GoldfieldGeek commited on
Commit
6deab60
·
1 Parent(s): db5fa43

end-to-end testing, bad model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -201.09 +/- 38.38
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f979f6cb6d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f979f6cb760>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f979f6cb7f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f979f6cb880>", "_build": "<function ActorCriticPolicy._build at 0x7f979f6cb910>", "forward": "<function ActorCriticPolicy.forward at 0x7f979f6cb9a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f979f6cba30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f979f6cbac0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f979f6cbb50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f979f6cbbe0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f979f6cbc70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f979f6cbd00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f979f6d48c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683186211672654957, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrbWb3UF7g/OMivvkE0kD1wcsM8V6jIvAAAAAAAAAAAWum0PRzuGz/10I8+t0yIv5ZukL4xVyC+AAAAAAAAAAAQngy/pS2CP2bXir/wKWm/fNhfPyzUrz4AAAAAAAAAAAbtBz8KS0w+xq2JP22GmL9k9x+/4NhwvgAAAAAAAAAAk6txPlOMAz8Gy7A+/Vicv0VGhb56ugK+AAAAAAAAAABNDA6+qqipP5uOO7/h+pG+uQAEPvtR/z0AAAAAAAAAANpkHj4hUXs/1ftVPhwWQr/q4/082EQoPAAAAAAAAAAAIFwaP0cLPD+FRoo/XFuQv+7Oeb9q0wS/AAAAAAAAAAAAYae9CZYbPU4Uw76KLKS/oI4CPwWhRT4AAAAAAACAP5pZ2boZ3K4/K+MrvYd4Br/Vjos69TtiPAAAAAAAAAAATQYDvTlcFT7z19W9dQypv3ylIT5KpUO9AAAAAAAAAADNlli8x2czPw078L318Va/j21lPmGslD0AAAAAAAAAALq5Sz9b+VO+sqkHPnRu1b/X/5A/q/CvPgAAAAAAAAAAzVmKvYQGqD+2Ni+/GcrmvkcFsT0FT1Q+AAAAAAAAAACzeBc9aJuiPxkrPz56kty+9NQDvkwQN74AAAAAAAAAAAKYG7+3wG0+WM90v6ffmr/Fclk/khp0PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwG381/MGHHqMAWyUS1iMAXSUR0BK8CItUXHjdX2UKGgGR8Bi3/fKp1ifaAdLhWgIR0BK9PVNHpbEdX2UKGgGR8BcyHMhX8wYaAdLV2gIR0BK+b4agmJFdX2UKGgGR8B5ttBAv+OwaAdLWmgIR0BLAXzcynDSdX2UKGgGR8Bxbz4i5d4WaAdLe2gIR0BLBnF5v99/dX2UKGgGR8BkcF3KSxJNaAdLV2gIR0BLBiuU2UB5dX2UKGgGR8B4JvXg9/z8aAdLYGgIR0BLCCkXUH6edX2UKGgGR8Br3ycy31BdaAdLRmgIR0BLCcdYGMXKdX2UKGgGR8BcmfznRsuWaAdLdmgIR0BLC+vZAY51dX2UKGgGR8BXABWtEG7jaAdLW2gIR0BLC3lbNbC8dX2UKGgGR8BXZnHJcPe6aAdLOmgIR0BLEbO3UhFFdX2UKGgGR8BZWTYZl4C7aAdLcGgIR0BLEyu6mO2idX2UKGgGR8BoDSVGCqZMaAdLSmgIR0BLFujqOcUedX2UKGgGR8BYwV3yI55raAdLR2gIR0BLFxrrPdEcdX2UKGgGR8Bunxgssg+yaAdLRmgIR0BLGRtpEhJRdX2UKGgGR8Bj7FpRGc4HaAdLUmgIR0BLF/pdKNADdX2UKGgGR8BVr7s0HhS+aAdLQGgIR0BLGRTKkl/pdX2UKGgGR8BU+7iVB2OiaAdLOGgIR0BLHp3os7MgdX2UKGgGR8Be7JWRzRx+aAdLO2gIR0BLJGOU+s5odX2UKGgGR8BjKzwhGH58aAdLe2gIR0BLJt+so2GZdX2UKGgGR8BzTWLAHmihaAdLWWgIR0BLKNGd7OVxdX2UKGgGR8BZ5DUAksz3aAdLPmgIR0BLKwFTvRZ2dX2UKGgGR8BiTAudwvQGaAdLT2gIR0BLMBaC+UQkdX2UKGgGR8B39Bkxyn1naAdLT2gIR0BLMzI3irDJdX2UKGgGR8BZFliKBNEgaAdLQWgIR0BLOANwzch1dX2UKGgGR8BRnSxqwhW6aAdLQWgIR0BLOOjh1klNdX2UKGgGR8BXbk87p3X7aAdLS2gIR0BLP0eMhougdX2UKGgGR8BgvNbkfcN6aAdLcWgIR0BLQIc7yQPqdX2UKGgGR8B53jgflp49aAdLUWgIR0BLQMuFpPAPdX2UKGgGR8B1AJENOM2naAdLXWgIR0BLQYFRpDeCdX2UKGgGR8B+HlnOB19waAdLYGgIR0BLRGdZq20BdX2UKGgGR8BkmLEcbR4RaAdLgGgIR0BLS2DpTuOTdX2UKGgGR8BcRPAKv3ajaAdLZmgIR0BLTal+EytWdX2UKGgGR8B1Cguyu6mPaAdLXWgIR0BLTzijtXxOdX2UKGgGR8BRPpiiItUXaAdLSmgIR0BLT+FtbcGkdX2UKGgGR8B35so6S1VpaAdLV2gIR0BLUskY4yXVdX2UKGgGR0A9BCaJAMUiaAdLSGgIR0BLWZkbxVhkdX2UKGgGR8BTqwMUh3aBaAdLQGgIR0BLYiWNWEK3dX2UKGgGR8BsQTU3GXHBaAdLamgIR0BLYtXgccU/dX2UKGgGR8BuwtCkXUH6aAdLT2gIR0BLYqaG5+YudX2UKGgGR8B3MSDtgKF7aAdLZGgIR0BLZThP0qYrdX2UKGgGR8Bj4O9L6DXfaAdLhmgIR0BLbbH6uW8idX2UKGgGR8BwZh4wAU+LaAdLRGgIR0BLb925hBqsdX2UKGgGR8BiqDlJYkmhaAdLWGgIR0BLcQRf4REndX2UKGgGR8B0AEZWJaaDaAdLcmgIR0BLdunl4keIdX2UKGgGR8BZ7y2MKkVOaAdLRmgIR0BLd3lbNbC8dX2UKGgGR8Bn7API4lyBaAdLbmgIR0BLgHkLhJiBdX2UKGgGR8BTZGfPHDJmaAdLZmgIR0BLgjXnQpnZdX2UKGgGR8CAcQdPtUn5aAdLcGgIR0BLhMuOCGvfdX2UKGgGR8Bfgnta6jFiaAdLRWgIR0BLh6oddVvNdX2UKGgGR8B1jnZ9NN8FaAdLZGgIR0BLjomPYFq0dX2UKGgGR8BzgS22G7BgaAdLY2gIR0BLlBmwqy4XdX2UKGgGR0A0ZcWj4593aAdLZmgIR0BLk2vB7/n4dX2UKGgGR8BYAg5/9YOlaAdLRGgIR0BLlO1v2oNvdX2UKGgGR8BRIxs2vStvaAdLQWgIR0BLoLLhaTwEdX2UKGgGR8BVU4vWYnfEaAdLRWgIR0BLrWrGR3eOdX2UKGgGR8Br/J+6RQrMaAdLYWgIR0BLrVSGahHtdX2UKGgGR8B2f2wLVnVYaAdLaGgIR0BLr12Rq46PdX2UKGgGR8BsHrF0gbIcaAdLVWgIR0BLs+NDMNc4dX2UKGgGR0ARmnHeaa1DaAdLdWgIR0BLuD5KvmozdX2UKGgGR8BsOoLXtjTbaAdLUmgIR0BLt9mYjSogdX2UKGgGR8BhEiiO/+KkaAdLSWgIR0BLxRIatLcsdX2UKGgGR8B+y8UBXCCSaAdLbWgIR0BLxgWrOqvNdX2UKGgGR0BFSzVMEidKaAdLWmgIR0BLxeBQN0/4dX2UKGgGR8Bo4HrOZ9eAaAdLWGgIR0BLxekP+XJHdX2UKGgGR8BNmDA8B+4LaAdLSGgIR0BLy1ARkEs8dX2UKGgGR8BX3S++M6zWaAdLZmgIR0BL0q5LAYYSdX2UKGgGR8CC6EYR/ViGaAdLWGgIR0BL1j6eoUBXdX2UKGgGR8BeiglKK509aAdLa2gIR0BL2UwztTkydX2UKGgGR8BbrNRzijtYaAdLSWgIR0BL5IYFaB7NdX2UKGgGR8BiBhikO7QLaAdLdmgIR0BL7QIUrTYvdX2UKGgGR8Bk9WldkauPaAdLZ2gIR0BL7ufukUKzdX2UKGgGR8BfRJuqFRHgaAdLTWgIR0BL7m78Nx2jdX2UKGgGR8B1QmBClabGaAdLU2gIR0BL7nhS9/SZdX2UKGgGR8ByKcPuogmraAdLYGgIR0BL9fzJ6po9dX2UKGgGR8BwxwplSS/1aAdLTWgIR0BL/t70Fr2ydX2UKGgGR8BZeJNGmUGFaAdLSWgIR0BMAWLP2PDHdX2UKGgGR8B2o3OmixmkaAdLU2gIR0BMA1+y7f52dX2UKGgGR8Btc0KTjebeaAdLV2gIR0BMCB2wFC9idX2UKGgGR8BS2EnCwbEQaAdLaWgIR0BMCT2vjfeldX2UKGgGR8BF3MyBTXJ6aAdLRWgIR0BMDJh4MWoFdX2UKGgGR8B1oxiTdLxqaAdLcWgIR0BMEJCSidrgdX2UKGgGR8BzQUPOIInjaAdLdmgIR0BMINp/PPcBdX2UKGgGR8BKhEdeY2KmaAdLQ2gIR0BMIyV4X40udX2UKGgGR8BoQbhHbypaaAdLRWgIR0BMJOBMBZIQdX2UKGgGR8B3Y56AvtdBaAdLc2gIR0BMKyApazNVdX2UKGgGR8BnfuBvrGBGaAdLUGgIR0BMLbhvR7Z4dX2UKGgGR8Bfh3tWuHN5aAdLX2gIR0BMLvZ7HAARdX2UKGgGR8BUbCUC7sfJaAdLTmgIR0BMM2XC0ngHdX2UKGgGR8Bc+ejM3ZPEaAdLWmgIR0BMM2yLQ5WBdX2UKGgGR8B1Gzs+mm+CaAdLQ2gIR0BMNGdZq20BdX2UKGgGR0A1sp/PPcBVaAdLeWgIR0BMNiCSRr8BdX2UKGgGR8BWxYHkcS5BaAdLP2gIR0BMOUY0l7dBdX2UKGgGR8BXT/CdjG1haAdLSmgIR0BMO2R7qptKdX2UKGgGR8BgTH/HYHxCaAdLVmgIR0BMRK3uuzQedX2UKGgGR8BynZMyrPt2aAdLSGgIR0BMV4OMERradX2UKGgGR8BgN/Y+Sr5qaAdLUWgIR0BMWtuDSPU8dX2UKGgGR8BDwE2Hck+paAdLRGgIR0BMXbQb+98JdX2UKGgGR8BghD8LronsaAdLcGgIR0BMYXOObRWtdX2UKGgGR8BqubXQMQVcaAdLf2gIR0BMZic5Ke05dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3478afa8bc540ecabfe27443d1ea6cbf449e3f09c0cf18e7f4f532827469ebf
3
+ size 146615
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f979f6cb6d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f979f6cb760>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f979f6cb7f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f979f6cb880>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f979f6cb910>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f979f6cb9a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f979f6cba30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f979f6cbac0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f979f6cbb50>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f979f6cbbe0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f979f6cbc70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f979f6cbd00>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f979f6d48c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 16384,
25
+ "_total_timesteps": 10000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1683186211672654957,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrbWb3UF7g/OMivvkE0kD1wcsM8V6jIvAAAAAAAAAAAWum0PRzuGz/10I8+t0yIv5ZukL4xVyC+AAAAAAAAAAAQngy/pS2CP2bXir/wKWm/fNhfPyzUrz4AAAAAAAAAAAbtBz8KS0w+xq2JP22GmL9k9x+/4NhwvgAAAAAAAAAAk6txPlOMAz8Gy7A+/Vicv0VGhb56ugK+AAAAAAAAAABNDA6+qqipP5uOO7/h+pG+uQAEPvtR/z0AAAAAAAAAANpkHj4hUXs/1ftVPhwWQr/q4/082EQoPAAAAAAAAAAAIFwaP0cLPD+FRoo/XFuQv+7Oeb9q0wS/AAAAAAAAAAAAYae9CZYbPU4Uw76KLKS/oI4CPwWhRT4AAAAAAACAP5pZ2boZ3K4/K+MrvYd4Br/Vjos69TtiPAAAAAAAAAAATQYDvTlcFT7z19W9dQypv3ylIT5KpUO9AAAAAAAAAADNlli8x2czPw078L318Va/j21lPmGslD0AAAAAAAAAALq5Sz9b+VO+sqkHPnRu1b/X/5A/q/CvPgAAAAAAAAAAzVmKvYQGqD+2Ni+/GcrmvkcFsT0FT1Q+AAAAAAAAAACzeBc9aJuiPxkrPz56kty+9NQDvkwQN74AAAAAAAAAAAKYG7+3wG0+WM90v6ffmr/Fclk/khp0PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.6384000000000001,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwG381/MGHHqMAWyUS1iMAXSUR0BK8CItUXHjdX2UKGgGR8Bi3/fKp1ifaAdLhWgIR0BK9PVNHpbEdX2UKGgGR8BcyHMhX8wYaAdLV2gIR0BK+b4agmJFdX2UKGgGR8B5ttBAv+OwaAdLWmgIR0BLAXzcynDSdX2UKGgGR8Bxbz4i5d4WaAdLe2gIR0BLBnF5v99/dX2UKGgGR8BkcF3KSxJNaAdLV2gIR0BLBiuU2UB5dX2UKGgGR8B4JvXg9/z8aAdLYGgIR0BLCCkXUH6edX2UKGgGR8Br3ycy31BdaAdLRmgIR0BLCcdYGMXKdX2UKGgGR8BcmfznRsuWaAdLdmgIR0BLC+vZAY51dX2UKGgGR8BXABWtEG7jaAdLW2gIR0BLC3lbNbC8dX2UKGgGR8BXZnHJcPe6aAdLOmgIR0BLEbO3UhFFdX2UKGgGR8BZWTYZl4C7aAdLcGgIR0BLEyu6mO2idX2UKGgGR8BoDSVGCqZMaAdLSmgIR0BLFujqOcUedX2UKGgGR8BYwV3yI55raAdLR2gIR0BLFxrrPdEcdX2UKGgGR8Bunxgssg+yaAdLRmgIR0BLGRtpEhJRdX2UKGgGR8Bj7FpRGc4HaAdLUmgIR0BLF/pdKNADdX2UKGgGR8BVr7s0HhS+aAdLQGgIR0BLGRTKkl/pdX2UKGgGR8BU+7iVB2OiaAdLOGgIR0BLHp3os7MgdX2UKGgGR8Be7JWRzRx+aAdLO2gIR0BLJGOU+s5odX2UKGgGR8BjKzwhGH58aAdLe2gIR0BLJt+so2GZdX2UKGgGR8BzTWLAHmihaAdLWWgIR0BLKNGd7OVxdX2UKGgGR8BZ5DUAksz3aAdLPmgIR0BLKwFTvRZ2dX2UKGgGR8BiTAudwvQGaAdLT2gIR0BLMBaC+UQkdX2UKGgGR8B39Bkxyn1naAdLT2gIR0BLMzI3irDJdX2UKGgGR8BZFliKBNEgaAdLQWgIR0BLOANwzch1dX2UKGgGR8BRnSxqwhW6aAdLQWgIR0BLOOjh1klNdX2UKGgGR8BXbk87p3X7aAdLS2gIR0BLP0eMhougdX2UKGgGR8BgvNbkfcN6aAdLcWgIR0BLQIc7yQPqdX2UKGgGR8B53jgflp49aAdLUWgIR0BLQMuFpPAPdX2UKGgGR8B1AJENOM2naAdLXWgIR0BLQYFRpDeCdX2UKGgGR8B+HlnOB19waAdLYGgIR0BLRGdZq20BdX2UKGgGR8BkmLEcbR4RaAdLgGgIR0BLS2DpTuOTdX2UKGgGR8BcRPAKv3ajaAdLZmgIR0BLTal+EytWdX2UKGgGR8B1Cguyu6mPaAdLXWgIR0BLTzijtXxOdX2UKGgGR8BRPpiiItUXaAdLSmgIR0BLT+FtbcGkdX2UKGgGR8B35so6S1VpaAdLV2gIR0BLUskY4yXVdX2UKGgGR0A9BCaJAMUiaAdLSGgIR0BLWZkbxVhkdX2UKGgGR8BTqwMUh3aBaAdLQGgIR0BLYiWNWEK3dX2UKGgGR8BsQTU3GXHBaAdLamgIR0BLYtXgccU/dX2UKGgGR8BuwtCkXUH6aAdLT2gIR0BLYqaG5+YudX2UKGgGR8B3MSDtgKF7aAdLZGgIR0BLZThP0qYrdX2UKGgGR8Bj4O9L6DXfaAdLhmgIR0BLbbH6uW8idX2UKGgGR8BwZh4wAU+LaAdLRGgIR0BLb925hBqsdX2UKGgGR8BiqDlJYkmhaAdLWGgIR0BLcQRf4REndX2UKGgGR8B0AEZWJaaDaAdLcmgIR0BLdunl4keIdX2UKGgGR8BZ7y2MKkVOaAdLRmgIR0BLd3lbNbC8dX2UKGgGR8Bn7API4lyBaAdLbmgIR0BLgHkLhJiBdX2UKGgGR8BTZGfPHDJmaAdLZmgIR0BLgjXnQpnZdX2UKGgGR8CAcQdPtUn5aAdLcGgIR0BLhMuOCGvfdX2UKGgGR8Bfgnta6jFiaAdLRWgIR0BLh6oddVvNdX2UKGgGR8B1jnZ9NN8FaAdLZGgIR0BLjomPYFq0dX2UKGgGR8BzgS22G7BgaAdLY2gIR0BLlBmwqy4XdX2UKGgGR0A0ZcWj4593aAdLZmgIR0BLk2vB7/n4dX2UKGgGR8BYAg5/9YOlaAdLRGgIR0BLlO1v2oNvdX2UKGgGR8BRIxs2vStvaAdLQWgIR0BLoLLhaTwEdX2UKGgGR8BVU4vWYnfEaAdLRWgIR0BLrWrGR3eOdX2UKGgGR8Br/J+6RQrMaAdLYWgIR0BLrVSGahHtdX2UKGgGR8B2f2wLVnVYaAdLaGgIR0BLr12Rq46PdX2UKGgGR8BsHrF0gbIcaAdLVWgIR0BLs+NDMNc4dX2UKGgGR0ARmnHeaa1DaAdLdWgIR0BLuD5KvmozdX2UKGgGR8BsOoLXtjTbaAdLUmgIR0BLt9mYjSogdX2UKGgGR8BhEiiO/+KkaAdLSWgIR0BLxRIatLcsdX2UKGgGR8B+y8UBXCCSaAdLbWgIR0BLxgWrOqvNdX2UKGgGR0BFSzVMEidKaAdLWmgIR0BLxeBQN0/4dX2UKGgGR8Bo4HrOZ9eAaAdLWGgIR0BLxekP+XJHdX2UKGgGR8BNmDA8B+4LaAdLSGgIR0BLy1ARkEs8dX2UKGgGR8BX3S++M6zWaAdLZmgIR0BL0q5LAYYSdX2UKGgGR8CC6EYR/ViGaAdLWGgIR0BL1j6eoUBXdX2UKGgGR8BeiglKK509aAdLa2gIR0BL2UwztTkydX2UKGgGR8BbrNRzijtYaAdLSWgIR0BL5IYFaB7NdX2UKGgGR8BiBhikO7QLaAdLdmgIR0BL7QIUrTYvdX2UKGgGR8Bk9WldkauPaAdLZ2gIR0BL7ufukUKzdX2UKGgGR8BfRJuqFRHgaAdLTWgIR0BL7m78Nx2jdX2UKGgGR8B1QmBClabGaAdLU2gIR0BL7nhS9/SZdX2UKGgGR8ByKcPuogmraAdLYGgIR0BL9fzJ6po9dX2UKGgGR8BwxwplSS/1aAdLTWgIR0BL/t70Fr2ydX2UKGgGR8BZeJNGmUGFaAdLSWgIR0BMAWLP2PDHdX2UKGgGR8B2o3OmixmkaAdLU2gIR0BMA1+y7f52dX2UKGgGR8Btc0KTjebeaAdLV2gIR0BMCB2wFC9idX2UKGgGR8BS2EnCwbEQaAdLaWgIR0BMCT2vjfeldX2UKGgGR8BF3MyBTXJ6aAdLRWgIR0BMDJh4MWoFdX2UKGgGR8B1oxiTdLxqaAdLcWgIR0BMEJCSidrgdX2UKGgGR8BzQUPOIInjaAdLdmgIR0BMINp/PPcBdX2UKGgGR8BKhEdeY2KmaAdLQ2gIR0BMIyV4X40udX2UKGgGR8BoQbhHbypaaAdLRWgIR0BMJOBMBZIQdX2UKGgGR8B3Y56AvtdBaAdLc2gIR0BMKyApazNVdX2UKGgGR8BnfuBvrGBGaAdLUGgIR0BMLbhvR7Z4dX2UKGgGR8Bfh3tWuHN5aAdLX2gIR0BMLvZ7HAARdX2UKGgGR8BUbCUC7sfJaAdLTmgIR0BMM2XC0ngHdX2UKGgGR8Bc+ejM3ZPEaAdLWmgIR0BMM2yLQ5WBdX2UKGgGR8B1Gzs+mm+CaAdLQ2gIR0BMNGdZq20BdX2UKGgGR0A1sp/PPcBVaAdLeWgIR0BMNiCSRr8BdX2UKGgGR8BWxYHkcS5BaAdLP2gIR0BMOUY0l7dBdX2UKGgGR8BXT/CdjG1haAdLSmgIR0BMO2R7qptKdX2UKGgGR8BgTH/HYHxCaAdLVmgIR0BMRK3uuzQedX2UKGgGR8BynZMyrPt2aAdLSGgIR0BMV4OMERradX2UKGgGR8BgN/Y+Sr5qaAdLUWgIR0BMWtuDSPU8dX2UKGgGR8BDwE2Hck+paAdLRGgIR0BMXbQb+98JdX2UKGgGR8BghD8LronsaAdLcGgIR0BMYXOObRWtdX2UKGgGR8BqubXQMQVcaAdLf2gIR0BMZic5Ke05dWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 4,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f3e456c470c6a1c222cb327687defe3f0ea89c8cd0c7dfb85d7281edb2afe2c
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9963cad5589128b12c42297545a8ae0a65576a236e3ef95dd49f98c37eb07fe6
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (188 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -201.09118086388335, "std_reward": 38.37955989061701, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-04T07:51:29.792605"}