.0006 | - |
306
+ | 0.1185 | 3450 | 0.0005 | - |
307
+ | 0.1202 | 3500 | 0.0006 | - |
308
+ | 0.1220 | 3550 | 0.0008 | - |
309
+ | 0.1237 | 3600 | 0.0368 | - |
310
+ | 0.1254 | 3650 | 0.0026 | - |
311
+ | 0.1271 | 3700 | 0.0372 | - |
312
+ | 0.1288 | 3750 | 0.0006 | - |
313
+ | 0.1305 | 3800 | 0.0005 | - |
314
+ | 0.1323 | 3850 | 0.0276 | - |
315
+ | 0.1340 | 3900 | 0.0007 | - |
316
+ | 0.1357 | 3950 | 0.0013 | - |
317
+ | 0.1374 | 4000 | 0.0008 | - |
318
+ | 0.1391 | 4050 | 0.0018 | - |
319
+ | 0.1409 | 4100 | 0.0292 | - |
320
+ | 0.1426 | 4150 | 0.0102 | - |
321
+ | 0.1443 | 4200 | 0.0093 | - |
322
+ | 0.1460 | 4250 | 0.0022 | - |
323
+ | 0.1477 | 4300 | 0.0032 | - |
324
+ | 0.1494 | 4350 | 0.001 | - |
325
+ | 0.1512 | 4400 | 0.0006 | - |
326
+ | 0.1529 | 4450 | 0.0007 | - |
327
+ | 0.1546 | 4500 | 0.0007 | - |
328
+ | 0.1563 | 4550 | 0.0007 | - |
329
+ | 0.1580 | 4600 | 0.0007 | - |
330
+ | 0.1597 | 4650 | 0.0011 | - |
331
+ | 0.1615 | 4700 | 0.0008 | - |
332
+ | 0.1632 | 4750 | 0.0374 | - |
333
+ | 0.1649 | 4800 | 0.0004 | - |
334
+ | 0.1666 | 4850 | 0.0008 | - |
335
+ | 0.1683 | 4900 | 0.005 | - |
336
+ | 0.1701 | 4950 | 0.0013 | - |
337
+ | 0.1718 | 5000 | 0.0016 | - |
338
+ | 0.1735 | 5050 | 0.0006 | - |
339
+ | 0.1752 | 5100 | 0.0007 | - |
340
+ | 0.1769 | 5150 | 0.0007 | - |
341
+ | 0.1786 | 5200 | 0.0004 | - |
342
+ | 0.1804 | 5250 | 0.0003 | - |
343
+ | 0.1821 | 5300 | 0.0004 | - |
344
+ | 0.1838 | 5350 | 0.0004 | - |
345
+ | 0.1855 | 5400 | 0.0002 | - |
346
+ | 0.1872 | 5450 | 0.036 | - |
347
+ | 0.1890 | 5500 | 0.0003 | - |
348
+ | 0.1907 | 5550 | 0.0003 | - |
349
+ | 0.1924 | 5600 | 0.0003 | - |
350
+ | 0.1941 | 5650 | 0.0006 | - |
351
+ | 0.1958 | 5700 | 0.0005 | - |
352
+ | 0.1975 | 5750 | 0.0057 | - |
353
+ | 0.1993 | 5800 | 0.0008 | - |
354
+ | 0.2010 | 5850 | 0.0002 | - |
355
+ | 0.2027 | 5900 | 0.0013 | - |
356
+ | 0.2044 | 5950 | 0.0004 | - |
357
+ | 0.2061 | 6000 | 0.0002 | - |
358
+ | 0.2078 | 6050 | 0.0002 | - |
359
+ | 0.2096 | 6100 | 0.0015 | - |
360
+ | 0.2113 | 6150 | 0.037 | - |
361
+ | 0.2130 | 6200 | 0.0003 | - |
362
+ | 0.2147 | 6250 | 0.0003 | - |
363
+ | 0.2164 | 6300 | 0.0002 | - |
364
+ | 0.2182 | 6350 | 0.0003 | - |
365
+ | 0.2199 | 6400 | 0.0005 | - |
366
+ | 0.2216 | 6450 | 0.0004 | - |
367
+ | 0.2233 | 6500 | 0.0042 | - |
368
+ | 0.2250 | 6550 | 0.0004 | - |
369
+ | 0.2267 | 6600 | 0.0006 | - |
370
+ | 0.2285 | 6650 | 0.0004 | - |
371
+ | 0.2302 | 6700 | 0.0005 | - |
372
+ | 0.2319 | 6750 | 0.0021 | - |
373
+ | 0.2336 | 6800 | 0.0003 | - |
374
+ | 0.2353 | 6850 | 0.0003 | - |
375
+ | 0.2370 | 6900 | 0.0005 | - |
376
+ | 0.2388 | 6950 | 0.0003 | - |
377
+ | 0.2405 | 7000 | 0.0002 | - |
378
+ | 0.2422 | 7050 | 0.0003 | - |
379
+ | 0.2439 | 7100 | 0.0004 | - |
380
+ | 0.2456 | 7150 | 0.0005 | - |
381
+ | 0.2474 | 7200 | 0.0005 | - |
382
+ | 0.2491 | 7250 | 0.001 | - |
383
+ | 0.2508 | 7300 | 0.0055 | - |
384
+ | 0.2525 | 7350 | 0.0005 | - |
385
+ | 0.2542 | 7400 | 0.0005 | - |
386
+ | 0.2559 | 7450 | 0.0007 | - |
387
+ | 0.2577 | 7500 | 0.0002 | - |
388
+ | 0.2594 | 7550 | 0.0745 | - |
389
+ | 0.2611 | 7600 | 0.0003 | - |
390
+ | 0.2628 | 7650 | 0.0002 | - |
391
+ | 0.2645 | 7700 | 0.0002 | - |
392
+ | 0.2662 | 7750 | 0.0004 | - |
393
+ | 0.2680 | 7800 | 0.0002 | - |
394
+ | 0.2697 | 7850 | 0.0002 | - |
395
+ | 0.2714 | 7900 | 0.0003 | - |
396
+ | 0.2731 | 7950 | 0.0002 | - |
397
+ | 0.2748 | 8000 | 0.0002 | - |
398
+ | 0.2766 | 8050 | 0.0003 | - |
399
+ | 0.2783 | 8100 | 0.0003 | - |
400
+ | 0.2800 | 8150 | 0.0313 | - |
401
+ | 0.2817 | 8200 | 0.0007 | - |
402
+ | 0.2834 | 8250 | 0.0002 | - |
403
+ | 0.2851 | 8300 | 0.0003 | - |
404
+ | 0.2869 | 8350 | 0.0003 | - |
405
+ | 0.2886 | 8400 | 0.0003 | - |
406
+ | 0.2903 | 8450 | 0.0002 | - |
407
+ | 0.2920 | 8500 | 0.0003 | - |
408
+ | 0.2937 | 8550 | 0.0154 | - |
409
+ | 0.2955 | 8600 | 0.0003 | - |
410
+ | 0.2972 | 8650 | 0.0005 | - |
411
+ | 0.2989 | 8700 | 0.0041 | - |
412
+ | 0.3006 | 8750 | 0.0003 | - |
413
+ | 0.3023 | 8800 | 0.0002 | - |
414
+ | 0.3040 | 8850 | 0.0003 | - |
415
+ | 0.3058 | 8900 | 0.0001 | - |
416
+ | 0.3075 | 8950 | 0.0005 | - |
417
+ | 0.3092 | 9000 | 0.0022 | - |
418
+ | 0.3109 | 9050 | 0.0002 | - |
419
+ | 0.3126 | 9100 | 0.0003 | - |
420
+ | 0.3143 | 9150 | 0.0002 | - |
421
+ | 0.3161 | 9200 | 0.0001 | - |
422
+ | 0.3178 | 9250 | 0.0002 | - |
423
+ | 0.3195 | 9300 | 0.0001 | - |
424
+ | 0.3212 | 9350 | 0.0002 | - |
425
+ | 0.3229 | 9400 | 0.0002 | - |
426
+ | 0.3247 | 9450 | 0.0003 | - |
427
+ | 0.3264 | 9500 | 0.0017 | - |
428
+ | 0.3281 | 9550 | 0.003 | - |
429
+ | 0.3298 | 9600 | 0.0039 | - |
430
+ | 0.3315 | 9650 | 0.0028 | - |
431
+ | 0.3332 | 9700 | 0.0037 | - |
432
+ | 0.3350 | 9750 | 0.0005 | - |
433
+ | 0.3367 | 9800 | 0.0352 | - |
434
+ | 0.3384 | 9850 | 0.0006 | - |
435
+ | 0.3401 | 9900 | 0.0006 | - |
436
+ | 0.3418 | 9950 | 0.0004 | - |
437
+ | 0.3435 | 10000 | 0.0002 | - |
438
+ | 0.3453 | 10050 | 0.0012 | - |
439
+ | 0.3470 | 10100 | 0.0002 | - |
440
+ | 0.3487 | 10150 | 0.0003 | - |
441
+ | 0.3504 | 10200 | 0.0002 | - |
442
+ | 0.3521 | 10250 | 0.0002 | - |
443
+ | 0.3539 | 10300 | 0.0004 | - |
444
+ | 0.3556 | 10350 | 0.0003 | - |
445
+ | 0.3573 | 10400 | 0.0003 | - |
446
+ | 0.3590 | 10450 | 0.0002 | - |
447
+ | 0.3607 | 10500 | 0.0004 | - |
448
+ | 0.3624 | 10550 | 0.0004 | - |
449
+ | 0.3642 | 10600 | 0.0371 | - |
450
+ | 0.3659 | 10650 | 0.0005 | - |
451
+ | 0.3676 | 10700 | 0.0236 | - |
452
+ | 0.3693 | 10750 | 0.0002 | - |
453
+ | 0.3710 | 10800 | 0.0002 | - |
454
+ | 0.3727 | 10850 | 0.0003 | - |
455
+ | 0.3745 | 10900 | 0.0004 | - |
456
+ | 0.3762 | 10950 | 0.0002 | - |
457
+ | 0.3779 | 11000 | 0.0002 | - |
458
+ | 0.3796 | 11050 | 0.0002 | - |
459
+ | 0.3813 | 11100 | 0.0001 | - |
460
+ | 0.3831 | 11150 | 0.0001 | - |
461
+ | 0.3848 | 11200 | 0.0002 | - |
462
+ | 0.3865 | 11250 | 0.0002 | - |
463
+ | 0.3882 | 11300 | 0.0001 | - |
464
+ | 0.3899 | 11350 | 0.0001 | - |
465
+ | 0.3916 | 11400 | 0.0351 | - |
466
+ | 0.3934 | 11450 | 0.0003 | - |
467
+ | 0.3951 | 11500 | 0.0001 | - |
468
+ | 0.3968 | 11550 | 0.0326 | - |
469
+ | 0.3985 | 11600 | 0.0001 | - |
470
+ | 0.4002 | 11650 | 0.0006 | - |
471
+ | 0.4020 | 11700 | 0.0002 | - |
472
+ | 0.4037 | 11750 | 0.0004 | - |
473
+ | 0.4054 | 11800 | 0.0002 | - |
474
+ | 0.4071 | 11850 | 0.0002 | - |
475
+ | 0.4088 | 11900 | 0.0001 | - |
476
+ | 0.4105 | 11950 | 0.0002 | - |
477
+ | 0.4123 | 12000 | 0.0002 | - |
478
+ | 0.4140 | 12050 | 0.0003 | - |
479
+ | 0.4157 | 12100 | 0.0003 | - |
480
+ | 0.4174 | 12150 | 0.0001 | - |
481
+ | 0.4191 | 12200 | 0.0001 | - |
482
+ | 0.4208 | 12250 | 0.0003 | - |
483
+ | 0.4226 | 12300 | 0.0001 | - |
484
+ | 0.4243 | 12350 | 0.0002 | - |
485
+ | 0.4260 | 12400 | 0.0003 | - |
486
+ | 0.4277 | 12450 | 0.0002 | - |
487
+ | 0.4294 | 12500 | 0.0002 | - |
488
+ | 0.4312 | 12550 | 0.0002 | - |
489
+ | 0.4329 | 12600 | 0.0002 | - |
490
+ | 0.4346 | 12650 | 0.0007 | - |
491
+ | 0.4363 | 12700 | 0.0002 | - |
492
+ | 0.4380 | 12750 | 0.0003 | - |
493
+ | 0.4397 | 12800 | 0.0001 | - |
494
+ | 0.4415 | 12850 | 0.0001 | - |
495
+ | 0.4432 | 12900 | 0.0002 | - |
496
+ | 0.4449 | 12950 | 0.001 | - |
497
+ | 0.4466 | 13000 | 0.0002 | - |
498
+ | 0.4483 | 13050 | 0.0002 | - |
499
+ | 0.4500 | 13100 | 0.0005 | - |
500
+ | 0.4518 | 13150 | 0.0002 | - |
501
+ | 0.4535 | 13200 | 0.0002 | - |
502
+ | 0.4552 | 13250 | 0.0001 | - |
503
+ | 0.4569 | 13300 | 0.0003 | - |
504
+ | 0.4586 | 13350 | 0.0013 | - |
505
+ | 0.4604 | 13400 | 0.0002 | - |
506
+ | 0.4621 | 13450 | 0.0372 | - |
507
+ | 0.4638 | 13500 | 0.0002 | - |
508
+ | 0.4655 | 13550 | 0.0003 | - |
509
+ | 0.4672 | 13600 | 0.0025 | - |
510
+ | 0.4689 | 13650 | 0.0002 | - |
511
+ | 0.4707 | 13700 | 0.0002 | - |
512
+ | 0.4724 | 13750 | 0.0001 | - |
513
+ | 0.4741 | 13800 | 0.0002 | - |
514
+ | 0.4758 | 13850 | 0.0001 | - |
515
+ | 0.4775 | 13900 | 0.0003 | - |
516
+ | 0.4792 | 13950 | 0.0026 | - |
517
+ | 0.4810 | 14000 | 0.0002 | - |
518
+ | 0.4827 | 14050 | 0.0002 | - |
519
+ | 0.4844 | 14100 | 0.0002 | - |
520
+ | 0.4861 | 14150 | 0.0002 | - |
521
+ | 0.4878 | 14200 | 0.0002 | - |
522
+ | 0.4896 | 14250 | 0.0002 | - |
523
+ | 0.4913 | 14300 | 0.0003 | - |
524
+ | 0.4930 | 14350 | 0.0002 | - |
525
+ | 0.4947 | 14400 | 0.0014 | - |
526
+ | 0.4964 | 14450 | 0.0002 | - |
527
+ | 0.4981 | 14500 | 0.0001 | - |
528
+ | 0.4999 | 14550 | 0.0002 | - |
529
+ | 0.5016 | 14600 | 0.0001 | - |
530
+ | 0.5033 | 14650 | 0.0002 | - |
531
+ | 0.5050 | 14700 | 0.0001 | - |
532
+ | 0.5067 | 14750 | 0.0002 | - |
533
+ | 0.5085 | 14800 | 0.0001 | - |
534
+ | 0.5102 | 14850 | 0.0001 | - |
535
+ | 0.5119 | 14900 | 0.0002 | - |
536
+ | 0.5136 | 14950 | 0.0001 | - |
537
+ | 0.5153 | 15000 | 0.0001 | - |
538
+ | 0.5170 | 15050 | 0.0001 | - |
539
+ | 0.5188 | 15100 | 0.0002 | - |
540
+ | 0.5205 | 15150 | 0.0002 | - |
541
+ | 0.5222 | 15200 | 0.0002 | - |
542
+ | 0.5239 | 15250 | 0.0001 | - |
543
+ | 0.5256 | 15300 | 0.0001 | - |
544
+ | 0.5273 | 15350 | 0.0001 | - |
545
+ | 0.5291 | 15400 | 0.0001 | - |
546
+ | 0.5308 | 15450 | 0.0001 | - |
547
+ | 0.5325 | 15500 | 0.0001 | - |
548
+ | 0.5342 | 15550 | 0.0001 | - |
549
+ | 0.5359 | 15600 | 0.0001 | - |
550
+ | 0.5377 | 15650 | 0.0001 | - |
551
+ | 0.5394 | 15700 | 0.0001 | - |
552
+ | 0.5411 | 15750 | 0.0001 | - |
553
+ | 0.5428 | 15800 | 0.0001 | - |
554
+ | 0.5445 | 15850 | 0.0002 | - |
555
+ | 0.5462 | 15900 | 0.0002 | - |
556
+ | 0.5480 | 15950 | 0.0001 | - |
557
+ | 0.5497 | 16000 | 0.0001 | - |
558
+ | 0.5514 | 16050 | 0.0001 | - |
559
+ | 0.5531 | 16100 | 0.0001 | - |
560
+ | 0.5548 | 16150 | 0.0001 | - |
561
+ | 0.5565 | 16200 | 0.0001 | - |
562
+ | 0.5583 | 16250 | 0.0001 | - |
563
+ | 0.5600 | 16300 | 0.0001 | - |
564
+ | 0.5617 | 16350 | 0.0001 | - |
565
+ | 0.5634 | 16400 | 0.0002 | - |
566
+ | 0.5651 | 16450 | 0.0001 | - |
567
+ | 0.5669 | 16500 | 0.0001 | - |
568
+ | 0.5686 | 16550 | 0.0001 | - |
569
+ | 0.5703 | 16600 | 0.0001 | - |
570
+ | 0.5720 | 16650 | 0.0002 | - |
571
+ | 0.5737 | 16700 | 0.0001 | - |
572
+ | 0.5754 | 16750 | 0.0001 | - |
573
+ | 0.5772 | 16800 | 0.0001 | - |
574
+ | 0.5789 | 16850 | 0.0001 | - |
575
+ | 0.5806 | 16900 | 0.0001 | - |
576
+ | 0.5823 | 16950 | 0.0001 | - |
577
+ | 0.5840 | 17000 | 0.0001 | - |
578
+ | 0.5857 | 17050 | 0.0002 | - |
579
+ | 0.5875 | 17100 | 0.0001 | - |
580
+ | 0.5892 | 17150 | 0.0001 | - |
581
+ | 0.5909 | 17200 | 0.0001 | - |
582
+ | 0.5926 | 17250 | 0.0001 | - |
583
+ | 0.5943 | 17300 | 0.0001 | - |
584
+ | 0.5961 | 17350 | 0.0001 | - |
585
+ | 0.5978 | 17400 | 0.0001 | - |
586
+ | 0.5995 | 17450 | 0.0001 | - |
587
+ | 0.6012 | 17500 | 0.0371 | - |
588
+ | 0.6029 | 17550 | 0.0001 | - |
589
+ | 0.6046 | 17600 | 0.0001 | - |
590
+ | 0.6064 | 17650 | 0.0001 | - |
591
+ | 0.6081 | 17700 | 0.0001 | - |
592
+ | 0.6098 | 17750 | 0.0001 | - |
593
+ | 0.6115 | 17800 | 0.0002 | - |
594
+ | 0.6132 | 17850 | 0.0007 | - |
595
+ | 0.6150 | 17900 | 0.0002 | - |
596
+ | 0.6167 | 17950 | 0.0001 | - |
597
+ | 0.6184 | 18000 | 0.0115 | - |
598
+ | 0.6201 | 18050 | 0.0001 | - |
599
+ | 0.6218 | 18100 | 0.0004 | - |
600
+ | 0.6235 | 18150 | 0.0002 | - |
601
+ | 0.6253 | 18200 | 0.0074 | - |
602
+ | 0.6270 | 18250 | 0.0325 | - |
603
+ | 0.6287 | 18300 | 0.0008 | - |
604
+ | 0.6304 | 18350 | 0.0007 | - |
605
+ | 0.6321 | 18400 | 0.0002 | - |
606
+ | 0.6338 | 18450 | 0.0005 | - |
607
+ | 0.6356 | 18500 | 0.0003 | - |
608
+ | 0.6373 | 18550 | 0.0003 | - |
609
+ | 0.6390 | 18600 | 0.0002 | - |
610
+ | 0.6407 | 18650 | 0.0003 | - |
611
+ | 0.6424 | 18700 | 0.0003 | - |
612
+ | 0.6442 | 18750 | 0.0002 | - |
613
+ | 0.6459 | 18800 | 0.0002 | - |
614
+ | 0.6476 | 18850 | 0.0002 | - |
615
+ | 0.6493 | 18900 | 0.0002 | - |
616
+ | 0.6510 | 18950 | 0.0001 | - |
617
+ | 0.6527 | 19000 | 0.0001 | - |
618
+ | 0.6545 | 19050 | 0.0003 | - |
619
+ | 0.6562 | 19100 | 0.0001 | - |
620
+ | 0.6579 | 19150 | 0.0001 | - |
621
+ | 0.6596 | 19200 | 0.0002 | - |
622
+ | 0.6613 | 19250 | 0.0002 | - |
623
+ | 0.6630 | 19300 | 0.0003 | - |
624
+ | 0.6648 | 19350 | 0.0186 | - |
625
+ | 0.6665 | 19400 | 0.0001 | - |
626
+ | 0.6682 | 19450 | 0.0002 | - |
627
+ | 0.6699 | 19500 | 0.0002 | - |
628
+ | 0.6716 | 19550 | 0.0001 | - |
629
+ | 0.6734 | 19600 | 0.0001 | - |
630
+ | 0.6751 | 19650 | 0.0001 | - |
631
+ | 0.6768 | 19700 | 0.0001 | - |
632
+ | 0.6785 | 19750 | 0.0001 | - |
633
+ | 0.6802 | 19800 | 0.0001 | - |
634
+ | 0.6819 | 19850 | 0.0001 | - |
635
+ | 0.6837 | 19900 | 0.0001 | - |
636
+ | 0.6854 | 19950 | 0.0371 | - |
637
+ | 0.6871 | 20000 | 0.0001 | - |
638
+ | 0.6888 | 20050 | 0.0001 | - |
639
+ | 0.6905 | 20100 | 0.0001 | - |
640
+ | 0.6922 | 20150 | 0.0001 | - |
641
+ | 0.6940 | 20200 | 0.0001 | - |
642
+ | 0.6957 | 20250 | 0.0001 | - |
643
+ | 0.6974 | 20300 | 0.0001 | - |
644
+ | 0.6991 | 20350 | 0.0001 | - |
645
+ | 0.7008 | 20400 | 0.0001 | - |
646
+ | 0.7026 | 20450 | 0.0001 | - |
647
+ | 0.7043 | 20500 | 0.0002 | - |
648
+ | 0.7060 | 20550 | 0.0001 | - |
649
+ | 0.7077 | 20600 | 0.0002 | - |
650
+ | 0.7094 | 20650 | 0.0001 | - |
651
+ | 0.7111 | 20700 | 0.0001 | - |
652
+ | 0.7129 | 20750 | 0.0001 | - |
653
+ | 0.7146 | 20800 | 0.0001 | - |
654
+ | 0.7163 | 20850 | 0.0001 | - |
655
+ | 0.7180 | 20900 | 0.0001 | - |
656
+ | 0.7197 | 20950 | 0.0001 | - |
657
+ | 0.7215 | 21000 | 0.0001 | - |
658
+ | 0.7232 | 21050 | 0.0001 | - |
659
+ | 0.7249 | 21100 | 0.0363 | - |
660
+ | 0.7266 | 21150 | 0.0001 | - |
661
+ | 0.7283 | 21200 | 0.0001 | - |
662
+ | 0.7300 | 21250 | 0.0001 | - |
663
+ | 0.7318 | 21300 | 0.0001 | - |
664
+ | 0.7335 | 21350 | 0.0001 | - |
665
+ | 0.7352 | 21400 | 0.0001 | - |
666
+ | 0.7369 | 21450 | 0.0001 | - |
667
+ | 0.7386 | 21500 | 0.0001 | - |
668
+ | 0.7403 | 21550 | 0.0001 | - |
669
+ | 0.7421 | 21600 | 0.0001 | - |
670
+ | 0.7438 | 21650 | 0.0001 | - |
671
+ | 0.7455 | 21700 | 0.0001 | - |
672
+ | 0.7472 | 21750 | 0.0001 | - |
673
+ | 0.7489 | 21800 | 0.0001 | - |
674
+ | 0.7507 | 21850 | 0.0001 | - |
675
+ | 0.7524 | 21900 | 0.0001 | - |
676
+ | 0.7541 | 21950 | 0.0001 | - |
677
+ | 0.7558 | 22000 | 0.0001 | - |
678
+ | 0.7575 | 22050 | 0.0358 | - |
679
+ | 0.7592 | 22100 | 0.0007 | - |
680
+ | 0.7610 | 22150 | 0.0001 | - |
681
+ | 0.7627 | 22200 | 0.0001 | - |
682
+ | 0.7644 | 22250 | 0.0001 | - |
683
+ | 0.7661 | 22300 | 0.0001 | - |
684
+ | 0.7678 | 22350 | 0.0001 | - |
685
+ | 0.7695 | 22400 | 0.0368 | - |
686
+ | 0.7713 | 22450 | 0.0001 | - |
687
+ | 0.7730 | 22500 | 0.0001 | - |
688
+ | 0.7747 | 22550 | 0.0001 | - |
689
+ | 0.7764 | 22600 | 0.0001 | - |
690
+ | 0.7781 | 22650 | 0.0001 | - |
691
+ | 0.7799 | 22700 | 0.0003 | - |
692
+ | 0.7816 | 22750 | 0.0001 | - |
693
+ | 0.7833 | 22800 | 0.0001 | - |
694
+ | 0.7850 | 22850 | 0.0001 | - |
695
+ | 0.7867 | 22900 | 0.0001 | - |
696
+ | 0.7884 | 22950 | 0.0001 | - |
697
+ | 0.7902 | 23000 | 0.0001 | - |
698
+ | 0.7919 | 23050 | 0.0001 | - |
699
+ | 0.7936 | 23100 | 0.0001 | - |
700
+ | 0.7953 | 23150 | 0.0001 | - |
701
+ | 0.7970 | 23200 | 0.0001 | - |
702
+ | 0.7987 | 23250 | 0.0001 | - |
703
+ | 0.8005 | 23300 | 0.0001 | - |
704
+ | 0.8022 | 23350 | 0.0001 | - |
705
+ | 0.8039 | 23400 | 0.0002 | - |
706
+ | 0.8056 | 23450 | 0.0001 | - |
707
+ | 0.8073 | 23500 | 0.0001 | - |
708
+ | 0.8091 | 23550 | 0.0001 | - |
709
+ | 0.8108 | 23600 | 0.0001 | - |
710
+ | 0.8125 | 23650 | 0.0001 | - |
711
+ | 0.8142 | 23700 | 0.0173 | - |
712
+ | 0.8159 | 23750 | 0.0001 | - |
713
+ | 0.8176 | 23800 | 0.0001 | - |
714
+ | 0.8194 | 23850 | 0.0001 | - |
715
+ | 0.8211 | 23900 | 0.0001 | - |
716
+ | 0.8228 | 23950 | 0.0001 | - |
717
+ | 0.8245 | 24000 | 0.0001 | - |
718
+ | 0.8262 | 24050 | 0.0001 | - |
719
+ | 0.8280 | 24100 | 0.0001 | - |
720
+ | 0.8297 | 24150 | 0.0001 | - |
721
+ | 0.8314 | 24200 | 0.0001 | - |
722
+ | 0.8331 | 24250 | 0.0001 | - |
723
+ | 0.8348 | 24300 | 0.0001 | - |
724
+ | 0.8365 | 24350 | 0.0001 | - |
725
+ | 0.8383 | 24400 | 0.0001 | - |
726
+ | 0.8400 | 24450 | 0.0001 | - |
727
+ | 0.8417 | 24500 | 0.0003 | - |
728
+ | 0.8434 | 24550 | 0.0002 | - |
729
+ | 0.8451 | 24600 | 0.0002 | - |
730
+ | 0.8468 | 24650 | 0.0001 | - |
731
+ | 0.8486 | 24700 | 0.0001 | - |
732
+ | 0.8503 | 24750 | 0.0001 | - |
733
+ | 0.8520 | 24800 | 0.0004 | - |
734
+ | 0.8537 | 24850 | 0.0001 | - |
735
+ | 0.8554 | 24900 | 0.0001 | - |
736
+ | 0.8572 | 24950 | 0.0001 | - |
737
+ | 0.8589 | 25000 | 0.0001 | - |
738
+ | 0.8606 | 25050 | 0.0001 | - |
739
+ | 0.8623 | 25100 | 0.0372 | - |
740
+ | 0.8640 | 25150 | 0.0001 | - |
741
+ | 0.8657 | 25200 | 0.0001 | - |
742
+ | 0.8675 | 25250 | 0.0001 | - |
743
+ | 0.8692 | 25300 | 0.0001 | - |
744
+ | 0.8709 | 25350 | 0.0001 | - |
745
+ | 0.8726 | 25400 | 0.0001 | - |
746
+ | 0.8743 | 25450 | 0.0001 | - |
747
+ | 0.8760 | 25500 | 0.0001 | - |
748
+ | 0.8778 | 25550 | 0.0002 | - |
749
+ | 0.8795 | 25600 | 0.0001 | - |
750
+ | 0.8812 | 25650 | 0.0001 | - |
751
+ | 0.8829 | 25700 | 0.0001 | - |
752
+ | 0.8846 | 25750 | 0.0001 | - |
753
+ | 0.8864 | 25800 | 0.0001 | - |
754
+ | 0.8881 | 25850 | 0.0001 | - |
755
+ | 0.8898 | 25900 | 0.0001 | - |
756
+ | 0.8915 | 25950 | 0.0001 | - |
757
+ | 0.8932 | 26000 | 0.0001 | - |
758
+ | 0.8949 | 26050 | 0.0001 | - |
759
+ | 0.8967 | 26100 | 0.0001 | - |
760
+ | 0.8984 | 26150 | 0.0001 | - |
761
+ | 0.9001 | 26200 | 0.0001 | - |
762
+ | 0.9018 | 26250 | 0.0001 | - |
763
+ | 0.9035 | 26300 | 0.0001 | - |
764
+ | 0.9052 | 26350 | 0.0001 | - |
765
+ | 0.9070 | 26400 | 0.0001 | - |
766
+ | 0.9087 | 26450 | 0.0001 | - |
767
+ | 0.9104 | 26500 | 0.0001 | - |
768
+ | 0.9121 | 26550 | 0.0001 | - |
769
+ | 0.9138 | 26600 | 0.0001 | - |
770
+ | 0.9156 | 26650 | 0.0001 | - |
771
+ | 0.9173 | 26700 | 0.0001 | - |
772
+ | 0.9190 | 26750 | 0.0001 | - |
773
+ | 0.9207 | 26800 | 0.0001 | - |
774
+ | 0.9224 | 26850 | 0.0001 | - |
775
+ | 0.9241 | 26900 | 0.0001 | - |
776
+ | 0.9259 | 26950 | 0.0001 | - |
777
+ | 0.9276 | 27000 | 0.0001 | - |
778
+ | 0.9293 | 27050 | 0.0001 | - |
779
+ | 0.9310 | 27100 | 0.0001 | - |
780
+ | 0.9327 | 27150 | 0.0001 | - |
781
+ | 0.9345 | 27200 | 0.0001 | - |
782
+ | 0.9362 | 27250 | 0.0001 | - |
783
+ | 0.9379 | 27300 | 0.0001 | - |
784
+ | 0.9396 | 27350 | 0.0001 | - |
785
+ | 0.9413 | 27400 | 0.0001 | - |
786
+ | 0.9430 | 27450 | 0.0001 | - |
787
+ | 0.9448 | 27500 | 0.0001 | - |
788
+ | 0.9465 | 27550 | 0.0001 | - |
789
+ | 0.9482 | 27600 | 0.0001 | - |
790
+ | 0.9499 | 27650 | 0.0001 | - |
791
+ | 0.9516 | 27700 | 0.0001 | - |
792
+ | 0.9533 | 27750 | 0.0001 | - |
793
+ | 0.9551 | 27800 | 0.0001 | - |
794
+ | 0.9568 | 27850 | 0.0001 | - |
795
+ | 0.9585 | 27900 | 0.0001 | - |
796
+ | 0.9602 | 27950 | 0.0001 | - |
797
+ | 0.9619 | 28000 | 0.0001 | - |
798
+ | 0.9637 | 28050 | 0.0001 | - |
799
+ | 0.9654 | 28100 | 0.0001 | - |
800
+ | 0.9671 | 28150 | 0.0001 | - |
801
+ | 0.9688 | 28200 | 0.0001 | - |
802
+ | 0.9705 | 28250 | 0.0001 | - |
803
+ | 0.9722 | 28300 | 0.0001 | - |
804
+ | 0.9740 | 28350 | 0.0001 | - |
805
+ | 0.9757 | 28400 | 0.0001 | - |
806
+ | 0.9774 | 28450 | 0.0001 | - |
807
+ | 0.9791 | 28500 | 0.0001 | - |
808
+ | 0.9808 | 28550 | 0.0001 | - |
809
+ | 0.9825 | 28600 | 0.0001 | - |
810
+ | 0.9843 | 28650 | 0.0001 | - |
811
+ | 0.9860 | 28700 | 0.0001 | - |
812
+ | 0.9877 | 28750 | 0.0001 | - |
813
+ | 0.9894 | 28800 | 0.0001 | - |
814
+ | 0.9911 | 28850 | 0.0001 | - |
815
+ | 0.9929 | 28900 | 0.0001 | - |
816
+ | 0.9946 | 28950 | 0.0001 | - |
817
+ | 0.9963 | 29000 | 0.0001 | - |
818
+ | 0.9980 | 29050 | 0.0374 | - |
819
+ | 0.9997 | 29100 | 0.0001 | - |
820
+
821
+ ### Framework Versions
822
+ - Python: 3.10.13
823
+ - SetFit: 1.0.3
824
+ - Sentence Transformers: 2.6.1
825
+ - Transformers: 4.38.2
826
+ - PyTorch: 2.1.2
827
+ - Datasets: 2.17.0
828
+ - Tokenizers: 0.15.2
829
+
830
+ ## Citation
831
+
832
+ ### BibTeX
833
+ ```bibtex
834
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
835
+ doi = {10.48550/ARXIV.2209.11055},
836
+ url = {https://arxiv.org/abs/2209.11055},
837
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
838
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
839
+ title = {Efficient Few-Shot Learning Without Prompts},
840
+ publisher = {arXiv},
841
+ year = {2022},
842
+ copyright = {Creative Commons Attribution 4.0 International}
843
+ }
844
+ ```
845
+
846
+ <!--
847
+ ## Glossary
848
+
849
+ *Clearly define terms in order to be accessible across audiences.*
850
+ -->
851
+
852
+ <!--
853
+ ## Model Card Authors
854
+
855
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
856
+ -->
857
+
858
+ <!--
859
+ ## Model Card Contact
860
+
861
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
862
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "OrdalieTech/Solon-embeddings-large-0.1",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.38.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.35.2",
5
+ "pytorch": "2.1.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "Housing / rent",
4
+ "Housing / house loan",
5
+ "Housing / utilities & bills",
6
+ "Housing / services & maintenance",
7
+ "Housing / other",
8
+ "Food & Drinks / groceries",
9
+ "Food & Drinks / eating out",
10
+ "Food & Drinks / other",
11
+ "Leisure & Entertainment / sports & hobbies",
12
+ "Leisure & Entertainment / culture & events",
13
+ "Leisure & Entertainment / travel",
14
+ "Leisure & Entertainment / other",
15
+ "Transportation / car loan & leasing",
16
+ "Transportation / fuel",
17
+ "Transportation / public transportation",
18
+ "Transportation / taxi & carpool",
19
+ "Transportation / maitenance",
20
+ "Transportation / other",
21
+ "Recurrent Payments / loans",
22
+ "Recurrent Payments / insurance",
23
+ "Recurrent Payments / subscription",
24
+ "Recurrent Payments / other",
25
+ "Investment / securities",
26
+ "Investment / retirement & savings",
27
+ "Investment / real estate",
28
+ "Investment / other",
29
+ "Shopping / clothing",
30
+ "Shopping / electronics & multimedia",
31
+ "Shopping / sporting goods",
32
+ "Shopping / housing equipment",
33
+ "Shopping / other",
34
+ "Healthy & Beauty / doctor fees",
35
+ "Healthy & Beauty / pharmacy",
36
+ "Healthy & Beauty / beauty & self-care",
37
+ "Healthy & Beauty / veterinary",
38
+ "Healthy & Beauty / other",
39
+ "Bank services / transfers",
40
+ "Bank services / withdrawal",
41
+ "Bank services / general fees",
42
+ "Bank services / other",
43
+ "Other / taxes",
44
+ "Other / kids",
45
+ "Other / pets",
46
+ "Other / other"
47
+ ],
48
+ "normalize_embeddings": false
49
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6be2ab6c35a9619e25123bade98e05bd4cf153eb07cb7305777ed407dcdfdd83
3
+ size 2239607176
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83d5f8a40d26be4b68849f24bd3478da8db777888a7b1ed3f0a4ac16d4f1dddd
3
+ size 369207
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39feb9863a378165ab9c5c689047203d789422966c0c58721c5309fd039a8edc
3
+ size 17083074
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }