First commit
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO_simple
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -88.48 +/- 79.50
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO_simple** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO_simple** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a5e0586cdc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a5e0586ce50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a5e0586cee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a5e0586cf70>", "_build": "<function ActorCriticPolicy._build at 0x7a5e0586d000>", "forward": "<function ActorCriticPolicy.forward at 0x7a5e0586d090>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a5e0586d120>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a5e0586d1b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a5e0586d240>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a5e0586d2d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a5e0586d360>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a5e0586d3f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a5e057ff140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1724320738512088174, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqN9buuWY26Ce1Au8OsrLXxtjM4qy8WNQAAgD8AAIA/mnJzPZTMjbxWoBs+LtvYvMhp+b1kOYg9AAAAAAAAAACKeI8+3uiSPfKXXb2c9ue+I75JvhVqcL4AAAAAAAAAAJosFb0UTtS4qOc2PInrlzv+o566uuNQPAAAAAAAAAAAc8rXvY9GSLpCU9M8c/09vNUq4TpIdCa9AAAAAAAAgD8mXlg/BHopvrNYeT/KEWi+US3UvoFkiz4AAIA/AACAP+C3G74q+Lw+x9u6vX4ar76P/6G+42wpvgAAAAAAAAAAgOcRvVz0JTsY+WK5xnWDPTI6vrkF4s27AAAAAAAAAADqttw+jx/LvWKfeD432EO+JX8LvsriPz8AAIA/AACAP9POA75zvKE/uJ8Pv9JF1L6orKU9KSQlvQAAAAAAAAAAuk5OPnhbpzyxtgy8dBJOujGxKj7dnWW7AACAPwAAgD/ldqu+AfJvvWqjjb0QG3U8ex2ZPvPprr0AAAAAAAAAAHqtHD9drxK+iD4OPL6uujmIqBE8eKQhPAAAgD8AAIA/DvXavjJxyL1uQq88/q8jPAdhBr6SQGk8AACAPwAAgD+ALNs913cBu+MaIDwDvbm8O1lLPIsppD0AAIA/AACAPyaHiz1yQtw+D5qcPKC5o74MOl0+MQ6IvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVBgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCY9GkN4JNWMAWyUS4KMAXSUR0CCUJUgjhUBdX2UKGgGR0AhbUKiO/+LaAdLumgIR0CCU4zFdcB2dX2UKGgGR0BRScolUp/gaAdN6ANoCEdAglnPRJEpiXV9lChoBkdARFLa24NI9WgHS5JoCEdAglpqGtZFHHV9lChoBkdARFGMqBmPHWgHS8toCEdAgl3rlNlAeXV9lChoBkdAP3bNbC79RGgHS4toCEdAgmJ+9i+cpnV9lChoBkfATJ8ADJU5uWgHS6xoCEdAgmcPUSZjQXV9lChoBkfAM4dBWxQizWgHS5loCEdAgmwzKLbYb3V9lChoBkdAVUglByCFsmgHTegDaAhHQIJsKUVzp5h1fZQoaAZHwGB/BgNPP9loB0v4aAhHQIJs8OmR/3F1fZQoaAZHQCsZO32EkB1oB0uhaAhHQIJwvPAwfyR1fZQoaAZHQEE9MPjGT9toB03oA2gIR0CCdhvjwQUYdX2UKGgGR8BCHoLgGbCraAdLsmgIR0CCd+xHoX9BdX2UKGgGR0ArzLmp2ll9aAdLkWgIR0CCfV446wMZdX2UKGgGR8A7khq0tyxSaAdLuWgIR0CCgzxuKoAGdX2UKGgGR0BfPbcTJyQxaAdN6ANoCEdAgoejm0VrRHV9lChoBkdAQTSRGMGX5WgHS61oCEdAgouh4D9wWHV9lChoBkfATMcyULUkOmgHTS8BaAhHQIKMjN8ma6V1fZQoaAZHQEuiCgbp/w1oB03oA2gIR0CCjY8V58jSdX2UKGgGR0BJ9A+IMz/IaAdN6ANoCEdAgo/EYfnwHHV9lChoBkfAZAjK28Zk1GgHTcsBaAhHQIKR1AJLM9t1fZQoaAZHQDDoNsnAqNJoB0u1aAhHQIKTeHxjJ+51fZQoaAZHwEEGF0xM361oB0uBaAhHQIKWMqJ/G2l1fZQoaAZHwD1Z7eEZiuxoB0uTaAhHQIKb7qUu+RJ1fZQoaAZHQEAOdRR/EwZoB0upaAhHQIKjDVawD/51fZQoaAZHwFUv2XLNfPZoB0utaAhHQIKojkXDWLB1fZQoaAZHQEbaplz2exxoB03oA2gIR0CCq1EP1+RYdX2UKGgGR0BAKT9KmKqGaAdNCgFoCEdAgqybb+Lm63V9lChoBkdAQ3q/h2nsLWgHS+loCEdAgq9qdxyXD3V9lChoBkfAQ0rt5UtI1GgHS3xoCEdAgrbLUsnRcHV9lChoBkfARpIA2hqTKWgHS7hoCEdAgrdojv/ipHV9lChoBkfAaSH7WNFSbmgHTQEBaAhHQIK79DIBBAx1fZQoaAZHQE7t1r6+FlFoB03oA2gIR0CC6P4Uvf0mdX2UKGgGR8AT2dupCKJmaAdL2mgIR0CC8Zu6VdHEdX2UKGgGR0BRbbe67NB4aAdN6ANoCEdAgvi7u2JBPnV9lChoBkdAUClOZb6gumgHS7ZoCEdAgvlSofjjrHV9lChoBkdALz01hsqJ/GgHTegDaAhHQIL66xeLNwB1fZQoaAZHwDyVfjS5RTFoB0vRaAhHQIL8hIxxkup1fZQoaAZHQDY/d0q6OHZoB03oA2gIR0CC/kUhV2iddX2UKGgGR8BLlxe1KGtZaAdL0GgIR0CC/4cfeUILdX2UKGgGR0A5EbUPQOWjaAdLs2gIR0CDATz+3pfQdX2UKGgGR7/2zwhGH58CaAdLtmgIR0CDCNUbT+efdX2UKGgGR0AViZNO/L1VaAdLjmgIR0CDDQq6vq1PdX2UKGgGR0AHxA0Kqn3taAdLwGgIR0CDEFs+FDfFdX2UKGgGR0BAk850bLlnaAdL4mgIR0CDFRacqe9SdX2UKGgGR0BI5fNzKcNIaAdLomgIR0CDFfGoaUA1dX2UKGgGR0BOdjB/I8yOaAdN6ANoCEdAgxbluWKMvXV9lChoBkdAMKzLW7OE/WgHTegDaAhHQIMdLUZvUBp1fZQoaAZHQDuF6po9LYhoB0uZaAhHQIMfQvJzT4N1fZQoaAZHQEFb06HTI/9oB03oA2gIR0CDJsSU1Q67dX2UKGgGR8AwZl0HQhOhaAdLtWgIR0CDLP6a9bosdX2UKGgGR0AiYkrwvxpdaAdLp2gIR0CDL21UlzEKdX2UKGgGR0BZIFFlTWGzaAdN6ANoCEdAgzLkuYhManV9lChoBkfAK9kQ5FPSD2gHS+FoCEdAgzsr3TNMXnV9lChoBkdAQuMXDWK/EmgHTegDaAhHQIM74vN/vv11fZQoaAZHQDTEoBq9GqhoB0u6aAhHQIM9eT7l7t11fZQoaAZHQEOYnAIppexoB0u4aAhHQINFBn8Kohp1fZQoaAZHwELEQL/jsD5oB0vQaAhHQINFYNiH6/J1fZQoaAZHv/v9roGIKtxoB0t3aAhHQINJlUp/gBN1fZQoaAZHwDHFa5f+judoB0ucaAhHQINPIKa5PM11fZQoaAZHQFcPUkv9LpRoB03oA2gIR0CDXIapgkTpdX2UKGgGR0BExqBmPHT7aAdN6ANoCEdAg13DZUT+N3V9lChoBkfAQSZ9b5dnkGgHS7loCEdAg15xwyZa3nV9lChoBkdAW0PPJJXhfmgHTegDaAhHQINfglMRHwx1fZQoaAZHwF9DRUFSsKdoB00fAWgIR0CDmJmz0HyFdX2UKGgGR8BD3QoTfzjFaAdLrGgIR0CDm1xFRYRvdX2UKGgGR8BBFMpobn5jaAdLyGgIR0CDoEj59E1EdX2UKGgGR0BN9XBP9DQaaAdN6ANoCEdAg6eRF7Uoa3V9lChoBkdAU+pUbT+efGgHTegDaAhHQIOredsi0OV1fZQoaAZHQFsvgvlEJBxoB03oA2gIR0CDrOkPczqKdX2UKGgGR8Bpr4b2lEZ0aAdNJAJoCEdAg666MR6F/XV9lChoBkdAJbMkIHC40GgHS5hoCEdAg6/6F/QSjHV9lChoBkdAXlMS+QEIPmgHTegDaAhHQIO66zkZJkJ1fZQoaAZHQDzo++ueSSxoB0t1aAhHQIO66MaS9uh1fZQoaAZHwGEFPdEb5uZoB0voaAhHQIO+EynDR+l1fZQoaAZHwDrKGvfTCtRoB0vDaAhHQIO/vsqril11fZQoaAZHQAsp04iosI5oB0uvaAhHQIPAm9alk6N1fZQoaAZHQExD974SHuZoB03oA2gIR0CDwbUXHim3dX2UKGgGR0A1lL0Bfa6CaAdN6ANoCEdAg8LMMI/qxHV9lChoBke/2aews5GSZGgHS71oCEdAg8Tjq4YrKHV9lChoBkdAPwlM7EHdGmgHS81oCEdAg8eucMEzPHV9lChoBkdATKtmg8KXwGgHTegDaAhHQIPIDbUPQOZ1fZQoaAZHwDTlGtp22XtoB0uXaAhHQIPNez0HyEt1fZQoaAZHQCdRk9U0eltoB0u+aAhHQIPOsLhJiAl1fZQoaAZHP/oppN9H+ZRoB0vBaAhHQIPO8Oskpqh1fZQoaAZHQDdaIYWLxZxoB0uwaAhHQIPRwWznied1fZQoaAZHQErJMajvd/JoB03oA2gIR0CD1S/20zCUdX2UKGgGR8BHH3Kr7wazaAdLdGgIR0CD4Wrz5GjLdX2UKGgGR0BM0MnZ00WNaAdL3WgIR0CD5a2KEWZadX2UKGgGR0BH3R+z+m3waAdN6ANoCEdAg+got+TePHV9lChoBkfAPXL5IpYs/mgHS+BoCEdAg+iA3DNyHXV9lChoBkdALBY3WFvhqGgHS89oCEdAg+ro+W4Vh3V9lChoBkdAXHX9ETg2qGgHTegDaAhHQIP1b3wkPc11fZQoaAZHwCYN/hESdvtoB0usaAhHQIQBRCIDYAd1fZQoaAZHwCOmdwvQF9toB0uyaAhHQIQETgn+hoN1fZQoaAZHQFsHS/CZWq9oB03oA2gIR0CEBW+NcW0rdX2UKGgGR8BG3mHP/rB1aAdLvmgIR0CEBbUF0PpZdX2UKGgGR0BJ1b3fyf+TaAdN6ANoCEdAhAajgqEvkHV9lChoBkfAQAdt/FzdUWgHS/BoCEdAhAcjjaPCEnV9lChoBkdAVozw1BMSK2gHTegDaAhHQIQVn20zCUJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 64, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a60b0ed0bf1ad0bc1e050ecb037c7a71ce32061b9cd8bad3a2048b9d20ad1a58
|
3 |
+
size 147999
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a5e0586cdc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a5e0586ce50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a5e0586cee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a5e0586cf70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a5e0586d000>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a5e0586d090>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a5e0586d120>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a5e0586d1b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a5e0586d240>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a5e0586d2d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a5e0586d360>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a5e0586d3f0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a5e057ff140>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 114688,
|
25 |
+
"_total_timesteps": 100000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1724320738512088174,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqN9buuWY26Ce1Au8OsrLXxtjM4qy8WNQAAgD8AAIA/mnJzPZTMjbxWoBs+LtvYvMhp+b1kOYg9AAAAAAAAAACKeI8+3uiSPfKXXb2c9ue+I75JvhVqcL4AAAAAAAAAAJosFb0UTtS4qOc2PInrlzv+o566uuNQPAAAAAAAAAAAc8rXvY9GSLpCU9M8c/09vNUq4TpIdCa9AAAAAAAAgD8mXlg/BHopvrNYeT/KEWi+US3UvoFkiz4AAIA/AACAP+C3G74q+Lw+x9u6vX4ar76P/6G+42wpvgAAAAAAAAAAgOcRvVz0JTsY+WK5xnWDPTI6vrkF4s27AAAAAAAAAADqttw+jx/LvWKfeD432EO+JX8LvsriPz8AAIA/AACAP9POA75zvKE/uJ8Pv9JF1L6orKU9KSQlvQAAAAAAAAAAuk5OPnhbpzyxtgy8dBJOujGxKj7dnWW7AACAPwAAgD/ldqu+AfJvvWqjjb0QG3U8ex2ZPvPprr0AAAAAAAAAAHqtHD9drxK+iD4OPL6uujmIqBE8eKQhPAAAgD8AAIA/DvXavjJxyL1uQq88/q8jPAdhBr6SQGk8AACAPwAAgD+ALNs913cBu+MaIDwDvbm8O1lLPIsppD0AAIA/AACAPyaHiz1yQtw+D5qcPKC5o74MOl0+MQ6IvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.1468799999999999,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVBgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCY9GkN4JNWMAWyUS4KMAXSUR0CCUJUgjhUBdX2UKGgGR0AhbUKiO/+LaAdLumgIR0CCU4zFdcB2dX2UKGgGR0BRScolUp/gaAdN6ANoCEdAglnPRJEpiXV9lChoBkdARFLa24NI9WgHS5JoCEdAglpqGtZFHHV9lChoBkdARFGMqBmPHWgHS8toCEdAgl3rlNlAeXV9lChoBkdAP3bNbC79RGgHS4toCEdAgmJ+9i+cpnV9lChoBkfATJ8ADJU5uWgHS6xoCEdAgmcPUSZjQXV9lChoBkfAM4dBWxQizWgHS5loCEdAgmwzKLbYb3V9lChoBkdAVUglByCFsmgHTegDaAhHQIJsKUVzp5h1fZQoaAZHwGB/BgNPP9loB0v4aAhHQIJs8OmR/3F1fZQoaAZHQCsZO32EkB1oB0uhaAhHQIJwvPAwfyR1fZQoaAZHQEE9MPjGT9toB03oA2gIR0CCdhvjwQUYdX2UKGgGR8BCHoLgGbCraAdLsmgIR0CCd+xHoX9BdX2UKGgGR0ArzLmp2ll9aAdLkWgIR0CCfV446wMZdX2UKGgGR8A7khq0tyxSaAdLuWgIR0CCgzxuKoAGdX2UKGgGR0BfPbcTJyQxaAdN6ANoCEdAgoejm0VrRHV9lChoBkdAQTSRGMGX5WgHS61oCEdAgouh4D9wWHV9lChoBkfATMcyULUkOmgHTS8BaAhHQIKMjN8ma6V1fZQoaAZHQEuiCgbp/w1oB03oA2gIR0CCjY8V58jSdX2UKGgGR0BJ9A+IMz/IaAdN6ANoCEdAgo/EYfnwHHV9lChoBkfAZAjK28Zk1GgHTcsBaAhHQIKR1AJLM9t1fZQoaAZHQDDoNsnAqNJoB0u1aAhHQIKTeHxjJ+51fZQoaAZHwEEGF0xM361oB0uBaAhHQIKWMqJ/G2l1fZQoaAZHwD1Z7eEZiuxoB0uTaAhHQIKb7qUu+RJ1fZQoaAZHQEAOdRR/EwZoB0upaAhHQIKjDVawD/51fZQoaAZHwFUv2XLNfPZoB0utaAhHQIKojkXDWLB1fZQoaAZHQEbaplz2exxoB03oA2gIR0CCq1EP1+RYdX2UKGgGR0BAKT9KmKqGaAdNCgFoCEdAgqybb+Lm63V9lChoBkdAQ3q/h2nsLWgHS+loCEdAgq9qdxyXD3V9lChoBkfAQ0rt5UtI1GgHS3xoCEdAgrbLUsnRcHV9lChoBkfARpIA2hqTKWgHS7hoCEdAgrdojv/ipHV9lChoBkfAaSH7WNFSbmgHTQEBaAhHQIK79DIBBAx1fZQoaAZHQE7t1r6+FlFoB03oA2gIR0CC6P4Uvf0mdX2UKGgGR8AT2dupCKJmaAdL2mgIR0CC8Zu6VdHEdX2UKGgGR0BRbbe67NB4aAdN6ANoCEdAgvi7u2JBPnV9lChoBkdAUClOZb6gumgHS7ZoCEdAgvlSofjjrHV9lChoBkdALz01hsqJ/GgHTegDaAhHQIL66xeLNwB1fZQoaAZHwDyVfjS5RTFoB0vRaAhHQIL8hIxxkup1fZQoaAZHQDY/d0q6OHZoB03oA2gIR0CC/kUhV2iddX2UKGgGR8BLlxe1KGtZaAdL0GgIR0CC/4cfeUILdX2UKGgGR0A5EbUPQOWjaAdLs2gIR0CDATz+3pfQdX2UKGgGR7/2zwhGH58CaAdLtmgIR0CDCNUbT+efdX2UKGgGR0AViZNO/L1VaAdLjmgIR0CDDQq6vq1PdX2UKGgGR0AHxA0Kqn3taAdLwGgIR0CDEFs+FDfFdX2UKGgGR0BAk850bLlnaAdL4mgIR0CDFRacqe9SdX2UKGgGR0BI5fNzKcNIaAdLomgIR0CDFfGoaUA1dX2UKGgGR0BOdjB/I8yOaAdN6ANoCEdAgxbluWKMvXV9lChoBkdAMKzLW7OE/WgHTegDaAhHQIMdLUZvUBp1fZQoaAZHQDuF6po9LYhoB0uZaAhHQIMfQvJzT4N1fZQoaAZHQEFb06HTI/9oB03oA2gIR0CDJsSU1Q67dX2UKGgGR8AwZl0HQhOhaAdLtWgIR0CDLP6a9bosdX2UKGgGR0AiYkrwvxpdaAdLp2gIR0CDL21UlzEKdX2UKGgGR0BZIFFlTWGzaAdN6ANoCEdAgzLkuYhManV9lChoBkfAK9kQ5FPSD2gHS+FoCEdAgzsr3TNMXnV9lChoBkdAQuMXDWK/EmgHTegDaAhHQIM74vN/vv11fZQoaAZHQDTEoBq9GqhoB0u6aAhHQIM9eT7l7t11fZQoaAZHQEOYnAIppexoB0u4aAhHQINFBn8Kohp1fZQoaAZHwELEQL/jsD5oB0vQaAhHQINFYNiH6/J1fZQoaAZHv/v9roGIKtxoB0t3aAhHQINJlUp/gBN1fZQoaAZHwDHFa5f+judoB0ucaAhHQINPIKa5PM11fZQoaAZHQFcPUkv9LpRoB03oA2gIR0CDXIapgkTpdX2UKGgGR0BExqBmPHT7aAdN6ANoCEdAg13DZUT+N3V9lChoBkfAQSZ9b5dnkGgHS7loCEdAg15xwyZa3nV9lChoBkdAW0PPJJXhfmgHTegDaAhHQINfglMRHwx1fZQoaAZHwF9DRUFSsKdoB00fAWgIR0CDmJmz0HyFdX2UKGgGR8BD3QoTfzjFaAdLrGgIR0CDm1xFRYRvdX2UKGgGR8BBFMpobn5jaAdLyGgIR0CDoEj59E1EdX2UKGgGR0BN9XBP9DQaaAdN6ANoCEdAg6eRF7Uoa3V9lChoBkdAU+pUbT+efGgHTegDaAhHQIOredsi0OV1fZQoaAZHQFsvgvlEJBxoB03oA2gIR0CDrOkPczqKdX2UKGgGR8Bpr4b2lEZ0aAdNJAJoCEdAg666MR6F/XV9lChoBkdAJbMkIHC40GgHS5hoCEdAg6/6F/QSjHV9lChoBkdAXlMS+QEIPmgHTegDaAhHQIO66zkZJkJ1fZQoaAZHQDzo++ueSSxoB0t1aAhHQIO66MaS9uh1fZQoaAZHwGEFPdEb5uZoB0voaAhHQIO+EynDR+l1fZQoaAZHwDrKGvfTCtRoB0vDaAhHQIO/vsqril11fZQoaAZHQAsp04iosI5oB0uvaAhHQIPAm9alk6N1fZQoaAZHQExD974SHuZoB03oA2gIR0CDwbUXHim3dX2UKGgGR0A1lL0Bfa6CaAdN6ANoCEdAg8LMMI/qxHV9lChoBke/2aews5GSZGgHS71oCEdAg8Tjq4YrKHV9lChoBkdAPwlM7EHdGmgHS81oCEdAg8eucMEzPHV9lChoBkdATKtmg8KXwGgHTegDaAhHQIPIDbUPQOZ1fZQoaAZHwDTlGtp22XtoB0uXaAhHQIPNez0HyEt1fZQoaAZHQCdRk9U0eltoB0u+aAhHQIPOsLhJiAl1fZQoaAZHP/oppN9H+ZRoB0vBaAhHQIPO8Oskpqh1fZQoaAZHQDdaIYWLxZxoB0uwaAhHQIPRwWznied1fZQoaAZHQErJMajvd/JoB03oA2gIR0CD1S/20zCUdX2UKGgGR8BHH3Kr7wazaAdLdGgIR0CD4Wrz5GjLdX2UKGgGR0BM0MnZ00WNaAdL3WgIR0CD5a2KEWZadX2UKGgGR0BH3R+z+m3waAdN6ANoCEdAg+got+TePHV9lChoBkfAPXL5IpYs/mgHS+BoCEdAg+iA3DNyHXV9lChoBkdALBY3WFvhqGgHS89oCEdAg+ro+W4Vh3V9lChoBkdAXHX9ETg2qGgHTegDaAhHQIP1b3wkPc11fZQoaAZHwCYN/hESdvtoB0usaAhHQIQBRCIDYAd1fZQoaAZHwCOmdwvQF9toB0uyaAhHQIQETgn+hoN1fZQoaAZHQFsHS/CZWq9oB03oA2gIR0CEBW+NcW0rdX2UKGgGR8BG3mHP/rB1aAdLvmgIR0CEBbUF0PpZdX2UKGgGR0BJ1b3fyf+TaAdN6ANoCEdAhAajgqEvkHV9lChoBkfAQAdt/FzdUWgHS/BoCEdAhAcjjaPCEnV9lChoBkdAVozw1BMSK2gHTegDaAhHQIQVn20zCUJ1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 64,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8b58afafbbf239c067143ca078c884f20d8110fbfa3660cae298c57401840a6
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63a3742e9f293997772fed3cf01f620664619473ea679020d9bbfd7b80e42255
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (201 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -88.47889869999999, "std_reward": 79.49613154511509, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-22T10:10:51.459088"}
|