LunarLander-v2 / config.json
GuilletJean's picture
Upload PPO LunarLander-v2 trained agent
33e7828 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d7ffcff67a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d7ffcff6840>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d7ffcff68e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d7ffcff6980>", "_build": "<function ActorCriticPolicy._build at 0x7d7ffcff6a20>", "forward": "<function ActorCriticPolicy.forward at 0x7d7ffcff6ac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d7ffcff6b60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d7ffcff6c00>", "_predict": "<function ActorCriticPolicy._predict at 0x7d7ffcff6ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d7ffcff6d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d7ffcff6de0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d7ffcff6e80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d7ffcf4f840>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1738578142692825868, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYjnDyPAjK6bolCOzH5Erbm++s6dehmugAAgD8AAIA/pgx0PvtuuT5lbFC94PSZvkiCFD3GmTc9AAAAAAAAAABNnku9KVx1uiAuoLoEXZa14280uw9uuzkAAIA/AACAP5pXEj30maM/Li5oPsC61r6kJAc9VnvgPQAAAAAAAAAAOtEWPp9MhbsgWb46tFHnt6ju0LwTp965AACAPwAAgD8N0g8+7C7iu921YTt0ZB+5/2Q0vRYikLoAAIA/AACAPzMgML3XkxK5V+SWO+JNljbS31G7RNCcNQAAgD8AAIA/3d9cvsWY0zwx9KC5Db5LOEqmar4N4984AACAPwAAgD/zhZe9ruGSuqN707rT4Ny1l4i9OkUM9TkAAIA/AACAPzODP70uFFk/V8SuvQC3k77g1BS+DtT4uwAAAAAAAAAA5hUTvfasZboYDTq60Yu0tv9IWDv+/VU5AACAPwAAgD8Aj409pEA0uZiPVLzHnXM2bPxGOmqF5LUAAIA/AACAPwAY1bt7jpO6gpRHuxpnLLVM7A062g1nOgAAgD8AAIA/mkkcO482TLrA72+6m7eJtkZ4jLqUv405AACAPwAAgD8aOWu9rqOFupLlQjoO34A1VGcbO4bjYbkAAIA/AACAPwDtH76RhmU+OPVRPTNdZb5vS7Q8tFIhvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGJcM90Rvm6MAWyUTegDjAF0lEdAlNyP6oESunV9lChoBkdAYv+Moc7yQWgHTegDaAhHQJTheMMqjJx1fZQoaAZHQGMZV2q1gIBoB03oA2gIR0CU9/LM9r44dX2UKGgGR0BgalTaTOgQaAdN6ANoCEdAlP30tdzGP3V9lChoBkdAYQzwXIlt0mgHTegDaAhHQJUGYCRwIdF1fZQoaAZHQF/C5hjOLR9oB03oA2gIR0CVCU0gbIcSdX2UKGgGR0Bhc7+5vtMPaAdN6ANoCEdAlQx0tqYZ23V9lChoBkdAYYed+XqqwWgHTegDaAhHQJUUTKLbYbt1fZQoaAZHQGFTuQp4KQdoB03oA2gIR0CVFGk0Jng6dX2UKGgGR0BfsQfp2U0OaAdN6ANoCEdAlRVxvze41HV9lChoBkdAQqM4NqgyumgHS85oCEdAlRl37Lt/nXV9lChoBkdAYM0WKuSwGGgHTegDaAhHQJUdzIlt0mt1fZQoaAZHQGNwXVLBbfRoB03oA2gIR0CVILC66J66dX2UKGgGR0BjcV5rxiG4aAdN6ANoCEdAlSDAJXyRS3V9lChoBkdAXrXj0cwQDmgHTegDaAhHQJUiRY2bXpZ1fZQoaAZHQGP0ALRa5gBoB03oA2gIR0CVKS79Q40edX2UKGgGR8AnjEYwZflZaAdLqmgIR0CVLOvAGjbjdX2UKGgGR0BiDudkJ8fFaAdN6ANoCEdAlS2OlwcYInV9lChoBkdASgWBMBZIQWgHS7poCEdAlS/vWDpTuXV9lChoBkdAWp41NxlxwWgHTegDaAhHQJUxVstTUAl1fZQoaAZHQF8RUF0PpY9oB03oA2gIR0CVNZc94eLfdX2UKGgGR0BkVpl8PWhAaAdN6ANoCEdAlUmy2MKkVXV9lChoBkdAYd7cuanaWWgHTegDaAhHQJVOS8jAzpJ1fZQoaAZHQED9XKbKA8VoB0vDaAhHQJVUhgv114h1fZQoaAZHQEDuVgx8D0VoB0v5aAhHQJVVALRa5gB1fZQoaAZHQFq/8Sf16E9oB03oA2gIR0CVVdtm+TNddX2UKGgGR0BkluqHXVbzaAdN6ANoCEdAlVkW1x82JnV9lChoBkdANZ6wY+B6KWgHS/toCEdAlV5dKEnLJXV9lChoBkdAak8h2W6bv2gHTTUCaAhHQJVhicOLBKt1fZQoaAZHQGE6MGPgeiloB03oA2gIR0CVZMsZYPoWdX2UKGgGR0BjkXKr7wazaAdN6ANoCEdAlWThoIv8InV9lChoBkdAYmyxGlQ/HGgHTegDaAhHQJVlm63AmAt1fZQoaAZHQGD9hoVVPvdoB03oA2gIR0CVaHwK0D2bdX2UKGgGR0BhGy3uuzQeaAdN6ANoCEdAlWt9noPkJnV9lChoBkdAOK4JeE7GN2gHS8JoCEdAlW2A/X5FgHV9lChoBkdAXFJCBwuM/GgHTegDaAhHQJVty8CgbqB1fZQoaAZHQDW80pEx7AtoB0vdaAhHQJVy2P5pJwt1fZQoaAZHQGGBdvsJIDpoB03oA2gIR0CVc8xM36yjdX2UKGgGR0BbyDM3ZPEbaAdN6ANoCEdAlXYrcKw6hnV9lChoBkdAZ578Lronr2gHTegDaAhHQJV4TQD3dsV1fZQoaAZHQF/t7pmmLtNoB03oA2gIR0CVeYGoJiRXdX2UKGgGR0A/aXrMTviMaAdL3GgIR0CVmDsDGLk0dX2UKGgGR0BiPUtPHktFaAdN6ANoCEdAlZ+57HAAQ3V9lChoBkdAYJKyvcJtzmgHTegDaAhHQJWgNeWv8qF1fZQoaAZHQGKSDlPrOZ9oB03oA2gIR0CVoRFUyYXwdX2UKGgGR0BgA51Ng0CSaAdN6ANoCEdAlaO1rEcbSHV9lChoBkdAZNKuKXOW0WgHTegDaAhHQJWnvXtjTa11fZQoaAZHQG2a0Cih37loB03uAmgIR0CVqgyDZlFudX2UKGgGR0Bi3CV6eGwiaAdN6ANoCEdAlaoQJHAh0XV9lChoBkdAXKrOMVDa5GgHTegDaAhHQJWswrxy4nZ1fZQoaAZHQGTYvQF9roJoB03oA2gIR0CVran889wFdX2UKGgGR0BiHcA3kxREaAdN6ANoCEdAlbS3sw+MZXV9lChoBkdAZACUSqU/wGgHTegDaAhHQJW3TQNTcZd1fZQoaAZHQGDjwY1pCa9oB03oA2gIR0CVvQiu+yqudX2UKGgGR0BiFPPkaMrFaAdN6ANoCEdAlb4bHlwLmnV9lChoBkdAbfql6Z6Uq2gHTT4BaAhHQJW+rj7yhBZ1fZQoaAZHQGAr5AY51eVoB03oA2gIR0CVwRRsdkrgdX2UKGgGR0Bi5DKmsNlRaAdN6ANoCEdAlcXDrzGxU3V9lChoBkdAJ1k3S8an8GgHS+5oCEdAlcy5/smfG3V9lChoBkdAZBPqZ+hGpmgHTegDaAhHQJXj6b/ffoB1fZQoaAZHQGHYQMQVbiZoB03oA2gIR0CV62aP0Zm7dX2UKGgGR0BjcvivPkaNaAdN6ANoCEdAlevm1c+qznV9lChoBkdAXATzFuNxVGgHTegDaAhHQJXsxxyXD3x1fZQoaAZHQGLt4Fiay8loB03oA2gIR0CV70OrhisodX2UKGgGR0BkWtRaX8fnaAdN6ANoCEdAlfMx9kSVW3V9lChoBkdAY+vwvQF9r2gHTegDaAhHQJX2Gx3V0911fZQoaAZHQGQG0Pxx1gZoB03oA2gIR0CV9iE9Mbm2dX2UKGgGR0Bh39KbrkbQaAdN6ANoCEdAlfnWwNb1RXV9lChoBkdAFaFKkEcKgWgHS+poCEdAlf5TDGcWkHV9lChoBkdAZCSnDziCKGgHTegDaAhHQJYDuUcGTs91fZQoaAZHQGOqlGPPszFoB03oA2gIR0CWBj/IsAeadX2UKGgGR0BEkq7yxzJZaAdLyWgIR0CWCYCiAUcodX2UKGgGR0BhtRRGc4HYaAdN6ANoCEdAlgzA8nuy/3V9lChoBkdAYh8B4D9wWGgHTegDaAhHQJYNTuOS4e91fZQoaAZHQGHU4FRpDeFoB03oA2gIR0CWDw0PpY9xdX2UKGgGR0BjRE6RyOrAaAdN6ANoCEdAlhI6vRqoInV9lChoBkdAXiabRWtEHGgHTegDaAhHQJYXKl41P311fZQoaAZHQF4Ee+Eh7mdoB03oA2gIR0CWL2O2y9mIdX2UKGgGR0AriwTufEn9aAdNAgFoCEdAljPyTyJ9A3V9lChoBkfAGYSR8twrD2gHS8BoCEdAljXxkVeruXV9lChoBkdAYbQi0OVgQmgHTegDaAhHQJY3ReY2Kl51fZQoaAZHQGI/pokAxSJoB03oA2gIR0CWN7GZuyeJdX2UKGgGR0Bi414zJp35aAdN6ANoCEdAljhsVHnU2HV9lChoBkdAYjyf5DZ13mgHTegDaAhHQJY+LI4lyBF1fZQoaAZHQE3yi48U21loB0vgaAhHQJY/K8scyWR1fZQoaAZHQGPiAjQiRnxoB03oA2gIR0CWQDOdXko4dX2UKGgGR0BjdAVIqbz9aAdN6ANoCEdAlkA16AvtdHV9lChoBkdAYmpoGIKtxWgHTegDaAhHQJZClfLLZBd1fZQoaAZHQE2xYf4h2W9oB0vMaAhHQJZJsrbxmTV1fZQoaAZHQGNo5mZmZmZoB03oA2gIR0CWSeY3eenRdX2UKGgGR0BA8TeO4oZyaAdL9mgIR0CWSrshxHXmdX2UKGgGR0BhBaWiUPhAaAdN6ANoCEdAlkxHgxagVXV9lChoBkdAZPfE74i5eGgHTegDaAhHQJZPJbzK9wp1fZQoaAZHQGH54zi0fHRoB03oA2gIR0CWUd+u/1xsdX2UKGgGR0Bl3OT3Zf2LaAdN6ANoCEdAllJgpKBd2XV9lChoBkdAYJ0qbz9S/GgHTegDaAhHQJZUFJxvNvB1fZQoaAZHQEpuqd6LOzJoB0vaaAhHQJZWLkbPyCp1fZQoaAZHQCjVBF/hESdoB0v9aAhHQJZa/WqcVgx1fZQoaAZHQCPmXVsk6cRoB0vuaAhHQJZd4LG7z091fZQoaAZHQGIqtBfKISFoB03oA2gIR0CWY1TzundgdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}