GustawB commited on
Commit
4240f7b
1 Parent(s): 69524fa

Training complete

Browse files
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: distilbert-base-cased
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - conll2003
9
+ metrics:
10
+ - precision
11
+ - recall
12
+ - f1
13
+ - accuracy
14
+ model-index:
15
+ - name: bert-finetuned-ner
16
+ results:
17
+ - task:
18
+ name: Token Classification
19
+ type: token-classification
20
+ dataset:
21
+ name: conll2003
22
+ type: conll2003
23
+ config: conll2003
24
+ split: validation
25
+ args: conll2003
26
+ metrics:
27
+ - name: Precision
28
+ type: precision
29
+ value: 0.9138952914059928
30
+ - name: Recall
31
+ type: recall
32
+ value: 0.9341972399865365
33
+ - name: F1
34
+ type: f1
35
+ value: 0.9239347536617842
36
+ - name: Accuracy
37
+ type: accuracy
38
+ value: 0.9820156590333785
39
+ ---
40
+
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # bert-finetuned-ner
45
+
46
+ This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: 0.0748
49
+ - Precision: 0.9139
50
+ - Recall: 0.9342
51
+ - F1: 0.9239
52
+ - Accuracy: 0.9820
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 2e-05
72
+ - train_batch_size: 8
73
+ - eval_batch_size: 8
74
+ - seed: 42
75
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
76
+ - lr_scheduler_type: linear
77
+ - num_epochs: 3
78
+
79
+ ### Training results
80
+
81
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | 0.0937 | 1.0 | 1756 | 0.0894 | 0.8737 | 0.9010 | 0.8872 | 0.9733 |
84
+ | 0.045 | 2.0 | 3512 | 0.0833 | 0.9117 | 0.9258 | 0.9187 | 0.9802 |
85
+ | 0.0299 | 3.0 | 5268 | 0.0748 | 0.9139 | 0.9342 | 0.9239 | 0.9820 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.46.1
91
+ - Pytorch 2.5.1+cpu
92
+ - Datasets 3.1.0
93
+ - Tokenizers 0.20.2
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert-base-cased",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertForTokenClassification"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "id2label": {
12
+ "0": "O",
13
+ "1": "B-PER",
14
+ "2": "I-PER",
15
+ "3": "B-ORG",
16
+ "4": "I-ORG",
17
+ "5": "B-LOC",
18
+ "6": "I-LOC",
19
+ "7": "B-MISC",
20
+ "8": "I-MISC"
21
+ },
22
+ "initializer_range": 0.02,
23
+ "label2id": {
24
+ "B-LOC": 5,
25
+ "B-MISC": 7,
26
+ "B-ORG": 3,
27
+ "B-PER": 1,
28
+ "I-LOC": 6,
29
+ "I-MISC": 8,
30
+ "I-ORG": 4,
31
+ "I-PER": 2,
32
+ "O": 0
33
+ },
34
+ "max_position_embeddings": 512,
35
+ "model_type": "distilbert",
36
+ "n_heads": 12,
37
+ "n_layers": 6,
38
+ "output_past": true,
39
+ "pad_token_id": 0,
40
+ "qa_dropout": 0.1,
41
+ "seq_classif_dropout": 0.2,
42
+ "sinusoidal_pos_embds": false,
43
+ "tie_weights_": true,
44
+ "torch_dtype": "float32",
45
+ "transformers_version": "4.46.1",
46
+ "vocab_size": 28996
47
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf9f96cf47861d34360554809ea765a490c1283a9aef8efdce164c0588fa52fa
3
+ size 260803668
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04d3f603c2db1f955813f8493e5ed4ef6014e25b8b3cfca70096c64bce93343f
3
+ size 5240
vocab.txt ADDED
The diff for this file is too large to render. See raw diff