AdcSR / train.py
Guaishou74851's picture
Upload 66 files
34b61ae verified
raw
history blame
8.78 kB
import torch, os, glob, random, copy
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import numpy as np
from argparse import ArgumentParser
from time import time
from tqdm import tqdm
from omegaconf import OmegaConf
from dataset import RealESRGANDataset, RealESRGANDegrader
from model import Net
from ram.models.ram_lora import ram
from torchvision import transforms
from utils import add_lora_to_unet
dist.init_process_group(backend="nccl", init_method="env://")
rank = dist.get_rank()
world_size = dist.get_world_size()
parser = ArgumentParser()
parser.add_argument("--epoch", type=int, default=200)
parser.add_argument("--batch_size", type=int, default=12)
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--model_dir", type=str, default="weight")
parser.add_argument("--log_dir", type=str, default="log")
parser.add_argument("--save_interval", type=int, default=10)
args = parser.parse_args()
# fixed seed for reproduction
seed = rank
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
config = OmegaConf.load("config.yml")
epoch = args.epoch
learning_rate = args.learning_rate
bsz = args.batch_size
device = torch.device(f"cuda:{rank}" if torch.cuda.is_available() else "cpu")
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
if rank == 0:
print("batch size per gpu =", bsz)
from diffusers import StableDiffusionPipeline
model_id = "stabilityai/stable-diffusion-2-1-base"
pipe = StableDiffusionPipeline.from_pretrained(model_id).to(device)
vae = pipe.vae
tokenizer = pipe.tokenizer
unet = pipe.unet
text_encoder = pipe.text_encoder
unet_D = copy.deepcopy(unet)
new_conv_in = torch.nn.Conv2d(256, 320, 3, padding=1).to(device)
new_conv_in.weight.data = unet_D.conv_in.weight.data.repeat(1, 64, 1, 1) / 64
new_conv_in.bias.data = unet_D.conv_in.bias.data
unet_D.conv_in = new_conv_in
unet_D = add_lora_to_unet(unet_D)
unet_D.set_adapters(["default_encoder", "default_decoder", "default_others"])
vae_teacher = copy.deepcopy(vae)
unet_teacher = copy.deepcopy(unet)
osediff = torch.load("./weight/pretrained/osediff.pkl", weights_only=False)
vae_teacher.load_state_dict(osediff["vae"])
unet_teacher.load_state_dict(osediff["unet"])
from diffusers.models.autoencoders.vae import Decoder
ckpt_halfdecoder = torch.load("./weight/pretrained/halfDecoder.ckpt", weights_only=False)
decoder = Decoder(in_channels=4,
out_channels=3,
up_block_types=["UpDecoderBlock2D" for _ in range(4)],
block_out_channels=[64, 128, 256, 256],
layers_per_block=2,
norm_num_groups=32,
act_fn="silu",
norm_type="group",
mid_block_add_attention=True).to(device)
decoder_ckpt = {}
for k, v in ckpt_halfdecoder["state_dict"].items():
if "decoder" in k:
new_k = k.replace("decoder.", "")
decoder_ckpt[new_k] = v
decoder.load_state_dict(decoder_ckpt, strict=True)
ram_transforms = transforms.Compose([
transforms.Resize((384, 384)),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
DAPE = ram(pretrained="./weight/pretrained/ram_swin_large_14m.pth",
pretrained_condition="./weight/pretrained/DAPE.pth",
image_size=384,
vit="swin_l").eval().to(device)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder.requires_grad_(False)
vae_teacher.requires_grad_(False)
unet_teacher.requires_grad_(False)
decoder.requires_grad_(False)
DAPE.requires_grad_(False)
model = DDP(Net(unet, copy.deepcopy(decoder)).to(device), device_ids=[rank])
model_D = DDP(unet_D.to(device), device_ids=[rank])
model.requires_grad_(True)
model_D.requires_grad_(False)
params_to_opt = []
for n, p in model_D.named_parameters():
if "lora" in n or "conv_in" in n:
p.requires_grad = True
params_to_opt.append(p)
if rank == 0:
param_cnt = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("#Param.", param_cnt/1e6, "M")
dataset = RealESRGANDataset(config, bsz)
degrader = RealESRGANDegrader(config, device)
dataloader = DataLoader(dataset, batch_size=bsz, num_workers=8)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
optimizer_D = torch.optim.Adam(params_to_opt, lr=1e-6)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[100,], gamma=0.5)
scaler = torch.cuda.amp.GradScaler()
model_dir = "./%s" % (args.model_dir,)
log_path = "./%s/log.txt" % (args.log_dir,)
os.makedirs(model_dir, exist_ok=True)
os.makedirs(args.log_dir, exist_ok=True)
print("start training...")
timesteps = torch.tensor([999], device=device).long().expand(bsz,)
alpha = pipe.scheduler.alphas_cumprod[999]
for epoch_i in range(1, epoch + 1):
start_time = time()
loss_avg = 0.0
loss_distil_avg = 0.0
loss_adv_avg = 0.0
loss_D_avg = 0.0
iter_num = 0
dist.barrier()
for batch in tqdm(dataloader):
with torch.cuda.amp.autocast(enabled=True):
with torch.no_grad():
LR, HR = degrader.degrade(batch)
text_input = tokenizer(DAPE.generate_tag(ram_transforms(LR))[0],
max_length=tokenizer.model_max_length,
padding="max_length", return_tensors="pt").to(device)
encoder_hidden_states = text_encoder(text_input.input_ids, return_dict=False)[0]
LR, HR = LR * 2 - 1, HR * 2 - 1
LR_ = F.interpolate(LR, scale_factor=4, mode="bicubic")
LR_latents = vae_teacher.encode(LR_).latent_dist.mean * vae_teacher.config.scaling_factor
HR_latents = vae.encode(HR).latent_dist.mean
pred_teacher = unet_teacher(
LR_latents,
timesteps,
encoder_hidden_states=encoder_hidden_states,
return_dict=False,
)[0]
z0_teacher = (LR_latents-((1-alpha)**0.5)*pred_teacher)/(alpha**0.5)
z0_teacher = vae_teacher.post_quant_conv(z0_teacher / vae_teacher.config.scaling_factor)
z0_teacher = decoder.conv_in(z0_teacher)
z0_teacher = decoder.mid_block(z0_teacher)
z0_gt = vae.post_quant_conv(HR_latents)
z0_gt = decoder.conv_in(z0_gt)
z0_gt = decoder.mid_block(z0_gt)
z0_student = model(LR)
loss_distil = (z0_student - z0_teacher).abs().mean()
loss_adv = F.softplus(-model_D(
z0_student,
timesteps,
encoder_hidden_states=encoder_hidden_states,
return_dict=False,
)[0]).mean()
loss = loss_distil + loss_adv
optimizer.zero_grad(set_to_none=True)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
with torch.cuda.amp.autocast(enabled=True):
pred_real = model_D(
z0_gt.detach(),
timesteps,
encoder_hidden_states=encoder_hidden_states,
return_dict=False,
)[0]
pred_fake = model_D(
z0_student.detach(),
timesteps,
encoder_hidden_states=encoder_hidden_states,
return_dict=False,
)[0]
loss_D = F.softplus(pred_fake).mean() + F.softplus(-pred_real).mean()
optimizer_D.zero_grad(set_to_none=True)
scaler.scale(loss_D).backward()
scaler.step(optimizer_D)
scaler.update()
loss_avg += loss.item()
loss_distil_avg += loss_distil.item()
loss_adv_avg += loss_adv.item()
loss_D_avg += loss_D.item()
iter_num += 1
# print("loss", loss.item())
# print("loss_distil", loss_distil.item())
# print("loss_adv", loss_adv.item())
# print("loss_D", loss_D.item())
scheduler.step()
loss_avg /= iter_num
loss_distil_avg /= iter_num
loss_adv_avg /= iter_num
loss_D_avg /= iter_num
log_data = "[%d/%d] Average loss: %f, distil loss: %f, adv loss: %f, D loss: %f, time cost: %.2fs, cur lr is %f." % (epoch_i, epoch, loss_avg, loss_distil_avg, loss_adv_avg, loss_D_avg, time() - start_time, scheduler.get_last_lr()[0])
if rank == 0:
print(log_data)
with open(log_path, "a") as log_file:
log_file.write(log_data + "\n")
if epoch_i % args.save_interval == 0:
torch.save(model.state_dict(), "./%s/net_params_%d.pkl" % (model_dir, epoch_i))