|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Optional |
|
|
|
import torch |
|
|
|
from peft_mora.tuners.lora.layer import LoraLayer |
|
from peft_mora.tuners.tuners_utils import BaseTunerLayer |
|
from peft_mora.utils import get_auto_gptq_quant_linear |
|
|
|
|
|
class QuantLinear(torch.nn.Module, LoraLayer): |
|
def __init__( |
|
self, |
|
base_layer, |
|
adapter_name: str, |
|
r: int = 0, |
|
lora_alpha: int = 1, |
|
lora_dropout: float = 0.0, |
|
init_lora_weights: bool = True, |
|
use_rslora: bool = False, |
|
use_dora: bool = False, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
LoraLayer.__init__(self, base_layer) |
|
|
|
if use_dora: |
|
raise ValueError(f"{self.__class__.__name__} does not support DoRA yet, please set it to False") |
|
|
|
|
|
|
|
self.quant_linear_module = base_layer |
|
self._active_adapter = adapter_name |
|
self.update_layer( |
|
adapter_name, |
|
r, |
|
lora_alpha=lora_alpha, |
|
lora_dropout=lora_dropout, |
|
init_lora_weights=init_lora_weights, |
|
use_rslora=use_rslora, |
|
use_dora=use_dora, |
|
) |
|
|
|
def forward(self, x: torch.Tensor): |
|
|
|
result = self.quant_linear_module(x) |
|
|
|
if self.disable_adapters: |
|
return result |
|
|
|
for active_adapter in self.active_adapters: |
|
if active_adapter not in self.lora_A.keys(): |
|
continue |
|
lora_A = self.lora_A[active_adapter] |
|
lora_B = self.lora_B[active_adapter] |
|
dropout = self.lora_dropout[active_adapter] |
|
scaling = self.scaling[active_adapter] |
|
|
|
requires_conversion = not torch.is_autocast_enabled() |
|
if requires_conversion: |
|
expected_dtype = result.dtype |
|
x = x.to(lora_A.weight.dtype) |
|
|
|
output = lora_B(lora_A(dropout(x))) |
|
if requires_conversion: |
|
output = output.to(expected_dtype) |
|
output = output * scaling |
|
result += output |
|
return result |
|
|
|
def __repr__(self) -> str: |
|
rep = super().__repr__() |
|
return "lora." + rep |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def dispatch_gptq( |
|
target: torch.nn.Module, |
|
adapter_name: str, |
|
**kwargs: Any, |
|
) -> Optional[torch.nn.Module]: |
|
new_module = None |
|
|
|
if isinstance(target, BaseTunerLayer): |
|
target_base_layer = target.get_base_layer() |
|
else: |
|
target_base_layer = target |
|
|
|
gptq_quantization_config = kwargs.get("gptq_quantization_config", None) |
|
AutoGPTQQuantLinear = get_auto_gptq_quant_linear(gptq_quantization_config) |
|
|
|
if AutoGPTQQuantLinear is not None and isinstance(target_base_layer, AutoGPTQQuantLinear): |
|
new_module = QuantLinear(target, adapter_name, **kwargs) |
|
target.qweight = target_base_layer.qweight |
|
|
|
return new_module |
|
|