|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
from typing import List, Optional |
|
|
|
import bitsandbytes as bnb |
|
import torch |
|
|
|
from peft_mora.import_utils import is_bnb_4bit_available, is_bnb_available |
|
from peft_mora.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge |
|
from peft_mora.utils.other import transpose |
|
|
|
from .layer import LoraLayer |
|
|
|
|
|
if is_bnb_available(): |
|
|
|
class Linear8bitLt(torch.nn.Module, LoraLayer): |
|
|
|
def __init__( |
|
self, |
|
base_layer: torch.nn.Module, |
|
adapter_name: str, |
|
r: int = 0, |
|
lora_alpha: int = 1, |
|
lora_dropout: float = 0.0, |
|
init_lora_weights: bool = True, |
|
use_rslora: bool = False, |
|
use_dora: bool = False, |
|
use_mora: bool = False, |
|
mora_type: int = 1, |
|
**kwargs, |
|
) -> None: |
|
super().__init__() |
|
LoraLayer.__init__(self, base_layer) |
|
|
|
if use_dora: |
|
raise ValueError(f"{self.__class__.__name__} does not support DoRA yet, please set it to False") |
|
|
|
self._active_adapter = adapter_name |
|
self.update_layer( |
|
adapter_name, |
|
r, |
|
lora_alpha=lora_alpha, |
|
lora_dropout=lora_dropout, |
|
init_lora_weights=init_lora_weights, |
|
use_rslora=use_rslora, |
|
use_dora=use_dora, |
|
use_mora=use_mora, |
|
mora_type=mora_type, |
|
) |
|
|
|
def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None: |
|
""" |
|
Merge the active adapter weights into the base weights |
|
|
|
Args: |
|
safe_merge (`bool`, *optional*): |
|
If True, the merge operation will be performed in a copy of the original weights and check for NaNs |
|
before merging the weights. This is useful if you want to check if the merge operation will produce |
|
NaNs. Defaults to `False`. |
|
adapter_names (`List[str]`, *optional*): |
|
The list of adapter names that should be merged. If None, all active adapters will be merged. |
|
Defaults to `None`. |
|
""" |
|
adapter_names = check_adapters_to_merge(self, adapter_names) |
|
if not adapter_names: |
|
|
|
return |
|
|
|
for active_adapter in adapter_names: |
|
if active_adapter not in self.lora_A.keys(): |
|
continue |
|
warnings.warn( |
|
"Merge lora module to 8-bit linear may get different generations due to rounding errors." |
|
) |
|
lora_data = self.get_delta_weight(active_adapter) |
|
|
|
weight = self.get_base_layer().weight |
|
state = self.get_base_layer().state |
|
if state.SCB is None: |
|
state.SCB = weight.SCB |
|
|
|
|
|
|
|
im = torch.eye(weight.data.shape[-1]).contiguous().half().to(weight.device) |
|
im, imt, SCim, SCimt, coo_tensorim = bnb.functional.double_quant(im) |
|
im, Sim = bnb.functional.transform(im, "col32") |
|
if state.CxB is None: |
|
state.CxB, state.SB = bnb.functional.transform(weight.data, to_order=state.formatB) |
|
out32, Sout32 = bnb.functional.igemmlt(im, state.CxB, Sim, state.SB) |
|
output = bnb.functional.mm_dequant(out32, Sout32, SCim, state.SCB, bias=None).t() |
|
|
|
w_data = output.to(lora_data.dtype).to(lora_data.device) + lora_data |
|
if safe_merge and not torch.isfinite(w_data).all(): |
|
raise ValueError( |
|
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" |
|
) |
|
|
|
self.get_base_layer().weight = bnb.nn.Int8Params( |
|
w_data.to("cpu"), requires_grad=False, has_fp16_weights=weight.has_fp16_weights |
|
).to(weight.device) |
|
state.reset_grads() |
|
self.merged_adapters.append(active_adapter) |
|
|
|
def unmerge(self) -> None: |
|
""" |
|
This method unmerges all merged adapter layers from the base weights. |
|
""" |
|
if not self.merged: |
|
warnings.warn("Already unmerged. Nothing to do.") |
|
return |
|
|
|
while len(self.merged_adapters) > 0: |
|
active_adapter = self.merged_adapters.pop() |
|
if active_adapter not in self.lora_A.keys(): |
|
continue |
|
warnings.warn( |
|
"Unmerge lora module to 8-bit linear may get different generations due to rounding errors." |
|
) |
|
lora_data = self.get_delta_weight(active_adapter) |
|
|
|
weight = self.get_base_layer().weight |
|
state = self.get_base_layer().state |
|
if state.SCB is None: |
|
state.SCB = weight.SCB |
|
im = torch.eye(weight.data.shape[-1]).contiguous().half().to(weight.device) |
|
im, imt, SCim, SCimt, coo_tensorim = bnb.functional.double_quant(im) |
|
im, Sim = bnb.functional.transform(im, "col32") |
|
|
|
if state.CxB is None: |
|
state.CxB, state.SB = bnb.functional.transform(weight.data, to_order=state.formatB) |
|
out32, Sout32 = bnb.functional.igemmlt(im, state.CxB, Sim, state.SB) |
|
output = bnb.functional.mm_dequant(out32, Sout32, SCim, state.SCB, bias=None).t() |
|
|
|
w_data = output.to(lora_data.dtype).to(lora_data.device) - lora_data |
|
self.get_base_layer().weight = bnb.nn.Int8Params( |
|
w_data.to("cpu"), requires_grad=False, has_fp16_weights=weight.has_fp16_weights |
|
).to(weight.device) |
|
state.reset_grads() |
|
|
|
def get_delta_weight(self, adapter): |
|
return ( |
|
transpose( |
|
self.lora_B[adapter].weight @ self.lora_A[adapter].weight, |
|
False, |
|
) |
|
* self.scaling[adapter] |
|
) |
|
|
|
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: |
|
if self.disable_adapters: |
|
if self.merged: |
|
self.unmerge() |
|
result = self.base_layer(x, *args, **kwargs) |
|
elif self.merged: |
|
result = self.base_layer(x, *args, **kwargs) |
|
else: |
|
result = self.base_layer(x, *args, **kwargs) |
|
for active_adapter in self.active_adapters: |
|
if active_adapter not in self.lora_A.keys(): |
|
continue |
|
lora_A = self.lora_A[active_adapter] |
|
lora_B = self.lora_B[active_adapter] |
|
dropout = self.lora_dropout[active_adapter] |
|
scaling = self.scaling[active_adapter] |
|
|
|
requires_conversion = not torch.is_autocast_enabled() |
|
if requires_conversion: |
|
expected_dtype = result.dtype |
|
compute_dtype = lora_A.weight.dtype |
|
if x.dtype != compute_dtype: |
|
x = x.to(compute_dtype) |
|
output = lora_B(lora_A(dropout(x))) |
|
if requires_conversion: |
|
output = output.to(expected_dtype) |
|
output = output * scaling |
|
result = result + output |
|
|
|
return result |
|
|
|
def __repr__(self) -> str: |
|
rep = super().__repr__() |
|
return "lora." + rep |
|
|
|
def dispatch_bnb_8bit(target: torch.nn.Module, adapter_name: str, **kwargs): |
|
new_module = None |
|
|
|
if isinstance(target, BaseTunerLayer): |
|
target_base_layer = target.get_base_layer() |
|
else: |
|
target_base_layer = target |
|
|
|
loaded_in_8bit = kwargs.get("loaded_in_8bit", False) |
|
if loaded_in_8bit and isinstance(target_base_layer, bnb.nn.Linear8bitLt): |
|
eightbit_kwargs = kwargs.copy() |
|
eightbit_kwargs.update( |
|
{ |
|
"has_fp16_weights": target.state.has_fp16_weights, |
|
"memory_efficient_backward": target.state.memory_efficient_backward, |
|
"threshold": target.state.threshold, |
|
"index": target.index, |
|
} |
|
) |
|
new_module = Linear8bitLt(target, adapter_name, **eightbit_kwargs) |
|
|
|
return new_module |
|
|
|
|
|
if is_bnb_4bit_available(): |
|
|
|
class Linear4bit(torch.nn.Module, LoraLayer): |
|
|
|
def __init__( |
|
self, |
|
base_layer: torch.nn.Module, |
|
adapter_name: str, |
|
r: int = 0, |
|
lora_alpha: int = 1, |
|
lora_dropout: float = 0.0, |
|
init_lora_weights: bool = True, |
|
use_rslora: bool = False, |
|
use_dora: bool = False, |
|
use_mora: bool = False, |
|
mora_type: int = 1, |
|
**kwargs, |
|
) -> None: |
|
super().__init__() |
|
LoraLayer.__init__(self, base_layer) |
|
|
|
if use_dora: |
|
raise ValueError(f"{self.__class__.__name__} does not support DoRA yet, please set it to False") |
|
|
|
self._active_adapter = adapter_name |
|
self.update_layer( |
|
adapter_name, |
|
r, |
|
lora_alpha=lora_alpha, |
|
lora_dropout=lora_dropout, |
|
init_lora_weights=init_lora_weights, |
|
use_rslora=use_rslora, |
|
use_dora=use_dora, |
|
use_mora=use_mora, |
|
mora_type=mora_type, |
|
) |
|
|
|
def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None: |
|
""" |
|
Merge the active adapter weights into the base weights |
|
|
|
Args: |
|
safe_merge (`bool`, *optional*): |
|
If True, the merge operation will be performed in a copy of the original weights and check for NaNs |
|
before merging the weights. This is useful if you want to check if the merge operation will produce |
|
NaNs. Defaults to `False`. |
|
adapter_names (`List[str]`, *optional*): |
|
The list of adapter names that should be merged. If None, all active adapters will be merged. |
|
Defaults to `None`. |
|
""" |
|
adapter_names = check_adapters_to_merge(self, adapter_names) |
|
if not adapter_names: |
|
|
|
return |
|
|
|
for active_adapter in adapter_names: |
|
if active_adapter not in self.lora_A.keys(): |
|
continue |
|
warnings.warn( |
|
"Merge lora module to 4-bit linear may get different generations due to rounding errors." |
|
) |
|
|
|
weight = self.get_base_layer().weight |
|
kwargs = weight.__dict__ |
|
lora_data = self.get_delta_weight(active_adapter) |
|
|
|
w_data = bnb.functional.dequantize_4bit(weight.data, weight.quant_state) + lora_data |
|
if safe_merge and not torch.isfinite(w_data).all(): |
|
raise ValueError( |
|
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" |
|
) |
|
if "bnb_quantized" in kwargs: |
|
kwargs["bnb_quantized"] = False |
|
self.get_base_layer().weight = bnb.nn.Params4bit(w_data.to("cpu"), requires_grad=False, **kwargs).to( |
|
weight.device |
|
) |
|
self.merged_adapters.append(active_adapter) |
|
|
|
def unmerge(self) -> None: |
|
""" |
|
This method unmerges all merged adapter layers from the base weights. |
|
""" |
|
if not self.merged: |
|
warnings.warn("Already unmerged. Nothing to do.") |
|
return |
|
|
|
while len(self.merged_adapters) > 0: |
|
active_adapter = self.merged_adapters.pop() |
|
if active_adapter not in self.lora_A.keys(): |
|
continue |
|
warnings.warn( |
|
"Unmerge lora module to 4-bit linear may get different generations due to rounding errors." |
|
) |
|
weight = self.get_base_layer().weight |
|
kwargs = weight.__dict__ |
|
lora_data = self.get_delta_weight(active_adapter) |
|
w_data = bnb.functional.dequantize_4bit(weight.data, weight.quant_state) - lora_data |
|
if "bnb_quantized" in kwargs: |
|
kwargs["bnb_quantized"] = False |
|
self.get_base_layer().weight = bnb.nn.Params4bit(w_data.to("cpu"), requires_grad=False, **kwargs).to( |
|
weight.device |
|
) |
|
|
|
def get_delta_weight(self, adapter): |
|
return ( |
|
transpose( |
|
self.lora_B[adapter].weight @ self.lora_A[adapter].weight, |
|
False, |
|
) |
|
* self.scaling[adapter] |
|
) |
|
|
|
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: |
|
if self.disable_adapters: |
|
if self.merged: |
|
self.unmerge() |
|
result = self.base_layer(x, *args, **kwargs) |
|
elif self.merged: |
|
result = self.base_layer(x, *args, **kwargs) |
|
else: |
|
result = self.base_layer(x, *args, **kwargs) |
|
|
|
|
|
|
|
|
|
|
|
result = result.clone() |
|
|
|
for active_adapter in self.active_adapters: |
|
if active_adapter not in self.lora_A.keys(): |
|
continue |
|
lora_A = self.lora_A[active_adapter] |
|
lora_B = self.lora_B[active_adapter] |
|
dropout = self.lora_dropout[active_adapter] |
|
scaling = self.scaling[active_adapter] |
|
|
|
requires_conversion = not torch.is_autocast_enabled() |
|
if requires_conversion: |
|
expected_dtype = result.dtype |
|
x = x.to(lora_A.weight.dtype) |
|
|
|
if self.use_mora[active_adapter]: |
|
x = dropout(x) |
|
output = self._apply_mora(x, lora_A, lora_B, scaling, active_adapter) |
|
else: |
|
output = lora_B(lora_A(dropout(x))) |
|
if requires_conversion: |
|
output = output.to(expected_dtype) |
|
output = output * scaling |
|
result = result + output |
|
|
|
return result |
|
|
|
def __repr__(self) -> str: |
|
rep = super().__repr__() |
|
return "lora." + rep |
|
|
|
def dispatch_bnb_4bit(target: torch.nn.Module, adapter_name: str, **kwargs): |
|
new_module = None |
|
|
|
if isinstance(target, BaseTunerLayer): |
|
target_base_layer = target.get_base_layer() |
|
else: |
|
target_base_layer = target |
|
|
|
loaded_in_4bit = kwargs.get("loaded_in_4bit", False) |
|
if loaded_in_4bit and is_bnb_4bit_available() and isinstance(target_base_layer, bnb.nn.Linear4bit): |
|
fourbit_kwargs = kwargs.copy() |
|
fourbit_kwargs.update( |
|
{ |
|
"compute_dtype": target_base_layer.compute_dtype, |
|
"compress_statistics": target_base_layer.weight.compress_statistics, |
|
"quant_type": target_base_layer.weight.quant_type, |
|
} |
|
) |
|
new_module = Linear4bit(target, adapter_name, **fourbit_kwargs) |
|
|
|
return new_module |
|
|