Gueze's picture
Upload the first trained agent
bfb163f
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3c01079940>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3c010799d0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3c01079a60>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3c01079af0>",
"_build": "<function ActorCriticPolicy._build at 0x7f3c01079b80>",
"forward": "<function ActorCriticPolicy.forward at 0x7f3c01079c10>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3c01079ca0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f3c01079d30>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3c01079dc0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3c01079e50>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3c01079ee0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f3c01072ae0>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 524288,
"_total_timesteps": 500000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1670688689125169942,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIaVVT72SB688HSWOto4ObjuQoG9ze6vuQAAgD8AAIA/zQyWOikwR7rou686POlHtUQcdDrCY8m5AACAPwAAgD/NnNM9B/aQP3GfPT7TULi+AOkHPk6jXbwAAAAAAAAAAGbmJTqPqmW6upCFu03WjjWxmYe7TEiZOgAAgD8AAIA/s1SMvSmoaLqWh/c7ITrkNEJDh7qLqs4zAACAPwAAgD/g/CA+af1svE/DuboZOwM5CGrOvdVD/DkAAIA/AACAPyY7KL5xHBu78lZ0Ownz4DdvMA08er6LugAAgD8AAIA/s5dDPg8VdbwDSFo79gaCuc+21L3SKYa6AACAPwAAgD9NMrw94XSmujYPlDtBIR04TYsYOo0a3bUAAIA/AAAAAEbRLz6K2TE89/IXuukwJLg+G8Y92sJDOQAAgD8AAIA/cLNYvql8FLzfvUk50yAnNqQviD22W9K3AACAPwAAgD+z0wm+9pcoO8nbqD0Wl3U7IY5UvWY0tD0AAIA/AACAP0CZcL7ozpc9deHXPCrsYr7fW448DbB/PAAAAAAAAAAA5jWqvfaUSrpLr+Q7xw5qN28PPrvgSFs2AACAPwAAgD99TYA+xdnaPMp8KDplkt442JtuPqjLZ7kAAIA/AACAPzPPtr3DOXe6fxwWvOe70bWZ/Uk7mDM9NQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.04857599999999995,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBg39E1zgMcCUhpRSlIwBbJRL+YwBdJRHQI+TW10DEFZ1fZQoaAZoCWgPQwjoTNpUXWpjQJSGlFKUaBVN6ANoFkdAj5xwYUFjeHV9lChoBmgJaA9DCCyeeqTBy1tAlIaUUpRoFU3oA2gWR0CPp9nwG4ZudX2UKGgGaAloD0MIg1FJnQC+Y0CUhpRSlGgVTegDaBZHQI+p9mlImPZ1fZQoaAZoCWgPQwjgoSjQJ31cQJSGlFKUaBVN6ANoFkdAj63zdk8RtnV9lChoBmgJaA9DCFHbhlEQHWJAlIaUUpRoFU3oA2gWR0CPtnXtjTa1dX2UKGgGaAloD0MIOleUEoJLXkCUhpRSlGgVTegDaBZHQI+8ZtP557h1fZQoaAZoCWgPQwhLP+Hs1ttbQJSGlFKUaBVN6ANoFkdAj74XsPatcXV9lChoBmgJaA9DCIDvNm+cRl5AlIaUUpRoFU3oA2gWR0CPy35IH1OCdX2UKGgGaAloD0MIbcoV3uXsXECUhpRSlGgVTegDaBZHQI/mD2Jzkp91fZQoaAZoCWgPQwjWH2EYsEdZQJSGlFKUaBVN6ANoFkdAj/Gt0NjLCHV9lChoBmgJaA9DCBB1H4BU02NAlIaUUpRoFU3oA2gWR0CP8bQAMlTndX2UKGgGaAloD0MIdvpBXaSFYkCUhpRSlGgVTegDaBZHQI/4mXqqwQl1fZQoaAZoCWgPQwj+D7BWbbJgQJSGlFKUaBVN6ANoFkdAj/oXzDn/1nV9lChoBmgJaA9DCD2ARX79DmFAlIaUUpRoFU3oA2gWR0CQAjjY7JXAdX2UKGgGaAloD0MI4Niz5zL9N0CUhpRSlGgVTRoBaBZHQJAIDwd8zAN1fZQoaAZoCWgPQwiq8Gd4s8ZrQJSGlFKUaBVNowJoFkdAkAt+Eh7mdXV9lChoBmgJaA9DCFslWBzO4ENAlIaUUpRoFU0YAWgWR0CQDQ6zVtoBdX2UKGgGaAloD0MIRs8tdCXJXkCUhpRSlGgVTegDaBZHQJARcM7U5Ml1fZQoaAZoCWgPQwidL/Ze/DlgQJSGlFKUaBVN6ANoFkdAkBGrsrupj3V9lChoBmgJaA9DCLSSVnxDDF5AlIaUUpRoFU3oA2gWR0CQFbx/ustDdX2UKGgGaAloD0MIJ9vAHagTYkCUhpRSlGgVTegDaBZHQJAa2lImPYF1fZQoaAZoCWgPQwjxn26gwGFiQJSGlFKUaBVN6ANoFkdAkBvhczImxHV9lChoBmgJaA9DCIZWJ2coslpAlIaUUpRoFU3oA2gWR0CQHcP4mCyydX2UKGgGaAloD0MIuvWaHhR1X0CUhpRSlGgVTegDaBZHQJAkj5ZbILh1fZQoaAZoCWgPQwgt7j8ynXhhQJSGlFKUaBVN6ANoFkdAkCVx6v7m+3V9lChoBmgJaA9DCKu0xTU+sWRAlIaUUpRoFU3oA2gWR0CQLIPRzBAOdX2UKGgGaAloD0MIdnEbDeBpRUCUhpRSlGgVS8BoFkdAkJL0hePaMHV9lChoBmgJaA9DCJnVO9yOTmdAlIaUUpRoFU2vAWgWR0CQmKP6KtPpdX2UKGgGaAloD0MIzhlR2hv0W0CUhpRSlGgVTegDaBZHQJCflnRLK3d1fZQoaAZoCWgPQwjUnpJz4ktjQJSGlFKUaBVN6ANoFkdAkKLmszVMEnV9lChoBmgJaA9DCDc2O1L912FAlIaUUpRoFU3oA2gWR0CQo5bfP5YYdX2UKGgGaAloD0MIowc+Bqv/YkCUhpRSlGgVTegDaBZHQJCpEohIOH51fZQoaAZoCWgPQwjFWRE10T9dQJSGlFKUaBVN6ANoFkdAkK9+KjzqbHV9lChoBmgJaA9DCEsfuqC+WFBAlIaUUpRoFU3oA2gWR0CQsvIznA6/dX2UKGgGaAloD0MINe7Nb5iYW0CUhpRSlGgVTegDaBZHQJC0hbeMyad1fZQoaAZoCWgPQwjO4VrtYW5fQJSGlFKUaBVN6ANoFkdAkLjf8l5WzXV9lChoBmgJaA9DCODyWDOyF2BAlIaUUpRoFU3oA2gWR0CQuRbBoEjgdX2UKGgGaAloD0MIcoi4ORWFakCUhpRSlGgVTdQBaBZHQJC7S9xp+MJ1fZQoaAZoCWgPQwgQyZBj64diQJSGlFKUaBVN6ANoFkdAkLzHqRlpXnV9lChoBmgJaA9DCBlYx/FDd15AlIaUUpRoFU3oA2gWR0CQwpAvcrRTdX2UKGgGaAloD0MIWKg1zbvyYECUhpRSlGgVTegDaBZHQJDEUBhhH9Z1fZQoaAZoCWgPQwhWZd8VwdNaQJSGlFKUaBVN6ANoFkdAkMr/4/NZ/3V9lChoBmgJaA9DCCeHTzqR81lAlIaUUpRoFU3oA2gWR0CQ07xdpqREdX2UKGgGaAloD0MID5ccd0rPYUCUhpRSlGgVTegDaBZHQJDZ9lNDc/N1fZQoaAZoCWgPQwgCKhxBKtUaQJSGlFKUaBVL3GgWR0CQ5HyauwHJdX2UKGgGaAloD0MI4BKAf8q9YkCUhpRSlGgVTegDaBZHQJDnIP5HmRx1fZQoaAZoCWgPQwgou5nRjxBrQJSGlFKUaBVNfAFoFkdAkOep26kIonV9lChoBmgJaA9DCIf9nlinP2BAlIaUUpRoFU3oA2gWR0CQ6j/j81n/dX2UKGgGaAloD0MIyxEykOdDYUCUhpRSlGgVTegDaBZHQJDq6wRoRI11fZQoaAZoCWgPQwhH6Gfq9VxgQJSGlFKUaBVN6ANoFkdAkPBAljVhC3V9lChoBmgJaA9DCINqgxPRlUtAlIaUUpRoFU3oA2gWR0CQ9iTewcHXdX2UKGgGaAloD0MI4IWt2UoAYUCUhpRSlGgVTegDaBZHQJD5W36Q/5d1fZQoaAZoCWgPQwh2bW+3JF5dQJSGlFKUaBVN6ANoFkdAkPrhPO6d2HV9lChoBmgJaA9DCF3fh4MEhmBAlIaUUpRoFU3oA2gWR0CQ/xo1DSgHdX2UKGgGaAloD0MI4IYYr/mqZkCUhpRSlGgVTegDaBZHQJD/TkXDWLB1fZQoaAZoCWgPQwju6lVkdIw2QJSGlFKUaBVNPwFoFkdAkQEo6XBxgnV9lChoBmgJaA9DCJ7uPPEc12JAlIaUUpRoFU3oA2gWR0CRAW3r2QGOdX2UKGgGaAloD0MIAhHiyllHY0CUhpRSlGgVTegDaBZHQJEC83Jgb6x1fZQoaAZoCWgPQwiR0JZzqS1hQJSGlFKUaBVN6ANoFkdAkQhagmJFb3V9lChoBmgJaA9DCG6jAbyFvWFAlIaUUpRoFU3oA2gWR0CRChe2NNrTdX2UKGgGaAloD0MIOe0pOaduYECUhpRSlGgVTegDaBZHQJGDcumJm/Z1fZQoaAZoCWgPQwiSJAhXwKtsQJSGlFKUaBVNJAJoFkdAkYhdCRfWtnV9lChoBmgJaA9DCN45lKEqmVtAlIaUUpRoFU3oA2gWR0CRjsFSbYsedX2UKGgGaAloD0MIcAuW6oLPYUCUhpRSlGgVTegDaBZHQJGRNxNqQBB1fZQoaAZoCWgPQwioj8AffodWQJSGlFKUaBVN6ANoFkdAkZG36AOJ+HV9lChoBmgJaA9DCCbHndLBV1pAlIaUUpRoFU3oA2gWR0CRlCSs8xKydX2UKGgGaAloD0MIINJvX4c7YUCUhpRSlGgVTegDaBZHQJGaIKBun/F1fZQoaAZoCWgPQwiF0axsnwNgQJSGlFKUaBVN6ANoFkdAkZ+5M+NcW3V9lChoBmgJaA9DCNRhhVs+6iRAlIaUUpRoFUveaBZHQJGgczvZyuJ1fZQoaAZoCWgPQwhrDDohdMZEQJSGlFKUaBVL6mgWR0CRobHs1KoRdX2UKGgGaAloD0MIQS0GD9McXECUhpRSlGgVTegDaBZHQJGi0wztTk11fZQoaAZoCWgPQwhcqz3shWlcQJSGlFKUaBVN6ANoFkdAkaQXD7655XV9lChoBmgJaA9DCOUOm8hMsmBAlIaUUpRoFU3oA2gWR0CRp4L74zrNdX2UKGgGaAloD0MInStKCcE7YECUhpRSlGgVTegDaBZHQJGpMnv2GqR1fZQoaAZoCWgPQwgZG7rZH5ddQJSGlFKUaBVN6ANoFkdAkaloG2TgVHV9lChoBmgJaA9DCCB/aVGfQGlAlIaUUpRoFU1dAWgWR0CRqjCTUy57dX2UKGgGaAloD0MIXkvIB732Y0CUhpRSlGgVTegDaBZHQJGqlz8xbjd1fZQoaAZoCWgPQwghIF9CBeZfQJSGlFKUaBVN6ANoFkdAka75a3ZwoHV9lChoBmgJaA9DCMfZdATw4WBAlIaUUpRoFU3oA2gWR0CRsI4Oc2BKdX2UKGgGaAloD0MI0JhJ1AuyP8CUhpRSlGgVS+FoFkdAkbTYdIXj2nV9lChoBmgJaA9DCHQJh95iZmVAlIaUUpRoFU3oA2gWR0CRxMQf6oETdX2UKGgGaAloD0MIcAZ/v5hAZ0CUhpRSlGgVTegDaBZHQJHJJxo7FKl1fZQoaAZoCWgPQwiGWP0RhppfQJSGlFKUaBVN6ANoFkdAkc9jWTX8O3V9lChoBmgJaA9DCHsS2JyDCWFAlIaUUpRoFU3oA2gWR0CR36xD9fkWdX2UKGgGaAloD0MIkBX8NsTAZUCUhpRSlGgVTegDaBZHQJHp/iZOSGJ1fZQoaAZoCWgPQwjP9ugNdw1jQJSGlFKUaBVN6ANoFkdAkeuTHwPRRnV9lChoBmgJaA9DCI4hADh22GZAlIaUUpRoFU3oA2gWR0CR7cM8ox5+dX2UKGgGaAloD0MIBTI7i97gYECUhpRSlGgVTegDaBZHQJHvqUGFBY51fZQoaAZoCWgPQwiQ2sTJ/YtUQJSGlFKUaBVN6ANoFkdAkfH4LLIPsnV9lChoBmgJaA9DCCRGzy10tmpAlIaUUpRoFU1OA2gWR0CR91fdyksSdX2UKGgGaAloD0MIfGXequvsWkCUhpRSlGgVTegDaBZHQJH3h8jRlYl1fZQoaAZoCWgPQwg3je21oExfQJSGlFKUaBVN6ANoFkdAkfofkNnXd3V9lChoBmgJaA9DCChiEcMOp19AlIaUUpRoFU3oA2gWR0CR+8Th5xBFdX2UKGgGaAloD0MIqkNuhhvkW0CUhpRSlGgVTegDaBZHQJH8ZilSCOF1fZQoaAZoCWgPQwj04VmCDBhkQJSGlFKUaBVN6ANoFkdAkgWHz6JqI3V9lChoBmgJaA9DCAR1yqMbLTvAlIaUUpRoFUvQaBZHQJIKmih37k51fZQoaAZoCWgPQwjUEFX4M6leQJSGlFKUaBVN6ANoFkdAkgqtH2AXmHV9lChoBmgJaA9DCE0tW+uLND5AlIaUUpRoFU0MAWgWR0CSDz5dnkDIdX2UKGgGaAloD0MIPzbJj/iJXkCUhpRSlGgVTegDaBZHQJIa81CPZIx1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 160,
"n_steps": 2048,
"gamma": 0.99,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}