Commit
·
6deab60
1
Parent(s):
db5fa43
end-to-end testing, bad model
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- LunarLander-v2
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: PPO
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: LunarLander-v2
|
| 16 |
+
type: LunarLander-v2
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: -201.09 +/- 38.38
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
| 25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f979f6cb6d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f979f6cb760>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f979f6cb7f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f979f6cb880>", "_build": "<function ActorCriticPolicy._build at 0x7f979f6cb910>", "forward": "<function ActorCriticPolicy.forward at 0x7f979f6cb9a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f979f6cba30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f979f6cbac0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f979f6cbb50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f979f6cbbe0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f979f6cbc70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f979f6cbd00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f979f6d48c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683186211672654957, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrbWb3UF7g/OMivvkE0kD1wcsM8V6jIvAAAAAAAAAAAWum0PRzuGz/10I8+t0yIv5ZukL4xVyC+AAAAAAAAAAAQngy/pS2CP2bXir/wKWm/fNhfPyzUrz4AAAAAAAAAAAbtBz8KS0w+xq2JP22GmL9k9x+/4NhwvgAAAAAAAAAAk6txPlOMAz8Gy7A+/Vicv0VGhb56ugK+AAAAAAAAAABNDA6+qqipP5uOO7/h+pG+uQAEPvtR/z0AAAAAAAAAANpkHj4hUXs/1ftVPhwWQr/q4/082EQoPAAAAAAAAAAAIFwaP0cLPD+FRoo/XFuQv+7Oeb9q0wS/AAAAAAAAAAAAYae9CZYbPU4Uw76KLKS/oI4CPwWhRT4AAAAAAACAP5pZ2boZ3K4/K+MrvYd4Br/Vjos69TtiPAAAAAAAAAAATQYDvTlcFT7z19W9dQypv3ylIT5KpUO9AAAAAAAAAADNlli8x2czPw078L318Va/j21lPmGslD0AAAAAAAAAALq5Sz9b+VO+sqkHPnRu1b/X/5A/q/CvPgAAAAAAAAAAzVmKvYQGqD+2Ni+/GcrmvkcFsT0FT1Q+AAAAAAAAAACzeBc9aJuiPxkrPz56kty+9NQDvkwQN74AAAAAAAAAAAKYG7+3wG0+WM90v6ffmr/Fclk/khp0PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwG381/MGHHqMAWyUS1iMAXSUR0BK8CItUXHjdX2UKGgGR8Bi3/fKp1ifaAdLhWgIR0BK9PVNHpbEdX2UKGgGR8BcyHMhX8wYaAdLV2gIR0BK+b4agmJFdX2UKGgGR8B5ttBAv+OwaAdLWmgIR0BLAXzcynDSdX2UKGgGR8Bxbz4i5d4WaAdLe2gIR0BLBnF5v99/dX2UKGgGR8BkcF3KSxJNaAdLV2gIR0BLBiuU2UB5dX2UKGgGR8B4JvXg9/z8aAdLYGgIR0BLCCkXUH6edX2UKGgGR8Br3ycy31BdaAdLRmgIR0BLCcdYGMXKdX2UKGgGR8BcmfznRsuWaAdLdmgIR0BLC+vZAY51dX2UKGgGR8BXABWtEG7jaAdLW2gIR0BLC3lbNbC8dX2UKGgGR8BXZnHJcPe6aAdLOmgIR0BLEbO3UhFFdX2UKGgGR8BZWTYZl4C7aAdLcGgIR0BLEyu6mO2idX2UKGgGR8BoDSVGCqZMaAdLSmgIR0BLFujqOcUedX2UKGgGR8BYwV3yI55raAdLR2gIR0BLFxrrPdEcdX2UKGgGR8Bunxgssg+yaAdLRmgIR0BLGRtpEhJRdX2UKGgGR8Bj7FpRGc4HaAdLUmgIR0BLF/pdKNADdX2UKGgGR8BVr7s0HhS+aAdLQGgIR0BLGRTKkl/pdX2UKGgGR8BU+7iVB2OiaAdLOGgIR0BLHp3os7MgdX2UKGgGR8Be7JWRzRx+aAdLO2gIR0BLJGOU+s5odX2UKGgGR8BjKzwhGH58aAdLe2gIR0BLJt+so2GZdX2UKGgGR8BzTWLAHmihaAdLWWgIR0BLKNGd7OVxdX2UKGgGR8BZ5DUAksz3aAdLPmgIR0BLKwFTvRZ2dX2UKGgGR8BiTAudwvQGaAdLT2gIR0BLMBaC+UQkdX2UKGgGR8B39Bkxyn1naAdLT2gIR0BLMzI3irDJdX2UKGgGR8BZFliKBNEgaAdLQWgIR0BLOANwzch1dX2UKGgGR8BRnSxqwhW6aAdLQWgIR0BLOOjh1klNdX2UKGgGR8BXbk87p3X7aAdLS2gIR0BLP0eMhougdX2UKGgGR8BgvNbkfcN6aAdLcWgIR0BLQIc7yQPqdX2UKGgGR8B53jgflp49aAdLUWgIR0BLQMuFpPAPdX2UKGgGR8B1AJENOM2naAdLXWgIR0BLQYFRpDeCdX2UKGgGR8B+HlnOB19waAdLYGgIR0BLRGdZq20BdX2UKGgGR8BkmLEcbR4RaAdLgGgIR0BLS2DpTuOTdX2UKGgGR8BcRPAKv3ajaAdLZmgIR0BLTal+EytWdX2UKGgGR8B1Cguyu6mPaAdLXWgIR0BLTzijtXxOdX2UKGgGR8BRPpiiItUXaAdLSmgIR0BLT+FtbcGkdX2UKGgGR8B35so6S1VpaAdLV2gIR0BLUskY4yXVdX2UKGgGR0A9BCaJAMUiaAdLSGgIR0BLWZkbxVhkdX2UKGgGR8BTqwMUh3aBaAdLQGgIR0BLYiWNWEK3dX2UKGgGR8BsQTU3GXHBaAdLamgIR0BLYtXgccU/dX2UKGgGR8BuwtCkXUH6aAdLT2gIR0BLYqaG5+YudX2UKGgGR8B3MSDtgKF7aAdLZGgIR0BLZThP0qYrdX2UKGgGR8Bj4O9L6DXfaAdLhmgIR0BLbbH6uW8idX2UKGgGR8BwZh4wAU+LaAdLRGgIR0BLb925hBqsdX2UKGgGR8BiqDlJYkmhaAdLWGgIR0BLcQRf4REndX2UKGgGR8B0AEZWJaaDaAdLcmgIR0BLdunl4keIdX2UKGgGR8BZ7y2MKkVOaAdLRmgIR0BLd3lbNbC8dX2UKGgGR8Bn7API4lyBaAdLbmgIR0BLgHkLhJiBdX2UKGgGR8BTZGfPHDJmaAdLZmgIR0BLgjXnQpnZdX2UKGgGR8CAcQdPtUn5aAdLcGgIR0BLhMuOCGvfdX2UKGgGR8Bfgnta6jFiaAdLRWgIR0BLh6oddVvNdX2UKGgGR8B1jnZ9NN8FaAdLZGgIR0BLjomPYFq0dX2UKGgGR8BzgS22G7BgaAdLY2gIR0BLlBmwqy4XdX2UKGgGR0A0ZcWj4593aAdLZmgIR0BLk2vB7/n4dX2UKGgGR8BYAg5/9YOlaAdLRGgIR0BLlO1v2oNvdX2UKGgGR8BRIxs2vStvaAdLQWgIR0BLoLLhaTwEdX2UKGgGR8BVU4vWYnfEaAdLRWgIR0BLrWrGR3eOdX2UKGgGR8Br/J+6RQrMaAdLYWgIR0BLrVSGahHtdX2UKGgGR8B2f2wLVnVYaAdLaGgIR0BLr12Rq46PdX2UKGgGR8BsHrF0gbIcaAdLVWgIR0BLs+NDMNc4dX2UKGgGR0ARmnHeaa1DaAdLdWgIR0BLuD5KvmozdX2UKGgGR8BsOoLXtjTbaAdLUmgIR0BLt9mYjSogdX2UKGgGR8BhEiiO/+KkaAdLSWgIR0BLxRIatLcsdX2UKGgGR8B+y8UBXCCSaAdLbWgIR0BLxgWrOqvNdX2UKGgGR0BFSzVMEidKaAdLWmgIR0BLxeBQN0/4dX2UKGgGR8Bo4HrOZ9eAaAdLWGgIR0BLxekP+XJHdX2UKGgGR8BNmDA8B+4LaAdLSGgIR0BLy1ARkEs8dX2UKGgGR8BX3S++M6zWaAdLZmgIR0BL0q5LAYYSdX2UKGgGR8CC6EYR/ViGaAdLWGgIR0BL1j6eoUBXdX2UKGgGR8BeiglKK509aAdLa2gIR0BL2UwztTkydX2UKGgGR8BbrNRzijtYaAdLSWgIR0BL5IYFaB7NdX2UKGgGR8BiBhikO7QLaAdLdmgIR0BL7QIUrTYvdX2UKGgGR8Bk9WldkauPaAdLZ2gIR0BL7ufukUKzdX2UKGgGR8BfRJuqFRHgaAdLTWgIR0BL7m78Nx2jdX2UKGgGR8B1QmBClabGaAdLU2gIR0BL7nhS9/SZdX2UKGgGR8ByKcPuogmraAdLYGgIR0BL9fzJ6po9dX2UKGgGR8BwxwplSS/1aAdLTWgIR0BL/t70Fr2ydX2UKGgGR8BZeJNGmUGFaAdLSWgIR0BMAWLP2PDHdX2UKGgGR8B2o3OmixmkaAdLU2gIR0BMA1+y7f52dX2UKGgGR8Btc0KTjebeaAdLV2gIR0BMCB2wFC9idX2UKGgGR8BS2EnCwbEQaAdLaWgIR0BMCT2vjfeldX2UKGgGR8BF3MyBTXJ6aAdLRWgIR0BMDJh4MWoFdX2UKGgGR8B1oxiTdLxqaAdLcWgIR0BMEJCSidrgdX2UKGgGR8BzQUPOIInjaAdLdmgIR0BMINp/PPcBdX2UKGgGR8BKhEdeY2KmaAdLQ2gIR0BMIyV4X40udX2UKGgGR8BoQbhHbypaaAdLRWgIR0BMJOBMBZIQdX2UKGgGR8B3Y56AvtdBaAdLc2gIR0BMKyApazNVdX2UKGgGR8BnfuBvrGBGaAdLUGgIR0BMLbhvR7Z4dX2UKGgGR8Bfh3tWuHN5aAdLX2gIR0BMLvZ7HAARdX2UKGgGR8BUbCUC7sfJaAdLTmgIR0BMM2XC0ngHdX2UKGgGR8Bc+ejM3ZPEaAdLWmgIR0BMM2yLQ5WBdX2UKGgGR8B1Gzs+mm+CaAdLQ2gIR0BMNGdZq20BdX2UKGgGR0A1sp/PPcBVaAdLeWgIR0BMNiCSRr8BdX2UKGgGR8BWxYHkcS5BaAdLP2gIR0BMOUY0l7dBdX2UKGgGR8BXT/CdjG1haAdLSmgIR0BMO2R7qptKdX2UKGgGR8BgTH/HYHxCaAdLVmgIR0BMRK3uuzQedX2UKGgGR8BynZMyrPt2aAdLSGgIR0BMV4OMERradX2UKGgGR8BgN/Y+Sr5qaAdLUWgIR0BMWtuDSPU8dX2UKGgGR8BDwE2Hck+paAdLRGgIR0BMXbQb+98JdX2UKGgGR8BghD8LronsaAdLcGgIR0BMYXOObRWtdX2UKGgGR8BqubXQMQVcaAdLf2gIR0BMZic5Ke05dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d3478afa8bc540ecabfe27443d1ea6cbf449e3f09c0cf18e7f4f532827469ebf
|
| 3 |
+
size 146615
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f979f6cb6d0>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f979f6cb760>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f979f6cb7f0>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f979f6cb880>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f979f6cb910>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f979f6cb9a0>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f979f6cba30>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f979f6cbac0>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f979f6cbb50>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f979f6cbbe0>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f979f6cbc70>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f979f6cbd00>",
|
| 19 |
+
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f979f6d48c0>"
|
| 21 |
+
},
|
| 22 |
+
"verbose": 1,
|
| 23 |
+
"policy_kwargs": {},
|
| 24 |
+
"num_timesteps": 16384,
|
| 25 |
+
"_total_timesteps": 10000,
|
| 26 |
+
"_num_timesteps_at_start": 0,
|
| 27 |
+
"seed": null,
|
| 28 |
+
"action_noise": null,
|
| 29 |
+
"start_time": 1683186211672654957,
|
| 30 |
+
"learning_rate": 0.0003,
|
| 31 |
+
"tensorboard_log": null,
|
| 32 |
+
"_last_obs": {
|
| 33 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrbWb3UF7g/OMivvkE0kD1wcsM8V6jIvAAAAAAAAAAAWum0PRzuGz/10I8+t0yIv5ZukL4xVyC+AAAAAAAAAAAQngy/pS2CP2bXir/wKWm/fNhfPyzUrz4AAAAAAAAAAAbtBz8KS0w+xq2JP22GmL9k9x+/4NhwvgAAAAAAAAAAk6txPlOMAz8Gy7A+/Vicv0VGhb56ugK+AAAAAAAAAABNDA6+qqipP5uOO7/h+pG+uQAEPvtR/z0AAAAAAAAAANpkHj4hUXs/1ftVPhwWQr/q4/082EQoPAAAAAAAAAAAIFwaP0cLPD+FRoo/XFuQv+7Oeb9q0wS/AAAAAAAAAAAAYae9CZYbPU4Uw76KLKS/oI4CPwWhRT4AAAAAAACAP5pZ2boZ3K4/K+MrvYd4Br/Vjos69TtiPAAAAAAAAAAATQYDvTlcFT7z19W9dQypv3ylIT5KpUO9AAAAAAAAAADNlli8x2czPw078L318Va/j21lPmGslD0AAAAAAAAAALq5Sz9b+VO+sqkHPnRu1b/X/5A/q/CvPgAAAAAAAAAAzVmKvYQGqD+2Ni+/GcrmvkcFsT0FT1Q+AAAAAAAAAACzeBc9aJuiPxkrPz56kty+9NQDvkwQN74AAAAAAAAAAAKYG7+3wG0+WM90v6ffmr/Fclk/khp0PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
| 35 |
+
},
|
| 36 |
+
"_last_episode_starts": {
|
| 37 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
| 39 |
+
},
|
| 40 |
+
"_last_original_obs": null,
|
| 41 |
+
"_episode_num": 0,
|
| 42 |
+
"use_sde": false,
|
| 43 |
+
"sde_sample_freq": -1,
|
| 44 |
+
"_current_progress_remaining": -0.6384000000000001,
|
| 45 |
+
"_stats_window_size": 100,
|
| 46 |
+
"ep_info_buffer": {
|
| 47 |
+
":type:": "<class 'collections.deque'>",
|
| 48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwG381/MGHHqMAWyUS1iMAXSUR0BK8CItUXHjdX2UKGgGR8Bi3/fKp1ifaAdLhWgIR0BK9PVNHpbEdX2UKGgGR8BcyHMhX8wYaAdLV2gIR0BK+b4agmJFdX2UKGgGR8B5ttBAv+OwaAdLWmgIR0BLAXzcynDSdX2UKGgGR8Bxbz4i5d4WaAdLe2gIR0BLBnF5v99/dX2UKGgGR8BkcF3KSxJNaAdLV2gIR0BLBiuU2UB5dX2UKGgGR8B4JvXg9/z8aAdLYGgIR0BLCCkXUH6edX2UKGgGR8Br3ycy31BdaAdLRmgIR0BLCcdYGMXKdX2UKGgGR8BcmfznRsuWaAdLdmgIR0BLC+vZAY51dX2UKGgGR8BXABWtEG7jaAdLW2gIR0BLC3lbNbC8dX2UKGgGR8BXZnHJcPe6aAdLOmgIR0BLEbO3UhFFdX2UKGgGR8BZWTYZl4C7aAdLcGgIR0BLEyu6mO2idX2UKGgGR8BoDSVGCqZMaAdLSmgIR0BLFujqOcUedX2UKGgGR8BYwV3yI55raAdLR2gIR0BLFxrrPdEcdX2UKGgGR8Bunxgssg+yaAdLRmgIR0BLGRtpEhJRdX2UKGgGR8Bj7FpRGc4HaAdLUmgIR0BLF/pdKNADdX2UKGgGR8BVr7s0HhS+aAdLQGgIR0BLGRTKkl/pdX2UKGgGR8BU+7iVB2OiaAdLOGgIR0BLHp3os7MgdX2UKGgGR8Be7JWRzRx+aAdLO2gIR0BLJGOU+s5odX2UKGgGR8BjKzwhGH58aAdLe2gIR0BLJt+so2GZdX2UKGgGR8BzTWLAHmihaAdLWWgIR0BLKNGd7OVxdX2UKGgGR8BZ5DUAksz3aAdLPmgIR0BLKwFTvRZ2dX2UKGgGR8BiTAudwvQGaAdLT2gIR0BLMBaC+UQkdX2UKGgGR8B39Bkxyn1naAdLT2gIR0BLMzI3irDJdX2UKGgGR8BZFliKBNEgaAdLQWgIR0BLOANwzch1dX2UKGgGR8BRnSxqwhW6aAdLQWgIR0BLOOjh1klNdX2UKGgGR8BXbk87p3X7aAdLS2gIR0BLP0eMhougdX2UKGgGR8BgvNbkfcN6aAdLcWgIR0BLQIc7yQPqdX2UKGgGR8B53jgflp49aAdLUWgIR0BLQMuFpPAPdX2UKGgGR8B1AJENOM2naAdLXWgIR0BLQYFRpDeCdX2UKGgGR8B+HlnOB19waAdLYGgIR0BLRGdZq20BdX2UKGgGR8BkmLEcbR4RaAdLgGgIR0BLS2DpTuOTdX2UKGgGR8BcRPAKv3ajaAdLZmgIR0BLTal+EytWdX2UKGgGR8B1Cguyu6mPaAdLXWgIR0BLTzijtXxOdX2UKGgGR8BRPpiiItUXaAdLSmgIR0BLT+FtbcGkdX2UKGgGR8B35so6S1VpaAdLV2gIR0BLUskY4yXVdX2UKGgGR0A9BCaJAMUiaAdLSGgIR0BLWZkbxVhkdX2UKGgGR8BTqwMUh3aBaAdLQGgIR0BLYiWNWEK3dX2UKGgGR8BsQTU3GXHBaAdLamgIR0BLYtXgccU/dX2UKGgGR8BuwtCkXUH6aAdLT2gIR0BLYqaG5+YudX2UKGgGR8B3MSDtgKF7aAdLZGgIR0BLZThP0qYrdX2UKGgGR8Bj4O9L6DXfaAdLhmgIR0BLbbH6uW8idX2UKGgGR8BwZh4wAU+LaAdLRGgIR0BLb925hBqsdX2UKGgGR8BiqDlJYkmhaAdLWGgIR0BLcQRf4REndX2UKGgGR8B0AEZWJaaDaAdLcmgIR0BLdunl4keIdX2UKGgGR8BZ7y2MKkVOaAdLRmgIR0BLd3lbNbC8dX2UKGgGR8Bn7API4lyBaAdLbmgIR0BLgHkLhJiBdX2UKGgGR8BTZGfPHDJmaAdLZmgIR0BLgjXnQpnZdX2UKGgGR8CAcQdPtUn5aAdLcGgIR0BLhMuOCGvfdX2UKGgGR8Bfgnta6jFiaAdLRWgIR0BLh6oddVvNdX2UKGgGR8B1jnZ9NN8FaAdLZGgIR0BLjomPYFq0dX2UKGgGR8BzgS22G7BgaAdLY2gIR0BLlBmwqy4XdX2UKGgGR0A0ZcWj4593aAdLZmgIR0BLk2vB7/n4dX2UKGgGR8BYAg5/9YOlaAdLRGgIR0BLlO1v2oNvdX2UKGgGR8BRIxs2vStvaAdLQWgIR0BLoLLhaTwEdX2UKGgGR8BVU4vWYnfEaAdLRWgIR0BLrWrGR3eOdX2UKGgGR8Br/J+6RQrMaAdLYWgIR0BLrVSGahHtdX2UKGgGR8B2f2wLVnVYaAdLaGgIR0BLr12Rq46PdX2UKGgGR8BsHrF0gbIcaAdLVWgIR0BLs+NDMNc4dX2UKGgGR0ARmnHeaa1DaAdLdWgIR0BLuD5KvmozdX2UKGgGR8BsOoLXtjTbaAdLUmgIR0BLt9mYjSogdX2UKGgGR8BhEiiO/+KkaAdLSWgIR0BLxRIatLcsdX2UKGgGR8B+y8UBXCCSaAdLbWgIR0BLxgWrOqvNdX2UKGgGR0BFSzVMEidKaAdLWmgIR0BLxeBQN0/4dX2UKGgGR8Bo4HrOZ9eAaAdLWGgIR0BLxekP+XJHdX2UKGgGR8BNmDA8B+4LaAdLSGgIR0BLy1ARkEs8dX2UKGgGR8BX3S++M6zWaAdLZmgIR0BL0q5LAYYSdX2UKGgGR8CC6EYR/ViGaAdLWGgIR0BL1j6eoUBXdX2UKGgGR8BeiglKK509aAdLa2gIR0BL2UwztTkydX2UKGgGR8BbrNRzijtYaAdLSWgIR0BL5IYFaB7NdX2UKGgGR8BiBhikO7QLaAdLdmgIR0BL7QIUrTYvdX2UKGgGR8Bk9WldkauPaAdLZ2gIR0BL7ufukUKzdX2UKGgGR8BfRJuqFRHgaAdLTWgIR0BL7m78Nx2jdX2UKGgGR8B1QmBClabGaAdLU2gIR0BL7nhS9/SZdX2UKGgGR8ByKcPuogmraAdLYGgIR0BL9fzJ6po9dX2UKGgGR8BwxwplSS/1aAdLTWgIR0BL/t70Fr2ydX2UKGgGR8BZeJNGmUGFaAdLSWgIR0BMAWLP2PDHdX2UKGgGR8B2o3OmixmkaAdLU2gIR0BMA1+y7f52dX2UKGgGR8Btc0KTjebeaAdLV2gIR0BMCB2wFC9idX2UKGgGR8BS2EnCwbEQaAdLaWgIR0BMCT2vjfeldX2UKGgGR8BF3MyBTXJ6aAdLRWgIR0BMDJh4MWoFdX2UKGgGR8B1oxiTdLxqaAdLcWgIR0BMEJCSidrgdX2UKGgGR8BzQUPOIInjaAdLdmgIR0BMINp/PPcBdX2UKGgGR8BKhEdeY2KmaAdLQ2gIR0BMIyV4X40udX2UKGgGR8BoQbhHbypaaAdLRWgIR0BMJOBMBZIQdX2UKGgGR8B3Y56AvtdBaAdLc2gIR0BMKyApazNVdX2UKGgGR8BnfuBvrGBGaAdLUGgIR0BMLbhvR7Z4dX2UKGgGR8Bfh3tWuHN5aAdLX2gIR0BMLvZ7HAARdX2UKGgGR8BUbCUC7sfJaAdLTmgIR0BMM2XC0ngHdX2UKGgGR8Bc+ejM3ZPEaAdLWmgIR0BMM2yLQ5WBdX2UKGgGR8B1Gzs+mm+CaAdLQ2gIR0BMNGdZq20BdX2UKGgGR0A1sp/PPcBVaAdLeWgIR0BMNiCSRr8BdX2UKGgGR8BWxYHkcS5BaAdLP2gIR0BMOUY0l7dBdX2UKGgGR8BXT/CdjG1haAdLSmgIR0BMO2R7qptKdX2UKGgGR8BgTH/HYHxCaAdLVmgIR0BMRK3uuzQedX2UKGgGR8BynZMyrPt2aAdLSGgIR0BMV4OMERradX2UKGgGR8BgN/Y+Sr5qaAdLUWgIR0BMWtuDSPU8dX2UKGgGR8BDwE2Hck+paAdLRGgIR0BMXbQb+98JdX2UKGgGR8BghD8LronsaAdLcGgIR0BMYXOObRWtdX2UKGgGR8BqubXQMQVcaAdLf2gIR0BMZic5Ke05dWUu"
|
| 49 |
+
},
|
| 50 |
+
"ep_success_buffer": {
|
| 51 |
+
":type:": "<class 'collections.deque'>",
|
| 52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 53 |
+
},
|
| 54 |
+
"_n_updates": 4,
|
| 55 |
+
"observation_space": {
|
| 56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
| 58 |
+
"dtype": "float32",
|
| 59 |
+
"bounded_below": "[ True True True True True True True True]",
|
| 60 |
+
"bounded_above": "[ True True True True True True True True]",
|
| 61 |
+
"_shape": [
|
| 62 |
+
8
|
| 63 |
+
],
|
| 64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 68 |
+
"_np_random": null
|
| 69 |
+
},
|
| 70 |
+
"action_space": {
|
| 71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
| 72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
| 73 |
+
"n": "4",
|
| 74 |
+
"start": "0",
|
| 75 |
+
"_shape": [],
|
| 76 |
+
"dtype": "int64",
|
| 77 |
+
"_np_random": null
|
| 78 |
+
},
|
| 79 |
+
"n_envs": 16,
|
| 80 |
+
"n_steps": 1024,
|
| 81 |
+
"gamma": 0.999,
|
| 82 |
+
"gae_lambda": 0.98,
|
| 83 |
+
"ent_coef": 0.01,
|
| 84 |
+
"vf_coef": 0.5,
|
| 85 |
+
"max_grad_norm": 0.5,
|
| 86 |
+
"batch_size": 64,
|
| 87 |
+
"n_epochs": 4,
|
| 88 |
+
"clip_range": {
|
| 89 |
+
":type:": "<class 'function'>",
|
| 90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
| 91 |
+
},
|
| 92 |
+
"clip_range_vf": null,
|
| 93 |
+
"normalize_advantage": true,
|
| 94 |
+
"target_kl": null,
|
| 95 |
+
"lr_schedule": {
|
| 96 |
+
":type:": "<class 'function'>",
|
| 97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
| 98 |
+
}
|
| 99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6f3e456c470c6a1c222cb327687defe3f0ea89c8cd0c7dfb85d7281edb2afe2c
|
| 3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9963cad5589128b12c42297545a8ae0a65576a236e3ef95dd49f98c37eb07fe6
|
| 3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
| 3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
| 2 |
+
- Python: 3.10.11
|
| 3 |
+
- Stable-Baselines3: 2.0.0a5
|
| 4 |
+
- PyTorch: 2.0.0+cu118
|
| 5 |
+
- GPU Enabled: True
|
| 6 |
+
- Numpy: 1.22.4
|
| 7 |
+
- Cloudpickle: 2.2.1
|
| 8 |
+
- Gymnasium: 0.28.1
|
| 9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
|
Binary file (188 kB). View file
|
|
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": -201.09118086388335, "std_reward": 38.37955989061701, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-04T07:51:29.792605"}
|