Added interface
Browse files- __init__.py +0 -0
- data/test.txt +2 -1
- data/test_1.txt +2 -0
- data/test_2.txt +2 -0
- module/__init__.py +0 -0
- module/metrics.py +3 -1
- module/utils.py +18 -17
- scripts/__init__.py +0 -0
- scripts/app.py +105 -0
- prediction.py → scripts/prediction.py +0 -0
- templates/index.html +282 -0
__init__.py
ADDED
File without changes
|
data/test.txt
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
ATGGACAAACTCTAGTAACGGT
|
|
|
|
1 |
+
ATGGACAAACTCTAGTAACGGT
|
2 |
+
ATGGACAAACTCTAGTAACGGTATGGACAAACTCTAGTAACGGT
|
data/test_1.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
ATGGACAAACTCTAGTAACGGT
|
2 |
+
ATGGACAAACTCTAGTAACGGTATGGACAAACTCTAGTAACGGT
|
data/test_2.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GGCTGGGAGCTCCTCCATTCCATACCTTTTGATCCATTGATCGGATGGTCATGGCCGAGAGAGATGCAATCTGAAACGTCCTTTATACATTAGAGTTATATTGAATGATCACCCTATTAGGTCGAAGAGCCGGTGACTTGCATCAGGCTTAGTGCATATGCTTTTGGTTCGTCAACCTTCACCAAAAGGAAGGGGGCATATGTTGAATAGCAAAAATGACACCCGGACCGTCCGCCCTAGGGCCGGATGGTCCGCGGTCCGAACTATCCACGGTGGCGACACAGACGGTCTACACGTACGCAGAATCAGATAGGGTTCCGAATTTCTAGCGGGATTTGTTAGCAAAGCATGTAGGAATAACTTGATGACCGACTTGTAACAGGTCTAGACCTCCACCTTTTATCTGGATGAAGGGGTACAACCGATTGAACCTCTCACAATCGATCCAATCAAATCTACTTATCAATTACCTTATTTGCATCATTCTTCTAATTCCTAGGAGTAGGAGTAATTTTGCCTTAGGTTTAGATCTAGTTTAGTCTTCCACAACAACCTCTTCTTTGACTCTACGCCGATTAGAGGAGCACCAGGCGGCCTGCCGACCCAGAGCACGCCTTGGAACTCTCCCCCTCGATGGGATCTCTCCCGTGGCGAGTTCTAGGATTCTCCACGGAGATGAAGACCCTCTCCACCACTGCGGACCGTCCGGCCCTAGGCGCGGACACATCCGAAAGCCTGCATAGGAGGATCCGCTCTTGTGCCCTGTGCCGCGGACCGTTCGCGCCTCCGTAGAGAGCACACCGCGCAGGTGGTTCGTTTCAGTGGTTGGCATCCAGATCGGCGCCAACAGGGTGATTTGGTTGTGTGAATTTTACAACGTTTAAACTGATGGGTGTATAGATATAGATATAGATTTTAAAAAACAAAAGAAATAAAAAAATGCCCAACGGGGAAGGTAGTATTTGGTCTGTACTGTTTCCTTGCGTGATGGACATGGACT
|
2 |
+
GGCCCAGCGCACAGCTGTGATAGTGTGGCATTGTCCGGGCGCGCGCGCCCGCTCTCTCTCATCGTACCGTACGTCCGGGCCTTCTTCTCTCTCCGTGCTGTTGCCTCCTCCCTCCACCGATCTACCACGTACGACTACTGTACATTCTTGCCTTGTGAATTTACAGTGAATTGTATATATAAATATATATACATACATACAGTAGGTGTAGATATATCAATATATATATACAGAGATGGAGAGGGAGGGGGCATGAGGCATGCATATTCTGCAAAAAAAAAACATTTTATTTTGTCAGAGCTTCATGCAATTTGGGCCTACTAGCTGGCAGGCTAGCTAGCTAGGGTGGATGCGATCGTCGACCAGGGCTGGCAGCGACAAACCACCTGTGGTGGCAGTCTGCCTCCCCCCTTTGTTTTCTCCTGCCCCCCTGCTCTTCTTCCCCAAGTAGCTAGCAGGGAGTAGAGTAATATGCGTACCCTACGCAGTAATTAATCTTCACTGGATTAAATTGCGTGTATATATATAGAGAGAGATGCGTGAGCTGTCTACGATTATTGTCACAGACGTGCTGTAGCCAAATAATCCTAGCGACCGCGAGGGTGGAGCGGACTACGTACGGTCTACGTCTACGTCTACGGCGGTGGGTGATTAGAATTTCCTCCGATCCACTGATTACCAGCCGGCCTGTACATGTACATCTCTGATTCTCTGTGCGTGTTTAATTTTATTACTGCTGACTTGAGGAGCATGGAGGAGGATATGCATGCGTGCGTACATACGTCTGTCTGTCGTCGTCCATCACCGCGCGCCGCCCTCGCCTCTCTTTCTCACATCATCTTCTTGCATTGGTCCTCATCTAGCCTGCTGCCTGCCATACCTAGCAGCGTTTCACTTCACTTCACCGCCGCCGATGGATGCCCATGCTCACCGGTCTTCCCCCGCCCCCTCACCGCCCTATTCTAGCTATTTAGTGCTGCTAGCCTAGCTCTACTGCTAC
|
module/__init__.py
ADDED
File without changes
|
module/metrics.py
CHANGED
@@ -40,6 +40,8 @@ def get_predictions(
|
|
40 |
outputs = model(**inputs)
|
41 |
del inputs # to free up space on GPU
|
42 |
logits = outputs[0]
|
43 |
-
|
|
|
|
|
44 |
|
45 |
return pred_labels
|
|
|
40 |
outputs = model(**inputs)
|
41 |
del inputs # to free up space on GPU
|
42 |
logits = outputs[0]
|
43 |
+
logits = logits.cpu().tolist()
|
44 |
+
for i in range(len(logits)):
|
45 |
+
pred_labels.append([round(e, 4) for e in logits[i]])
|
46 |
|
47 |
return pred_labels
|
module/utils.py
CHANGED
@@ -11,7 +11,8 @@ from pathlib import PosixPath, Path
|
|
11 |
import importlib as im
|
12 |
import json
|
13 |
import pickle
|
14 |
-
|
|
|
15 |
import pandas as pd
|
16 |
import numpy as np
|
17 |
from IPython.display import display
|
@@ -41,21 +42,21 @@ def preprocess_genex(genex_data: pd.DataFrame, settings: dict) -> pd.DataFrame:
|
|
41 |
return genex_data
|
42 |
|
43 |
def get_args(
|
44 |
-
data_dir=data_final / "transformer" / "seq",
|
45 |
-
train_data="all_seqs_train.txt",
|
46 |
-
eval_data=None,
|
47 |
-
test_data="all_seqs_test.txt",
|
48 |
-
output_dir=models / "transformer" / "language-model",
|
49 |
-
model_name=None,
|
50 |
-
pretrained_model=None,
|
51 |
-
tokenizer_dir=None,
|
52 |
-
log_offset=None,
|
53 |
-
preprocessor=None,
|
54 |
-
filter_empty=False,
|
55 |
-
hyperparam_search_metrics=None,
|
56 |
-
hyperparam_search_trials=None,
|
57 |
-
transformation=None,
|
58 |
-
output_mode=None,
|
59 |
) -> argparse.Namespace:
|
60 |
"""Use Python's ArgumentParser to create a namespace from (optional) user input
|
61 |
|
@@ -207,7 +208,7 @@ def get_args(
|
|
207 |
default=None,
|
208 |
)
|
209 |
parser.add_argument("--batch-norm", action="store_true", default=False)
|
210 |
-
args = parser.
|
211 |
|
212 |
if args.pretrained_model and not args.pretrained_model.startswith("/"):
|
213 |
args.pretrained_model = str(Path.cwd() / args.pretrained_model)
|
|
|
11 |
import importlib as im
|
12 |
import json
|
13 |
import pickle
|
14 |
+
from pydantic import *
|
15 |
+
from typing import List
|
16 |
import pandas as pd
|
17 |
import numpy as np
|
18 |
from IPython.display import display
|
|
|
42 |
return genex_data
|
43 |
|
44 |
def get_args(
|
45 |
+
data_dir: DirectoryPath = data_final / "transformer" / "seq",
|
46 |
+
train_data: FilePath = "all_seqs_train.txt",
|
47 |
+
eval_data: FilePath = None,
|
48 |
+
test_data: FilePath = "all_seqs_test.txt",
|
49 |
+
output_dir: DirectoryPath = models / "transformer" / "language-model",
|
50 |
+
model_name: str = None,
|
51 |
+
pretrained_model: FilePath = None,
|
52 |
+
tokenizer_dir: DirectoryPath = None,
|
53 |
+
log_offset: int = None,
|
54 |
+
preprocessor: str = None,
|
55 |
+
filter_empty: bool = False,
|
56 |
+
hyperparam_search_metrics: List[str] = None,
|
57 |
+
hyperparam_search_trials: int = None,
|
58 |
+
transformation: str = None,
|
59 |
+
output_mode: str = None,
|
60 |
) -> argparse.Namespace:
|
61 |
"""Use Python's ArgumentParser to create a namespace from (optional) user input
|
62 |
|
|
|
208 |
default=None,
|
209 |
)
|
210 |
parser.add_argument("--batch-norm", action="store_true", default=False)
|
211 |
+
args, unknown = parser.parse_known_args()
|
212 |
|
213 |
if args.pretrained_model and not args.pretrained_model.startswith("/"):
|
214 |
args.pretrained_model = str(Path.cwd() / args.pretrained_model)
|
scripts/__init__.py
ADDED
File without changes
|
scripts/app.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile
|
2 |
+
from fastapi.responses import HTMLResponse, JSONResponse
|
3 |
+
# from fastapi.staticfiles import StaticFiles
|
4 |
+
from starlette.requests import Request
|
5 |
+
# from fastapi.templating import Jinja2Templates
|
6 |
+
from fastapi.middleware.cors import CORSMiddleware
|
7 |
+
from pydantic import *
|
8 |
+
|
9 |
+
from FloraBERT.module import config, transformers_utility as tr, utils, metrics, dataio
|
10 |
+
# from prettytable import PrettyTable
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
app = FastAPI()
|
14 |
+
app.add_middleware(
|
15 |
+
CORSMiddleware,
|
16 |
+
allow_origins=["*"],
|
17 |
+
allow_credentials=True,
|
18 |
+
allow_methods=["*"],
|
19 |
+
allow_headers=["*"],
|
20 |
+
)
|
21 |
+
# app.mount("FloraBERT.static", StaticFiles(directory="FloraBERT.static"), name="static")
|
22 |
+
# templates = Jinja2Templates(directory="templates")
|
23 |
+
|
24 |
+
# table = PrettyTable()
|
25 |
+
TOKENIZER_DIR = config.models / "byte-level-bpe-tokenizer"
|
26 |
+
PRETRAINED_MODEL = config.models / "transformer" / "prediction-model" / "saved_model.pth"
|
27 |
+
DATA_DIR = config.data
|
28 |
+
|
29 |
+
def load_model(args, settings):
|
30 |
+
return tr.load_model(
|
31 |
+
args.model_name,
|
32 |
+
args.tokenizer_dir,
|
33 |
+
pretrained_model=args.pretrained_model,
|
34 |
+
log_offset=args.log_offset,
|
35 |
+
**settings,
|
36 |
+
)
|
37 |
+
|
38 |
+
@app.get("/", response_class=HTMLResponse)
|
39 |
+
def read_root(request: Request):
|
40 |
+
return templates.TemplateResponse("index.html", {"request": request})
|
41 |
+
|
42 |
+
@app.post("/uploadfile/")
|
43 |
+
async def create_upload_file(file: UploadFile = File(...)):
|
44 |
+
file_path = DATA_DIR / file.filename
|
45 |
+
with open(file_path, "wb") as f:
|
46 |
+
f.write(file.file.read())
|
47 |
+
return {"filename": file.filename}
|
48 |
+
|
49 |
+
@app.get("/process/{filename}", response_class=HTMLResponse)
|
50 |
+
def process_file(request: Request, filename: str):
|
51 |
+
file_path = DATA_DIR / filename
|
52 |
+
preds = main(
|
53 |
+
data_dir=DATA_DIR,
|
54 |
+
train_data=file_path,
|
55 |
+
test_data=file_path,
|
56 |
+
pretrained_model=PRETRAINED_MODEL,
|
57 |
+
tokenizer_dir=TOKENIZER_DIR,
|
58 |
+
model_name="roberta-pred-mean-pool",
|
59 |
+
)
|
60 |
+
predictions = []
|
61 |
+
for i in range(len(preds)):
|
62 |
+
predictions.append([{"tissue": config.tissues[j], "prediction": preds[i][j] } for j in range(8)])
|
63 |
+
# print(predictions)
|
64 |
+
return JSONResponse(content=predictions)
|
65 |
+
|
66 |
+
def main(data_dir: str, train_data: str, test_data: str, pretrained_model: str, tokenizer_dir: str, model_name: str):
|
67 |
+
args = utils.get_args(
|
68 |
+
data_dir=data_dir,
|
69 |
+
train_data=train_data,
|
70 |
+
test_data=test_data,
|
71 |
+
pretrained_model=pretrained_model,
|
72 |
+
tokenizer_dir=tokenizer_dir,
|
73 |
+
model_name=model_name,
|
74 |
+
)
|
75 |
+
|
76 |
+
settings = utils.get_model_settings(config.settings, args)
|
77 |
+
if args.output_mode:
|
78 |
+
settings["output_mode"] = args.output_mode
|
79 |
+
if args.tissue_subset is not None:
|
80 |
+
settings["num_labels"] = len(args.tissue_subset)
|
81 |
+
|
82 |
+
print("Loading model...")
|
83 |
+
config_obj, tokenizer, model = load_model(args, settings)
|
84 |
+
|
85 |
+
print("Loading data...")
|
86 |
+
datasets = dataio.load_datasets(
|
87 |
+
tokenizer,
|
88 |
+
args.train_data,
|
89 |
+
eval_data=args.eval_data,
|
90 |
+
test_data=args.test_data,
|
91 |
+
seq_key="text",
|
92 |
+
file_type="text",
|
93 |
+
filter_empty=args.filter_empty,
|
94 |
+
shuffle=False,
|
95 |
+
)
|
96 |
+
dataset_test = datasets["train"]
|
97 |
+
|
98 |
+
print("Getting predictions:")
|
99 |
+
preds = np.exp(np.array(metrics.get_predictions(model, dataset_test))) - 1
|
100 |
+
# print(preds)
|
101 |
+
# for e in preds:
|
102 |
+
# table.add_row(e)
|
103 |
+
# print(table)
|
104 |
+
|
105 |
+
return preds.tolist()
|
prediction.py → scripts/prediction.py
RENAMED
File without changes
|
templates/index.html
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!-- templates/index.html -->
|
2 |
+
<!DOCTYPE html>
|
3 |
+
<html lang="en">
|
4 |
+
<head>
|
5 |
+
<title>File Upload</title>
|
6 |
+
<!-- Add Bootstrap CDN link for styling -->
|
7 |
+
<link href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" rel="stylesheet">
|
8 |
+
<!-- Add these links to the head section of your HTML -->
|
9 |
+
<link href="https://fonts.googleapis.com/css?family=Roboto:400,700" rel="stylesheet">
|
10 |
+
<link href="https://fonts.googleapis.com/css?family=Lora:400,700" rel="stylesheet">
|
11 |
+
|
12 |
+
<style>
|
13 |
+
/* Custom CSS for fade-in transition effect */
|
14 |
+
.card {
|
15 |
+
opacity: 0;
|
16 |
+
transition: opacity 0.5s ease-in-out;
|
17 |
+
}
|
18 |
+
|
19 |
+
.card.show {
|
20 |
+
opacity: 1;
|
21 |
+
}
|
22 |
+
body {
|
23 |
+
font-family: 'Lora', sans-serif;
|
24 |
+
background-color: #eaf4ea; /* Light green background */
|
25 |
+
color: #333; /* Dark text color */
|
26 |
+
}
|
27 |
+
|
28 |
+
h1, h2, h3, h4, h5, h6 {
|
29 |
+
font-family: 'Roboto', serif;
|
30 |
+
font-weight: bold;
|
31 |
+
}
|
32 |
+
|
33 |
+
.container {
|
34 |
+
background-color: rgba(255, 255, 255, 0.9); /* Semi-transparent white background for content */
|
35 |
+
border-radius: 15px;
|
36 |
+
padding: 20px;
|
37 |
+
margin-top: 50px;
|
38 |
+
}
|
39 |
+
|
40 |
+
h1, h2 {
|
41 |
+
color: #4CAF50; /* Dark green title color */
|
42 |
+
}
|
43 |
+
|
44 |
+
button.btn-primary {
|
45 |
+
background-color: #4CAF50; /* Dark green button color */
|
46 |
+
border: none;
|
47 |
+
}
|
48 |
+
|
49 |
+
button.btn-primary:hover {
|
50 |
+
background-color: #45a049; /* Slightly darker green on hover */
|
51 |
+
}
|
52 |
+
|
53 |
+
.card {
|
54 |
+
background-color: #f8f9fa; /* Light gray background for cards */
|
55 |
+
border: 1px solid #ddd; /* Light gray border */
|
56 |
+
border-radius: 10px;
|
57 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); /* Subtle shadow */
|
58 |
+
}
|
59 |
+
|
60 |
+
.card-header {
|
61 |
+
background-color: #4CAF50; /* Dark green header color for cards */
|
62 |
+
color: white;
|
63 |
+
border-radius: 10px 10px 0 0;
|
64 |
+
}
|
65 |
+
|
66 |
+
.card-body {
|
67 |
+
padding: 15px;
|
68 |
+
}
|
69 |
+
|
70 |
+
.list-group-item {
|
71 |
+
border: none;
|
72 |
+
}
|
73 |
+
|
74 |
+
.btn-success {
|
75 |
+
background-color: #28a745; /* Dark green for success button */
|
76 |
+
border: none;
|
77 |
+
}
|
78 |
+
|
79 |
+
.btn-success:hover {
|
80 |
+
background-color: #218838; /* Slightly darker green on hover */
|
81 |
+
}
|
82 |
+
|
83 |
+
#predictionsList:hover::before {
|
84 |
+
content: "Tables displaying TPM values corresponding to plant tissues";
|
85 |
+
position: absolute;
|
86 |
+
bottom: 100%; /* Position the tooltip above the text */
|
87 |
+
left: 50%;
|
88 |
+
transform: translateX(-50%);
|
89 |
+
background-color: #333;
|
90 |
+
color: #fff;
|
91 |
+
padding: 5px;
|
92 |
+
border-radius: 5px;
|
93 |
+
font-size: 12px;
|
94 |
+
}
|
95 |
+
</style>
|
96 |
+
</head>
|
97 |
+
<body>
|
98 |
+
<div class="container">
|
99 |
+
<h1 class="mb-4">
|
100 |
+
<a href="https://huggingface.co/Gurveer05/FloraBERT" target="_blank" rel="noopener noreferrer" style="color: #218838;">FloraBERT</a>
|
101 |
+
</h1>
|
102 |
+
<form>
|
103 |
+
<div class="form-group">
|
104 |
+
<label for="fileInput">Select .txt files:</label>
|
105 |
+
<div class="input-group">
|
106 |
+
<div class="custom-file">
|
107 |
+
<input type="file" class="custom-file-input" id="fileInput" accept=".txt" multiple onchange="displaySelectedFiles()">
|
108 |
+
<label class="custom-file-label" for="fileInput">Choose files</label>
|
109 |
+
</div>
|
110 |
+
</div>
|
111 |
+
</div>
|
112 |
+
<button type="button" class="btn btn-primary" id="uploadButton" onclick="processFiles()">Upload</button>
|
113 |
+
<p id="uploadMessage" class="text-muted mt-2"></p>
|
114 |
+
<div id="selectedFiles" class="mt-2"></div>
|
115 |
+
</form>
|
116 |
+
|
117 |
+
<h2 class="mt-5" id="predictionsList" title="Table displaying TPM values corresponding to plant tissues">Predictions</h2>
|
118 |
+
<div id="loadingIcon" class="d-none">
|
119 |
+
<p class="text-muted">Processing... <span class="spinner-border spinner-border-sm" role="status" aria-hidden="true"></span></p>
|
120 |
+
</div>
|
121 |
+
<div id="predictionsList" class="mt-3"></div>
|
122 |
+
|
123 |
+
<button type="button" class="btn btn-success mt-3" onclick="downloadAllPredictions()">Download All Predictions</button>
|
124 |
+
</div>
|
125 |
+
|
126 |
+
<script>
|
127 |
+
// Maintain a cache for predictions
|
128 |
+
const predictionsCache = {};
|
129 |
+
|
130 |
+
function displaySelectedFiles() {
|
131 |
+
const fileInput = document.getElementById('fileInput');
|
132 |
+
const selectedFilesContainer = document.getElementById('selectedFiles');
|
133 |
+
const files = fileInput.files;
|
134 |
+
|
135 |
+
selectedFilesContainer.innerHTML = '';
|
136 |
+
|
137 |
+
for (let i = 0; i < files.length; i++) {
|
138 |
+
const fileName = files[i].name;
|
139 |
+
const fileLabel = document.createElement('span');
|
140 |
+
fileLabel.innerText = fileName;
|
141 |
+
|
142 |
+
if (i > 0) {
|
143 |
+
selectedFilesContainer.appendChild(document.createTextNode(', '));
|
144 |
+
}
|
145 |
+
|
146 |
+
selectedFilesContainer.appendChild(fileLabel);
|
147 |
+
}
|
148 |
+
}
|
149 |
+
|
150 |
+
async function processFiles() {
|
151 |
+
const fileInput = document.getElementById('fileInput');
|
152 |
+
const files = fileInput.files;
|
153 |
+
|
154 |
+
const uploadButton = document.getElementById('uploadButton');
|
155 |
+
const uploadMessage = document.getElementById('uploadMessage');
|
156 |
+
const loadingIcon = document.getElementById('loadingIcon');
|
157 |
+
const predictionsList = document.getElementById('predictionsList');
|
158 |
+
const selectedFilesContainer = document.getElementById('selectedFiles');
|
159 |
+
|
160 |
+
// Disable the upload button
|
161 |
+
uploadButton.disabled = true;
|
162 |
+
|
163 |
+
uploadMessage.innerText = ''; // Clear previous messages
|
164 |
+
|
165 |
+
if (files.length === 0) {
|
166 |
+
// Update upload message for no file selected
|
167 |
+
uploadMessage.innerText = 'Please choose at least one file.';
|
168 |
+
// Enable the upload button
|
169 |
+
uploadButton.disabled = false;
|
170 |
+
return;
|
171 |
+
}
|
172 |
+
|
173 |
+
const url = 'http://127.0.0.1:8000';
|
174 |
+
|
175 |
+
loadingIcon.classList.remove('d-none');
|
176 |
+
// predictionsList.innerHTML = ''; // Do not clear previous cards
|
177 |
+
|
178 |
+
for (let i = 0; i < files.length; i++) {
|
179 |
+
const file = files[i];
|
180 |
+
const formData = new FormData();
|
181 |
+
formData.append('file', file);
|
182 |
+
|
183 |
+
const response = await fetch(`${url}/uploadfile/`, {
|
184 |
+
method: 'POST',
|
185 |
+
body: formData
|
186 |
+
});
|
187 |
+
|
188 |
+
if (response.ok) {
|
189 |
+
const result = await response.json();
|
190 |
+
const filename = result.filename;
|
191 |
+
|
192 |
+
const predictionsResponse = await fetch(`${url}/process/${filename}`);
|
193 |
+
const predictions = await predictionsResponse.json();
|
194 |
+
|
195 |
+
predictionsCache[filename] = predictions;
|
196 |
+
|
197 |
+
// Display predictions as cards (newest on top)
|
198 |
+
if (!document.getElementById(`card-${filename}`)) {
|
199 |
+
const cardHtml = `
|
200 |
+
<div id="card-${filename}" class="card mt-3">
|
201 |
+
<div class="card-header">
|
202 |
+
${filename}
|
203 |
+
</div>
|
204 |
+
<div class="card-body">
|
205 |
+
<ul class="list-group list-group-flush">
|
206 |
+
${predictions.map((predictionList, index) => `
|
207 |
+
<li class="list-group-item">
|
208 |
+
<strong>Sequence ${index + 1}</strong>
|
209 |
+
<table class="table table-bordered mt-2">
|
210 |
+
<thead>
|
211 |
+
<tr>
|
212 |
+
<th scope="col">Tissue</th>
|
213 |
+
<th scope="col">Prediction</th>
|
214 |
+
</tr>
|
215 |
+
</thead>
|
216 |
+
<tbody>
|
217 |
+
${predictionList.map(prediction => `
|
218 |
+
<tr>
|
219 |
+
<td>${prediction.tissue}</td>
|
220 |
+
<td>${prediction.prediction}</td>
|
221 |
+
</tr>
|
222 |
+
`).join('')}
|
223 |
+
</tbody>
|
224 |
+
</table>
|
225 |
+
</li>
|
226 |
+
`).join('')}
|
227 |
+
</ul>
|
228 |
+
</div>
|
229 |
+
</div>
|
230 |
+
`;
|
231 |
+
predictionsList.innerHTML += cardHtml;
|
232 |
+
|
233 |
+
// Trigger fade-in effect
|
234 |
+
setTimeout(() => {
|
235 |
+
document.querySelectorAll('.card').forEach(card => card.classList.add('show'));
|
236 |
+
}, 100);
|
237 |
+
}
|
238 |
+
|
239 |
+
// Update upload message immediately
|
240 |
+
uploadMessage.innerText = `Uploaded file ${i + 1} of ${files.length}.`;
|
241 |
+
|
242 |
+
// Clear the message after a short delay (e.g., 2000 milliseconds)
|
243 |
+
setTimeout(() => {
|
244 |
+
uploadMessage.innerText = '';
|
245 |
+
}, 2000);
|
246 |
+
} else {
|
247 |
+
console.error('Failed to upload file:', file.name);
|
248 |
+
uploadMessage.innerText = `Failed to upload file ${i + 1} of ${files.length}.`;
|
249 |
+
}
|
250 |
+
}
|
251 |
+
|
252 |
+
// Enable the upload button after all files are processed
|
253 |
+
uploadButton.disabled = false;
|
254 |
+
|
255 |
+
// Hide processing icon after all files are processed
|
256 |
+
loadingIcon.classList.add('d-none');
|
257 |
+
|
258 |
+
// Clear displayed selected files after processing
|
259 |
+
selectedFilesContainer.innerHTML = '';
|
260 |
+
}
|
261 |
+
|
262 |
+
function downloadAllPredictions() {
|
263 |
+
// Convert predictionsCache to a JSON string
|
264 |
+
const predictionsJSON = JSON.stringify(predictionsCache, null, 2);
|
265 |
+
|
266 |
+
// Create a Blob containing the JSON data
|
267 |
+
const blob = new Blob([predictionsJSON], { type: 'application/json' });
|
268 |
+
|
269 |
+
// Create a link element and trigger a click to download the file
|
270 |
+
const a = document.createElement('a');
|
271 |
+
a.href = URL.createObjectURL(blob);
|
272 |
+
a.download = 'all_predictions.json';
|
273 |
+
a.click();
|
274 |
+
}
|
275 |
+
</script>
|
276 |
+
|
277 |
+
<!-- Add Bootstrap JS and Popper.js CDN links -->
|
278 |
+
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"></script>
|
279 |
+
<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js"></script>
|
280 |
+
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"></script>
|
281 |
+
</body>
|
282 |
+
</html>
|