GusPuffy's picture
Upload compress.py with huggingface_hub
a5e469f verified
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
import re
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import oneshot
# Select model and load it.
MODEL_ID = "ArliAI/Llama-3.1-70B-ArliAI-RPMax-v1.3"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# Select calibration dataset.
DATASET_ID = "openerotica/erotiquant3"
DATASET_SPLIT = "train"
# Select number of samples. 512 samples is a good place to start.
# Increasing the number of samples can improve accuracy.
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 4096
# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
def preprocess(example):
result = []
matches = re.findall(r'(SYSTEM|USER|ASSISTANT):\s*((?:(?!SYSTEM|USER|ASSISTANT:).|\n)+)', example['text'], re.DOTALL)
# Loop through the matches and create a dictionary for each role and its content
for role, content in matches:
result.append({"role": role.lower(), "content": content.strip()})
text = tokenizer.apply_chat_template(result, tokenize=False, add_generation_prompt=False)
tokens = tokenizer.apply_chat_template(result, tokenize=True, add_generation_prompt=False)
return {
"chat": result,
"text": text,
"tokens": tokens,
}
ds = ds.map(preprocess)
def filter_short_rows(example):
result = len(example['tokens']) > MAX_SEQUENCE_LENGTH
if result == False:
print(f"length: {len(example['tokens'])}")
return result
ds = ds.filter(filter_short_rows)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
# Tokenize inputs.
def tokenize(sample):
return tokenizer(
sample["text"],
padding=False,
max_length=MAX_SEQUENCE_LENGTH,
truncation=True,
add_special_tokens=False,
)
ds = ds.map(tokenize, remove_columns=ds.column_names)
# Configure the quantization algorithm to run.
# * quantize the weights to 4 bit with GPTQ with a group size 128
recipe = GPTQModifier(targets="Linear", scheme="W4A16", ignore=["lm_head"])
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto",
torch_dtype="auto",
)
# Apply algorithms.
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES
)
print('SAVING')
# Save to disk compressed.
SAVE_DIR = MODEL_ID.split("/")[1] + "-W4A16-G128"
model.save_pretrained(SAVE_DIR, save_compressed=True, skip_compression_stats=True)
tokenizer.save_pretrained(SAVE_DIR)
print('Saved')