commit from root
Browse files- Baichuan-13B-Chat-full/all_results.json +0 -7
- Baichuan-13B-Chat-full/config.json +0 -29
- Baichuan-13B-Chat-full/configuration_baichuan.py +0 -46
- Baichuan-13B-Chat-full/generation_config.json +0 -14
- Baichuan-13B-Chat-full/generation_utils.py +0 -82
- Baichuan-13B-Chat-full/modeling_baichuan.py +0 -572
- Baichuan-13B-Chat-full/pytorch_model-00002-of-00003.bin +0 -3
- Baichuan-13B-Chat-full/pytorch_model-00003-of-00003.bin +0 -3
- Baichuan-13B-Chat-full/pytorch_model.bin.index.json +0 -290
- Baichuan-13B-Chat-full/quantizer.py +0 -123
- Baichuan-13B-Chat-full/train_results.json +0 -7
- Baichuan-13B-Chat-full/trainer_log.jsonl +0 -198
- Baichuan-13B-Chat-full/training_loss.png +0 -0
- Baichuan-13B-Chat-lora-Task/README.md +9 -0
- Baichuan-13B-Chat-lora-Task/adapter_config.json +20 -0
- Baichuan-13B-Chat-full/pytorch_model-00001-of-00003.bin → Baichuan-13B-Chat-lora-Task/adapter_model.bin +2 -2
- Baichuan-13B-Chat-lora-Task/all_results.json +11 -0
- Baichuan-13B-Chat-lora-Task/eval_results.json +7 -0
- {Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/special_tokens_map.json +0 -0
- {Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/tokenization_baichuan.py +0 -0
- {Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/tokenizer.model +0 -0
- {Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/tokenizer_config.json +0 -0
- Baichuan-13B-Chat-lora-Task/train_results.json +7 -0
- Baichuan-13B-Chat-lora-Task/trainer_log.jsonl +287 -0
- {Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/trainer_state.json +1156 -602
- {Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/training_args.bin +2 -2
- Baichuan-13B-Chat-lora-Task/training_eval_loss.png +0 -0
- Baichuan-13B-Chat-lora-Task/training_loss.png +0 -0
- README.md +147 -0
Baichuan-13B-Chat-full/all_results.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"epoch": 2.0,
|
3 |
-
"train_loss": 0.5708327819994277,
|
4 |
-
"train_runtime": 105327.89,
|
5 |
-
"train_samples_per_second": 4.797,
|
6 |
-
"train_steps_per_second": 0.019
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Baichuan-13B-Chat-full/config.json
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_from_model_config": true,
|
3 |
-
"_name_or_path": "baichuan-inc/Baichuan-13B-Chat",
|
4 |
-
"architectures": [
|
5 |
-
"BaichuanForCausalLM"
|
6 |
-
],
|
7 |
-
"auto_map": {
|
8 |
-
"AutoConfig": "configuration_baichuan.BaichuanConfig",
|
9 |
-
"AutoModel": "modeling_baichuan.BaichuanForCausalLM",
|
10 |
-
"AutoModelForCausalLM": "baichuan-inc/Baichuan-13B-Chat--modeling_baichuan.BaichuanForCausalLM"
|
11 |
-
},
|
12 |
-
"bos_token_id": 1,
|
13 |
-
"eos_token_id": 2,
|
14 |
-
"hidden_act": "silu",
|
15 |
-
"hidden_size": 5120,
|
16 |
-
"initializer_range": 0.02,
|
17 |
-
"intermediate_size": 13696,
|
18 |
-
"model_max_length": 4096,
|
19 |
-
"model_type": "baichuan",
|
20 |
-
"num_attention_heads": 40,
|
21 |
-
"num_hidden_layers": 40,
|
22 |
-
"pad_token_id": 0,
|
23 |
-
"rms_norm_eps": 1e-06,
|
24 |
-
"tie_word_embeddings": false,
|
25 |
-
"torch_dtype": "float16",
|
26 |
-
"transformers_version": "4.31.0",
|
27 |
-
"use_cache": false,
|
28 |
-
"vocab_size": 64000
|
29 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Baichuan-13B-Chat-full/configuration_baichuan.py
DELETED
@@ -1,46 +0,0 @@
|
|
1 |
-
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
|
2 |
-
|
3 |
-
from transformers.configuration_utils import PretrainedConfig
|
4 |
-
|
5 |
-
class BaichuanConfig(PretrainedConfig):
|
6 |
-
model_type = "baichuan"
|
7 |
-
keys_to_ignore_at_inference = ["past_key_values"]
|
8 |
-
|
9 |
-
def __init__(
|
10 |
-
self,
|
11 |
-
vocab_size=64000,
|
12 |
-
hidden_size=5120,
|
13 |
-
intermediate_size=13696,
|
14 |
-
num_hidden_layers=40,
|
15 |
-
num_attention_heads=40,
|
16 |
-
hidden_act="silu",
|
17 |
-
model_max_length=4096,
|
18 |
-
initializer_range=0.02,
|
19 |
-
rms_norm_eps=1e-6,
|
20 |
-
use_cache=True,
|
21 |
-
pad_token_id=0,
|
22 |
-
bos_token_id=1,
|
23 |
-
eos_token_id=2,
|
24 |
-
tie_word_embeddings=False,
|
25 |
-
gradient_checkpointing=False,
|
26 |
-
**kwargs,
|
27 |
-
):
|
28 |
-
self.vocab_size = vocab_size
|
29 |
-
self.model_max_length = model_max_length
|
30 |
-
self.hidden_size = hidden_size
|
31 |
-
self.intermediate_size = intermediate_size
|
32 |
-
self.num_hidden_layers = num_hidden_layers
|
33 |
-
self.num_attention_heads = num_attention_heads
|
34 |
-
self.hidden_act = hidden_act
|
35 |
-
self.initializer_range = initializer_range
|
36 |
-
self.rms_norm_eps = rms_norm_eps
|
37 |
-
self.use_cache = use_cache
|
38 |
-
self.gradient_checkpointing = gradient_checkpointing,
|
39 |
-
super().__init__(
|
40 |
-
pad_token_id=pad_token_id,
|
41 |
-
bos_token_id=bos_token_id,
|
42 |
-
eos_token_id=eos_token_id,
|
43 |
-
tie_word_embeddings=tie_word_embeddings,
|
44 |
-
**kwargs,
|
45 |
-
)
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Baichuan-13B-Chat-full/generation_config.json
DELETED
@@ -1,14 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"assistant_token_id": 196,
|
3 |
-
"bos_token_id": 1,
|
4 |
-
"do_sample": true,
|
5 |
-
"eos_token_id": 2,
|
6 |
-
"max_new_tokens": 2048,
|
7 |
-
"pad_token_id": 0,
|
8 |
-
"repetition_penalty": 1.1,
|
9 |
-
"temperature": 0.3,
|
10 |
-
"top_k": 5,
|
11 |
-
"top_p": 0.85,
|
12 |
-
"transformers_version": "4.31.0",
|
13 |
-
"user_token_id": 195
|
14 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Baichuan-13B-Chat-full/generation_utils.py
DELETED
@@ -1,82 +0,0 @@
|
|
1 |
-
from typing import List
|
2 |
-
from queue import Queue
|
3 |
-
|
4 |
-
import torch
|
5 |
-
|
6 |
-
|
7 |
-
def build_chat_input(model, tokenizer, messages: List[dict], max_new_tokens: int=0):
|
8 |
-
def _parse_messages(messages, split_role="user"):
|
9 |
-
system, rounds = "", []
|
10 |
-
round = []
|
11 |
-
for i, message in enumerate(messages):
|
12 |
-
if message["role"] == "system":
|
13 |
-
assert i == 0
|
14 |
-
system = message["content"]
|
15 |
-
continue
|
16 |
-
if message["role"] == split_role and round:
|
17 |
-
rounds.append(round)
|
18 |
-
round = []
|
19 |
-
round.append(message)
|
20 |
-
if round:
|
21 |
-
rounds.append(round)
|
22 |
-
return system, rounds
|
23 |
-
|
24 |
-
max_new_tokens = max_new_tokens or model.generation_config.max_new_tokens
|
25 |
-
max_input_tokens = model.config.model_max_length - max_new_tokens
|
26 |
-
system, rounds = _parse_messages(messages, split_role="user")
|
27 |
-
system_tokens = tokenizer.encode(system)
|
28 |
-
max_history_tokens = max_input_tokens - len(system_tokens)
|
29 |
-
|
30 |
-
history_tokens = []
|
31 |
-
for round in rounds[::-1]:
|
32 |
-
round_tokens = []
|
33 |
-
for message in round:
|
34 |
-
if message["role"] == "user":
|
35 |
-
round_tokens.append(model.generation_config.user_token_id)
|
36 |
-
else:
|
37 |
-
round_tokens.append(model.generation_config.assistant_token_id)
|
38 |
-
round_tokens.extend(tokenizer.encode(message["content"]))
|
39 |
-
if len(history_tokens) == 0 or len(history_tokens) + len(round_tokens) <= max_history_tokens:
|
40 |
-
history_tokens = round_tokens + history_tokens # concat left
|
41 |
-
if len(history_tokens) < max_history_tokens:
|
42 |
-
continue
|
43 |
-
break
|
44 |
-
|
45 |
-
input_tokens = system_tokens + history_tokens
|
46 |
-
if messages[-1]["role"] != "assistant":
|
47 |
-
input_tokens.append(model.generation_config.assistant_token_id)
|
48 |
-
input_tokens = input_tokens[-max_input_tokens:] # truncate left
|
49 |
-
return torch.LongTensor([input_tokens]).to(model.device)
|
50 |
-
|
51 |
-
|
52 |
-
class TextIterStreamer:
|
53 |
-
def __init__(self, tokenizer, skip_prompt=False, skip_special_tokens=False):
|
54 |
-
self.tokenizer = tokenizer
|
55 |
-
self.skip_prompt = skip_prompt
|
56 |
-
self.skip_special_tokens = skip_special_tokens
|
57 |
-
self.tokens = []
|
58 |
-
self.text_queue = Queue()
|
59 |
-
self.next_tokens_are_prompt = True
|
60 |
-
|
61 |
-
def put(self, value):
|
62 |
-
if self.skip_prompt and self.next_tokens_are_prompt:
|
63 |
-
self.next_tokens_are_prompt = False
|
64 |
-
else:
|
65 |
-
if len(value.shape) > 1:
|
66 |
-
value = value[0]
|
67 |
-
self.tokens.extend(value.tolist())
|
68 |
-
self.text_queue.put(
|
69 |
-
self.tokenizer.decode(self.tokens, skip_special_tokens=self.skip_special_tokens))
|
70 |
-
|
71 |
-
def end(self):
|
72 |
-
self.text_queue.put(None)
|
73 |
-
|
74 |
-
def __iter__(self):
|
75 |
-
return self
|
76 |
-
|
77 |
-
def __next__(self):
|
78 |
-
value = self.text_queue.get()
|
79 |
-
if value is None:
|
80 |
-
raise StopIteration()
|
81 |
-
else:
|
82 |
-
return value
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Baichuan-13B-Chat-full/modeling_baichuan.py
DELETED
@@ -1,572 +0,0 @@
|
|
1 |
-
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
|
2 |
-
|
3 |
-
import math
|
4 |
-
from threading import Thread
|
5 |
-
from typing import List, Optional, Tuple, Union
|
6 |
-
|
7 |
-
import torch
|
8 |
-
import torch.utils.checkpoint
|
9 |
-
from torch.nn import CrossEntropyLoss
|
10 |
-
from transformers import PreTrainedModel
|
11 |
-
from transformers.activations import ACT2FN
|
12 |
-
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
13 |
-
from transformers.utils import logging
|
14 |
-
from transformers.generation.utils import GenerationConfig
|
15 |
-
|
16 |
-
from .configuration_baichuan import BaichuanConfig
|
17 |
-
from .generation_utils import build_chat_input, TextIterStreamer
|
18 |
-
|
19 |
-
logger = logging.get_logger(__name__)
|
20 |
-
|
21 |
-
|
22 |
-
def _get_interleave(n):
|
23 |
-
def _get_interleave_power_of_2(n):
|
24 |
-
start = (2 ** (-2 ** -(math.log2(n) - 3)))
|
25 |
-
ratio = start
|
26 |
-
return [start * ratio ** i for i in range(n)]
|
27 |
-
|
28 |
-
if math.log2(n).is_integer():
|
29 |
-
return _get_interleave_power_of_2(n)
|
30 |
-
else:
|
31 |
-
closest_power_of_2 = 2 ** math.floor(math.log2(n))
|
32 |
-
return _get_interleave_power_of_2(closest_power_of_2) + \
|
33 |
-
_get_interleave(2 * closest_power_of_2)[0::2][:n - closest_power_of_2]
|
34 |
-
|
35 |
-
def _fill_with_neg_inf(t):
|
36 |
-
"""FP16-compatible function that fills a tensor with -inf."""
|
37 |
-
return t.float().fill_(float("-inf")).type_as(t)
|
38 |
-
|
39 |
-
def _gen_alibi_mask(n_head, max_pos):
|
40 |
-
"""used in inference only"""
|
41 |
-
slopes = torch.Tensor(_get_interleave(n_head))
|
42 |
-
alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(max_pos).unsqueeze(0).unsqueeze(0).expand(
|
43 |
-
n_head, -1, -1)
|
44 |
-
alibi = alibi.view(n_head, 1, max_pos)
|
45 |
-
alibi_mask = torch.triu(
|
46 |
-
_fill_with_neg_inf(torch.zeros([max_pos, max_pos])), 1
|
47 |
-
)
|
48 |
-
alibi_mask = alibi_mask.unsqueeze(0) + alibi
|
49 |
-
return alibi_mask
|
50 |
-
|
51 |
-
def _buffered_future_mask(tensor, maxpos, alibi, attn_heads):
|
52 |
-
"""used in training only"""
|
53 |
-
dim = tensor.size(1)
|
54 |
-
_future_mask = torch.triu(
|
55 |
-
_fill_with_neg_inf(torch.zeros([maxpos, maxpos])), 1
|
56 |
-
)
|
57 |
-
_future_mask = _future_mask.unsqueeze(0) + alibi
|
58 |
-
_future_mask = _future_mask.to(tensor)
|
59 |
-
return _future_mask[:tensor.shape[0] * attn_heads, :maxpos, :maxpos]
|
60 |
-
|
61 |
-
|
62 |
-
class RMSNorm(torch.nn.Module):
|
63 |
-
def __init__(self, hidden_size, epsilon=1e-6):
|
64 |
-
super().__init__()
|
65 |
-
self.weight = torch.nn.Parameter(torch.empty(hidden_size))
|
66 |
-
self.epsilon = epsilon
|
67 |
-
|
68 |
-
def forward(self, hidden_states):
|
69 |
-
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
70 |
-
hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon)
|
71 |
-
|
72 |
-
# convert into half-precision
|
73 |
-
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
74 |
-
hidden_states = hidden_states.to(self.weight.dtype)
|
75 |
-
|
76 |
-
return self.weight * hidden_states
|
77 |
-
|
78 |
-
|
79 |
-
class MLP(torch.nn.Module):
|
80 |
-
def __init__(
|
81 |
-
self,
|
82 |
-
hidden_size: int,
|
83 |
-
intermediate_size: int,
|
84 |
-
hidden_act: str,
|
85 |
-
):
|
86 |
-
super().__init__()
|
87 |
-
self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
|
88 |
-
self.down_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False)
|
89 |
-
self.up_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
|
90 |
-
self.act_fn = ACT2FN[hidden_act]
|
91 |
-
|
92 |
-
def forward(self, x):
|
93 |
-
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
94 |
-
|
95 |
-
|
96 |
-
class BaichuanAttention(torch.nn.Module):
|
97 |
-
def __init__(self, config: BaichuanConfig):
|
98 |
-
super().__init__()
|
99 |
-
self.config = config
|
100 |
-
self.hidden_size = config.hidden_size
|
101 |
-
self.num_heads = config.num_attention_heads
|
102 |
-
self.head_dim = self.hidden_size // self.num_heads
|
103 |
-
self.max_position_embeddings = config.model_max_length
|
104 |
-
|
105 |
-
if (self.head_dim * self.num_heads) != self.hidden_size:
|
106 |
-
raise ValueError(
|
107 |
-
f"hidden_size {self.hidden_size} is not divisible by num_heads {self.num_heads}"
|
108 |
-
)
|
109 |
-
self.W_pack = torch.nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
|
110 |
-
self.o_proj = torch.nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
111 |
-
|
112 |
-
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
113 |
-
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
114 |
-
|
115 |
-
def forward(
|
116 |
-
self,
|
117 |
-
hidden_states: torch.Tensor,
|
118 |
-
attention_mask: Optional[torch.Tensor] = None,
|
119 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
120 |
-
output_attentions: bool = False,
|
121 |
-
use_cache: bool = False,
|
122 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
123 |
-
|
124 |
-
bsz, q_len, _ = hidden_states.size()
|
125 |
-
|
126 |
-
proj = self.W_pack(hidden_states)
|
127 |
-
proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
|
128 |
-
query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
129 |
-
key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
130 |
-
value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
131 |
-
|
132 |
-
kv_seq_len = key_states.shape[-2]
|
133 |
-
if past_key_value is not None:
|
134 |
-
kv_seq_len += past_key_value[0].shape[-2]
|
135 |
-
|
136 |
-
if past_key_value is not None:
|
137 |
-
# reuse k, v, self_attention
|
138 |
-
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
139 |
-
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
140 |
-
|
141 |
-
past_key_value = (key_states, value_states) if use_cache else None
|
142 |
-
|
143 |
-
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
144 |
-
|
145 |
-
if attention_mask is not None:
|
146 |
-
if q_len == 1: # inference with cache
|
147 |
-
if len(attention_mask.size()) == 4:
|
148 |
-
attention_mask = attention_mask[:, :, -1:, :]
|
149 |
-
else:
|
150 |
-
attention_mask = attention_mask[:, -1:, :]
|
151 |
-
attn_weights = attn_weights + attention_mask
|
152 |
-
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
153 |
-
|
154 |
-
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
|
155 |
-
|
156 |
-
attn_output = torch.matmul(attn_weights, value_states)
|
157 |
-
|
158 |
-
attn_output = attn_output.transpose(1, 2)
|
159 |
-
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
160 |
-
attn_output = self.o_proj(attn_output)
|
161 |
-
|
162 |
-
if not output_attentions:
|
163 |
-
attn_weights = None
|
164 |
-
|
165 |
-
return attn_output, attn_weights, past_key_value
|
166 |
-
|
167 |
-
|
168 |
-
class BaichuanLayer(torch.nn.Module):
|
169 |
-
def __init__(self, config: BaichuanConfig):
|
170 |
-
super().__init__()
|
171 |
-
self.hidden_size = config.hidden_size
|
172 |
-
self.self_attn = BaichuanAttention(config=config)
|
173 |
-
self.mlp = MLP(
|
174 |
-
hidden_size=self.hidden_size,
|
175 |
-
intermediate_size=config.intermediate_size,
|
176 |
-
hidden_act=config.hidden_act,
|
177 |
-
)
|
178 |
-
self.input_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
|
179 |
-
self.post_attention_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
|
180 |
-
|
181 |
-
def forward(
|
182 |
-
self,
|
183 |
-
hidden_states: torch.Tensor,
|
184 |
-
attention_mask: Optional[torch.Tensor] = None,
|
185 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
186 |
-
output_attentions: Optional[bool] = False,
|
187 |
-
use_cache: Optional[bool] = False,
|
188 |
-
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
189 |
-
|
190 |
-
residual = hidden_states
|
191 |
-
|
192 |
-
hidden_states = self.input_layernorm(hidden_states)
|
193 |
-
|
194 |
-
# Self Attention
|
195 |
-
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
196 |
-
hidden_states=hidden_states,
|
197 |
-
attention_mask=attention_mask,
|
198 |
-
past_key_value=past_key_value,
|
199 |
-
output_attentions=output_attentions,
|
200 |
-
use_cache=use_cache,
|
201 |
-
)
|
202 |
-
hidden_states = residual + hidden_states
|
203 |
-
|
204 |
-
# Fully Connected
|
205 |
-
residual = hidden_states
|
206 |
-
hidden_states = self.post_attention_layernorm(hidden_states)
|
207 |
-
hidden_states = self.mlp(hidden_states)
|
208 |
-
hidden_states = residual + hidden_states
|
209 |
-
|
210 |
-
outputs = (hidden_states,)
|
211 |
-
|
212 |
-
if use_cache:
|
213 |
-
outputs += (present_key_value,)
|
214 |
-
|
215 |
-
return outputs
|
216 |
-
|
217 |
-
|
218 |
-
class BaichuanPreTrainedModel(PreTrainedModel):
|
219 |
-
config_class = BaichuanConfig
|
220 |
-
base_model_prefix = "model"
|
221 |
-
supports_gradient_checkpointing = True
|
222 |
-
_no_split_modules = ["BaichuanLayer"]
|
223 |
-
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
224 |
-
|
225 |
-
def _init_weights(self, module):
|
226 |
-
std = self.config.initializer_range
|
227 |
-
if isinstance(module, torch.nn.Linear):
|
228 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
229 |
-
if module.bias is not None:
|
230 |
-
module.bias.data.zero_()
|
231 |
-
elif isinstance(module, torch.nn.Embedding):
|
232 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
233 |
-
if module.padding_idx is not None:
|
234 |
-
module.weight.data[module.padding_idx].zero_()
|
235 |
-
|
236 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
237 |
-
if isinstance(module, BaichuanModel):
|
238 |
-
module.gradient_checkpointing = value
|
239 |
-
|
240 |
-
|
241 |
-
class BaichuanModel(BaichuanPreTrainedModel):
|
242 |
-
def __init__(self, config: BaichuanConfig):
|
243 |
-
super().__init__(config)
|
244 |
-
self.padding_idx = config.pad_token_id
|
245 |
-
self.vocab_size = config.vocab_size
|
246 |
-
self.n_head = config.num_attention_heads
|
247 |
-
self.embed_tokens = torch.nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
248 |
-
self.layers = torch.nn.ModuleList([BaichuanLayer(config) for _ in range(config.num_hidden_layers)])
|
249 |
-
self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
|
250 |
-
|
251 |
-
self.gradient_checkpointing = config.gradient_checkpointing
|
252 |
-
self.post_init()
|
253 |
-
self.max_cache_pos = config.model_max_length
|
254 |
-
self.first_run = True
|
255 |
-
self.alibi_mask = None
|
256 |
-
|
257 |
-
def get_input_embeddings(self):
|
258 |
-
return self.embed_tokens
|
259 |
-
|
260 |
-
def set_input_embeddings(self, value):
|
261 |
-
self.embed_tokens = value
|
262 |
-
|
263 |
-
def get_alibi_mask(self, tensor, seq_length_with_past):
|
264 |
-
if self.training:
|
265 |
-
slopes = torch.Tensor(_get_interleave(self.n_head))
|
266 |
-
alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(seq_length_with_past).unsqueeze(0).unsqueeze(0).expand(
|
267 |
-
self.n_head,
|
268 |
-
-1, -1)
|
269 |
-
alibi = alibi.view(self.n_head, 1, seq_length_with_past)
|
270 |
-
mask = _buffered_future_mask(tensor, seq_length_with_past, alibi, self.n_head)
|
271 |
-
else:
|
272 |
-
if self.first_run:
|
273 |
-
self.first_run = False
|
274 |
-
self.register_buffer("future_mask", _gen_alibi_mask(self.n_head, self.max_cache_pos).to(tensor), persistent=False)
|
275 |
-
if seq_length_with_past > self.max_cache_pos:
|
276 |
-
self.max_cache_pos = seq_length_with_past
|
277 |
-
self.register_buffer("future_mask", _gen_alibi_mask(self.n_head, self.max_cache_pos).to(tensor), persistent=False)
|
278 |
-
mask = self.future_mask[:self.n_head, :seq_length_with_past, :seq_length_with_past]
|
279 |
-
return mask
|
280 |
-
|
281 |
-
def forward(
|
282 |
-
self,
|
283 |
-
input_ids: torch.LongTensor = None,
|
284 |
-
attention_mask: Optional[torch.Tensor] = None,
|
285 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
286 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
287 |
-
use_cache: Optional[bool] = False,
|
288 |
-
output_attentions: Optional[bool] = False,
|
289 |
-
output_hidden_states: Optional[bool] = False,
|
290 |
-
return_dict: Optional[bool] = True,
|
291 |
-
) -> Union[Tuple, BaseModelOutputWithPast]:
|
292 |
-
|
293 |
-
if input_ids is not None and inputs_embeds is not None:
|
294 |
-
raise ValueError("You cannot provide both input_ids and inputs_embeds simultaneously")
|
295 |
-
elif input_ids is not None:
|
296 |
-
batch_size, seq_length = input_ids.shape
|
297 |
-
elif inputs_embeds is not None:
|
298 |
-
batch_size, seq_length, _ = inputs_embeds.shape
|
299 |
-
else:
|
300 |
-
raise ValueError("You need to provide input_ids or inputs_embeds")
|
301 |
-
|
302 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
303 |
-
|
304 |
-
seq_length_with_past = seq_length
|
305 |
-
|
306 |
-
if past_key_values is not None:
|
307 |
-
past_key_values_length = past_key_values[0][0].shape[2]
|
308 |
-
seq_length_with_past = seq_length_with_past + past_key_values_length
|
309 |
-
|
310 |
-
if inputs_embeds is None:
|
311 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
312 |
-
|
313 |
-
if self.training:
|
314 |
-
if self.alibi_mask is None or self.alibi_mask.shape[-1] != seq_length_with_past:
|
315 |
-
self.alibi_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
|
316 |
-
alibi_mask = self.alibi_mask
|
317 |
-
else:
|
318 |
-
alibi_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
|
319 |
-
|
320 |
-
if attention_mask is not None:
|
321 |
-
if len(attention_mask.shape) == 2:
|
322 |
-
expanded_mask = attention_mask.to(alibi_mask.dtype)
|
323 |
-
expanded_mask = torch.tril(torch.gt(expanded_mask[:, :, None] * expanded_mask[:, None, :], 0)
|
324 |
-
) * torch.eq(expanded_mask[:, :, None] - expanded_mask[:, None, :], 0)
|
325 |
-
else:
|
326 |
-
expanded_mask = attention_mask
|
327 |
-
bsz = inputs_embeds.size(0)
|
328 |
-
src_len, tgt_len = alibi_mask.size()[-2:]
|
329 |
-
expanded_mask = expanded_mask.unsqueeze(1).expand(bsz, 1, src_len, tgt_len).to(alibi_mask.dtype)
|
330 |
-
inverted_mask = 1.0 - expanded_mask
|
331 |
-
inverted_mask = inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(alibi_mask.dtype).min)
|
332 |
-
attention_mask = inverted_mask + alibi_mask.unsqueeze(0)
|
333 |
-
else:
|
334 |
-
attention_mask = alibi_mask
|
335 |
-
|
336 |
-
hidden_states = inputs_embeds
|
337 |
-
|
338 |
-
if self.gradient_checkpointing and self.training:
|
339 |
-
if use_cache:
|
340 |
-
logger.warning_once(
|
341 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
342 |
-
)
|
343 |
-
use_cache = False
|
344 |
-
|
345 |
-
# decoder layers
|
346 |
-
all_hidden_states = () if output_hidden_states else None
|
347 |
-
all_self_attns = () if output_attentions else None
|
348 |
-
next_decoder_cache = () if use_cache else None
|
349 |
-
|
350 |
-
for idx, decoder_layer in enumerate(self.layers):
|
351 |
-
if output_hidden_states:
|
352 |
-
all_hidden_states += (hidden_states,)
|
353 |
-
|
354 |
-
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
355 |
-
|
356 |
-
if self.gradient_checkpointing and self.training:
|
357 |
-
|
358 |
-
def create_custom_forward(module):
|
359 |
-
def custom_forward(*inputs):
|
360 |
-
# None for past_key_value
|
361 |
-
return module(*inputs, output_attentions, None)
|
362 |
-
|
363 |
-
return custom_forward
|
364 |
-
|
365 |
-
layer_outputs = torch.utils.checkpoint.checkpoint(
|
366 |
-
create_custom_forward(decoder_layer),
|
367 |
-
hidden_states,
|
368 |
-
attention_mask,
|
369 |
-
None,
|
370 |
-
)
|
371 |
-
else:
|
372 |
-
layer_outputs = decoder_layer(
|
373 |
-
hidden_states,
|
374 |
-
attention_mask=attention_mask,
|
375 |
-
past_key_value=past_key_value,
|
376 |
-
output_attentions=output_attentions,
|
377 |
-
use_cache=use_cache,
|
378 |
-
)
|
379 |
-
|
380 |
-
hidden_states = layer_outputs[0]
|
381 |
-
|
382 |
-
if use_cache:
|
383 |
-
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
384 |
-
|
385 |
-
if output_attentions:
|
386 |
-
all_self_attns += (layer_outputs[1],)
|
387 |
-
|
388 |
-
hidden_states = self.norm(hidden_states)
|
389 |
-
|
390 |
-
# add hidden states from the last decoder layer
|
391 |
-
if output_hidden_states:
|
392 |
-
all_hidden_states += (hidden_states,)
|
393 |
-
|
394 |
-
next_cache = next_decoder_cache if use_cache else None
|
395 |
-
if not return_dict:
|
396 |
-
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
397 |
-
return BaseModelOutputWithPast(
|
398 |
-
last_hidden_state=hidden_states,
|
399 |
-
past_key_values=next_cache,
|
400 |
-
hidden_states=all_hidden_states,
|
401 |
-
attentions=all_self_attns,
|
402 |
-
)
|
403 |
-
|
404 |
-
|
405 |
-
class BaichuanForCausalLM(BaichuanPreTrainedModel):
|
406 |
-
def __init__(self, config):
|
407 |
-
super().__init__(config)
|
408 |
-
self.model = BaichuanModel(config)
|
409 |
-
self.lm_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
410 |
-
|
411 |
-
# Initialize weights and apply final processing
|
412 |
-
self.post_init()
|
413 |
-
|
414 |
-
def get_input_embeddings(self):
|
415 |
-
return self.model.embed_tokens
|
416 |
-
|
417 |
-
def set_input_embeddings(self, value):
|
418 |
-
self.model.embed_tokens = value
|
419 |
-
|
420 |
-
def get_output_embeddings(self):
|
421 |
-
return self.lm_head
|
422 |
-
|
423 |
-
def set_output_embeddings(self, new_embeddings):
|
424 |
-
self.lm_head = new_embeddings
|
425 |
-
|
426 |
-
def set_decoder(self, decoder):
|
427 |
-
self.model = decoder
|
428 |
-
|
429 |
-
def get_decoder(self):
|
430 |
-
return self.model
|
431 |
-
|
432 |
-
def forward(
|
433 |
-
self,
|
434 |
-
input_ids: torch.LongTensor = None,
|
435 |
-
attention_mask: Optional[torch.Tensor] = None,
|
436 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
437 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
438 |
-
labels: Optional[torch.LongTensor] = None,
|
439 |
-
use_cache: Optional[bool] = None,
|
440 |
-
output_attentions: Optional[bool] = False,
|
441 |
-
output_hidden_states: Optional[bool] = False,
|
442 |
-
return_dict: Optional[bool] = True,
|
443 |
-
**kwargs
|
444 |
-
) -> Union[Tuple, CausalLMOutputWithPast]:
|
445 |
-
|
446 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
447 |
-
|
448 |
-
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
449 |
-
outputs = self.model(
|
450 |
-
input_ids=input_ids,
|
451 |
-
attention_mask=attention_mask,
|
452 |
-
past_key_values=past_key_values,
|
453 |
-
inputs_embeds=inputs_embeds,
|
454 |
-
use_cache=use_cache,
|
455 |
-
output_attentions=output_attentions,
|
456 |
-
output_hidden_states=output_hidden_states,
|
457 |
-
return_dict=return_dict,
|
458 |
-
)
|
459 |
-
|
460 |
-
hidden_states = outputs[0]
|
461 |
-
logits = self.lm_head(hidden_states)
|
462 |
-
|
463 |
-
loss = None
|
464 |
-
if labels is not None:
|
465 |
-
# Shift so that tokens < n predict n
|
466 |
-
shift_logits = logits[..., :-1, :].contiguous()
|
467 |
-
shift_labels = labels[..., 1:].contiguous()
|
468 |
-
# Flatten the tokens
|
469 |
-
loss_fct = CrossEntropyLoss()
|
470 |
-
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
471 |
-
shift_labels = shift_labels.view(-1)
|
472 |
-
# Enable model parallelism
|
473 |
-
shift_labels = shift_labels.to(shift_logits.device)
|
474 |
-
loss = loss_fct(shift_logits, shift_labels)
|
475 |
-
|
476 |
-
if not return_dict:
|
477 |
-
output = (logits,) + outputs[1:]
|
478 |
-
return (loss,) + output if loss is not None else output
|
479 |
-
|
480 |
-
return CausalLMOutputWithPast(
|
481 |
-
loss=loss,
|
482 |
-
logits=logits,
|
483 |
-
past_key_values=outputs.past_key_values,
|
484 |
-
hidden_states=outputs.hidden_states,
|
485 |
-
attentions=outputs.attentions,
|
486 |
-
)
|
487 |
-
|
488 |
-
def prepare_inputs_for_generation(
|
489 |
-
self,
|
490 |
-
input_ids: torch.LongTensor,
|
491 |
-
past_key_values: Optional[torch.Tensor] = None,
|
492 |
-
attention_mask: Optional[torch.Tensor] = None,
|
493 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
494 |
-
**kwargs
|
495 |
-
):
|
496 |
-
if past_key_values:
|
497 |
-
input_ids = input_ids[:, -1:]
|
498 |
-
|
499 |
-
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
500 |
-
if inputs_embeds is not None and past_key_values is None:
|
501 |
-
model_inputs = {"inputs_embeds": inputs_embeds}
|
502 |
-
else:
|
503 |
-
model_inputs = {"input_ids": input_ids}
|
504 |
-
|
505 |
-
model_inputs.update(
|
506 |
-
{
|
507 |
-
"past_key_values": past_key_values,
|
508 |
-
"use_cache": kwargs.get("use_cache"),
|
509 |
-
"attention_mask": attention_mask
|
510 |
-
}
|
511 |
-
)
|
512 |
-
return model_inputs
|
513 |
-
|
514 |
-
@staticmethod
|
515 |
-
def _reorder_cache(past_key_values, beam_idx):
|
516 |
-
return tuple(
|
517 |
-
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past)
|
518 |
-
for layer_past in past_key_values
|
519 |
-
)
|
520 |
-
|
521 |
-
def quantize(self, bits: int):
|
522 |
-
try:
|
523 |
-
from .quantizer import QLinear
|
524 |
-
except ImportError:
|
525 |
-
raise ImportError(
|
526 |
-
f"Needs QLinear to run quantize."
|
527 |
-
)
|
528 |
-
|
529 |
-
for layer in self.model.layers:
|
530 |
-
layer.self_attn.W_pack = QLinear(
|
531 |
-
bits=bits,
|
532 |
-
weight=layer.self_attn.W_pack.weight,
|
533 |
-
bias = None,
|
534 |
-
)
|
535 |
-
layer.self_attn.o_proj = QLinear(
|
536 |
-
bits=bits,
|
537 |
-
weight=layer.self_attn.o_proj.weight,
|
538 |
-
bias = None,
|
539 |
-
)
|
540 |
-
layer.mlp.gate_proj = QLinear(
|
541 |
-
bits=bits,
|
542 |
-
weight=layer.mlp.gate_proj.weight,
|
543 |
-
bias = None,
|
544 |
-
)
|
545 |
-
layer.mlp.down_proj = QLinear(
|
546 |
-
bits=bits,
|
547 |
-
weight=layer.mlp.down_proj.weight,
|
548 |
-
bias = None,
|
549 |
-
)
|
550 |
-
layer.mlp.up_proj = QLinear(
|
551 |
-
bits=bits,
|
552 |
-
weight=layer.mlp.up_proj.weight,
|
553 |
-
bias = None,
|
554 |
-
)
|
555 |
-
return self
|
556 |
-
|
557 |
-
@torch.no_grad()
|
558 |
-
def chat(self, tokenizer, messages: List[dict], stream=False,
|
559 |
-
generation_config: Optional[GenerationConfig]=None):
|
560 |
-
generation_config = generation_config or self.generation_config
|
561 |
-
input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
|
562 |
-
if stream:
|
563 |
-
streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
564 |
-
Thread(target=self.generate, kwargs=dict(
|
565 |
-
inputs=input_ids, streamer=streamer,
|
566 |
-
generation_config=generation_config,
|
567 |
-
)).start()
|
568 |
-
return streamer
|
569 |
-
else:
|
570 |
-
outputs = self.generate(input_ids, generation_config=generation_config)
|
571 |
-
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
|
572 |
-
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Baichuan-13B-Chat-full/pytorch_model-00002-of-00003.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f5e1e6afc5fd592dda61582a07f748ef813b21ec6885eba8fe2da9cf973931c4
|
3 |
-
size 9947420311
|
|
|
|
|
|
|
|
Baichuan-13B-Chat-full/pytorch_model-00003-of-00003.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:ee03255509602bdb0fc2cd144bd3df07fcd7ad2696778e11dfdf380751698ba1
|
3 |
-
size 6610199816
|
|
|
|
|
|
|
|
Baichuan-13B-Chat-full/pytorch_model.bin.index.json
DELETED
@@ -1,290 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"metadata": {
|
3 |
-
"total_size": 26529802240
|
4 |
-
},
|
5 |
-
"weight_map": {
|
6 |
-
"lm_head.weight": "pytorch_model-00003-of-00003.bin",
|
7 |
-
"model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
|
8 |
-
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
9 |
-
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
10 |
-
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
11 |
-
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
12 |
-
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
13 |
-
"model.layers.0.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
14 |
-
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
15 |
-
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
16 |
-
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
17 |
-
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
18 |
-
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
19 |
-
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
20 |
-
"model.layers.1.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
21 |
-
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
22 |
-
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
23 |
-
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
24 |
-
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
25 |
-
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
26 |
-
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
27 |
-
"model.layers.10.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
28 |
-
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
29 |
-
"model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
30 |
-
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
31 |
-
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
32 |
-
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
33 |
-
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
34 |
-
"model.layers.11.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
35 |
-
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
36 |
-
"model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
37 |
-
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
38 |
-
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
39 |
-
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
40 |
-
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
41 |
-
"model.layers.12.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
42 |
-
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
43 |
-
"model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
44 |
-
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
45 |
-
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
46 |
-
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
47 |
-
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
48 |
-
"model.layers.13.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
49 |
-
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
50 |
-
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
51 |
-
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
52 |
-
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
53 |
-
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
54 |
-
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
55 |
-
"model.layers.14.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
56 |
-
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
57 |
-
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
58 |
-
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
59 |
-
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
60 |
-
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
61 |
-
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
62 |
-
"model.layers.15.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
63 |
-
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
64 |
-
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
65 |
-
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
66 |
-
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
67 |
-
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
68 |
-
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
69 |
-
"model.layers.16.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
70 |
-
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
71 |
-
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
72 |
-
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
73 |
-
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
74 |
-
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
75 |
-
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
76 |
-
"model.layers.17.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
77 |
-
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
78 |
-
"model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
79 |
-
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
80 |
-
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
81 |
-
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
82 |
-
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
83 |
-
"model.layers.18.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
84 |
-
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
85 |
-
"model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
86 |
-
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
87 |
-
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
88 |
-
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
89 |
-
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
90 |
-
"model.layers.19.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
91 |
-
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
92 |
-
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
93 |
-
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
94 |
-
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
95 |
-
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
96 |
-
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
97 |
-
"model.layers.2.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
98 |
-
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
99 |
-
"model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
100 |
-
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
101 |
-
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
102 |
-
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
103 |
-
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
104 |
-
"model.layers.20.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
105 |
-
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
106 |
-
"model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
107 |
-
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
108 |
-
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
109 |
-
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
110 |
-
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
111 |
-
"model.layers.21.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
112 |
-
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
113 |
-
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
114 |
-
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
115 |
-
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
116 |
-
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
117 |
-
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
118 |
-
"model.layers.22.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
119 |
-
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
120 |
-
"model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
121 |
-
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
122 |
-
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
123 |
-
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
124 |
-
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
125 |
-
"model.layers.23.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
126 |
-
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
127 |
-
"model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
128 |
-
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
129 |
-
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
130 |
-
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
131 |
-
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
132 |
-
"model.layers.24.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
133 |
-
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
134 |
-
"model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
135 |
-
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
136 |
-
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
137 |
-
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
138 |
-
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
139 |
-
"model.layers.25.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
140 |
-
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
141 |
-
"model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
142 |
-
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
143 |
-
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
144 |
-
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
145 |
-
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
146 |
-
"model.layers.26.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
147 |
-
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
148 |
-
"model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
149 |
-
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
150 |
-
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
151 |
-
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
152 |
-
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
153 |
-
"model.layers.27.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
154 |
-
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
155 |
-
"model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
156 |
-
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
157 |
-
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
158 |
-
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
159 |
-
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
160 |
-
"model.layers.28.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
161 |
-
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
162 |
-
"model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
163 |
-
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
164 |
-
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
165 |
-
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
166 |
-
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
167 |
-
"model.layers.29.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
168 |
-
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
169 |
-
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
170 |
-
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
171 |
-
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
172 |
-
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
173 |
-
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
174 |
-
"model.layers.3.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
175 |
-
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
176 |
-
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
177 |
-
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
178 |
-
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
179 |
-
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
180 |
-
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
181 |
-
"model.layers.30.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
182 |
-
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
183 |
-
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
184 |
-
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
185 |
-
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
186 |
-
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
187 |
-
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
188 |
-
"model.layers.31.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
|
189 |
-
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
190 |
-
"model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
191 |
-
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
192 |
-
"model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
193 |
-
"model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
194 |
-
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
195 |
-
"model.layers.32.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
|
196 |
-
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
197 |
-
"model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
198 |
-
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
199 |
-
"model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
200 |
-
"model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
201 |
-
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
202 |
-
"model.layers.33.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
|
203 |
-
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
204 |
-
"model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
205 |
-
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
206 |
-
"model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
207 |
-
"model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
208 |
-
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
209 |
-
"model.layers.34.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
|
210 |
-
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
211 |
-
"model.layers.35.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
212 |
-
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
213 |
-
"model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
214 |
-
"model.layers.35.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
215 |
-
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
216 |
-
"model.layers.35.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
|
217 |
-
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
218 |
-
"model.layers.36.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
219 |
-
"model.layers.36.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
220 |
-
"model.layers.36.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
221 |
-
"model.layers.36.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
222 |
-
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
223 |
-
"model.layers.36.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
|
224 |
-
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
225 |
-
"model.layers.37.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
226 |
-
"model.layers.37.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
227 |
-
"model.layers.37.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
228 |
-
"model.layers.37.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
229 |
-
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
230 |
-
"model.layers.37.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
|
231 |
-
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
232 |
-
"model.layers.38.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
233 |
-
"model.layers.38.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
234 |
-
"model.layers.38.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
235 |
-
"model.layers.38.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
236 |
-
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
237 |
-
"model.layers.38.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
|
238 |
-
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
239 |
-
"model.layers.39.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
240 |
-
"model.layers.39.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
241 |
-
"model.layers.39.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
242 |
-
"model.layers.39.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
243 |
-
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
244 |
-
"model.layers.39.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
|
245 |
-
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
246 |
-
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
247 |
-
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
248 |
-
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
249 |
-
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
250 |
-
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
251 |
-
"model.layers.4.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
252 |
-
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
253 |
-
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
254 |
-
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
255 |
-
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
256 |
-
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
257 |
-
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
258 |
-
"model.layers.5.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
259 |
-
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
260 |
-
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
261 |
-
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
262 |
-
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
263 |
-
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
264 |
-
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
265 |
-
"model.layers.6.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
266 |
-
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
267 |
-
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
268 |
-
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
269 |
-
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
270 |
-
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
271 |
-
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
272 |
-
"model.layers.7.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
273 |
-
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
274 |
-
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
275 |
-
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
276 |
-
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
277 |
-
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
278 |
-
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
279 |
-
"model.layers.8.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
280 |
-
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
281 |
-
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
282 |
-
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
283 |
-
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
284 |
-
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
285 |
-
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
286 |
-
"model.layers.9.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
287 |
-
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
288 |
-
"model.norm.weight": "pytorch_model-00003-of-00003.bin"
|
289 |
-
}
|
290 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Baichuan-13B-Chat-full/quantizer.py
DELETED
@@ -1,123 +0,0 @@
|
|
1 |
-
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
|
2 |
-
|
3 |
-
import torch
|
4 |
-
from typing import List
|
5 |
-
import bz2
|
6 |
-
import base64
|
7 |
-
import ctypes
|
8 |
-
from transformers.utils import logging
|
9 |
-
logger = logging.get_logger(__name__)
|
10 |
-
|
11 |
-
try:
|
12 |
-
from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
|
13 |
-
|
14 |
-
class Kernel:
|
15 |
-
def __init__(self, code: bytes, function_names: List[str]):
|
16 |
-
self.code = code
|
17 |
-
self._function_names = function_names
|
18 |
-
self._cmodule = LazyKernelCModule(self.code)
|
19 |
-
|
20 |
-
for name in self._function_names:
|
21 |
-
setattr(self, name, KernelFunction(self._cmodule, name))
|
22 |
-
quantization_code = "QlpoOTFBWSZTWX/mUzwAK6f///////////////////////////////7f////////////4C5duvi2D0Oj1ppVCJ2zQFYbnbsxmq20pAC7kEDb3Z3nWrextY9NZbavON7nveSRqszudmzAGGgkeh0Pewk881e3Tz13kW9YO7uA9AUUiAWLNW2HHWCE005Mdz3jHs1Ic7QNCQBNGgmE000DRNoGjUYmA0mEmJjIaI9JtT0JoaaMTaQ0aMjTTI1TzKMmETwyaJ6k8p4Ke1T0wk2aE0anpPSHppqNM1HqYzVGj0MpsTTUGpoCAAEyAAAmhpPSYowMk9U8mqb0mJtU8ETwCZT1DQ9R5R6htE9TTyRptQeoyHqA0B6g9T1AD1HpGQGgD1A0NPUAAAA0A1Mg00gmhKPU9E2SekHoJ5QHlNDEPUeoDEaBkAHqBoABoNABoAaGgBoAAAAAAA0AAAAAAAAEmoiIgmiD0maRip+qfpR+k9U/QKaZPUepiGeST1HqeU9TQ9JoANAMhoZPU0AAYnqaBoAANABoAAAADQGgAAADTQ0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASJEE0AJo0GkxGJoZNKeBoTCnpNNpU9knqn+ppmUnom1PKZqTaaTTwTTFPNJ6pj1BG0eoaMgwQGkYAGk2gjT0jBqaY0RoDeqZoNEYT1NpsA/+iBrt+OVIiCKqfH7N/e67XZ2Dx9tPHyWbW4gAENNTtyzk+/WdoU604SoXU0JgfqgQxVmzbfdmaFcVxQAYINDyjTKU1FCUUzUuqqptg4SBgwIAHYE4NwQOrbY1bOF26LUVuxYr3Hp4paZXaqKU1UmXO3K+IXn2hURrgAegAaTANS+QBclUN6tpvhn85+uTPCLxzj34YO8MIMg45eRAEy9IYbKxeZTRnTy6GpPLtVGWKKK6iuDLa9wjtSmUQREX6wHfE3JeTVZdoj4Hg/3cHlBdw4c4BdGvigzZsubPr3eTi2hs6tZz3J9zUVm8qH+FPwSx4Tdr6by/OA88iLHk34rWNt7fT7NwqqqqqqqrGMYxjFcdqvY2mXyh42c2ccxhtyvBHojjUlyAKRgbvAB6nhls1wGLTOrfGMBsqRXl9Bl3sOlvafSA7sDrmAQI+mw90af+bvJ8mwjP+RKtjobGNzbfl76iTHMiIIUf9oIoygqSG2NLn0Ys/mZ+hzufu7epmzbvP1t7S0Xo8TKK7q6G5MA8vTgBb7Bf/2kITSLsH7Xmfydz7ahAt4YJbBuAQJI+1M8DLJCQH+UPbv212QWIhcCKhBrR2eryfQYIiIhKE0WtbOQ7OwM7OxtURGbF28NBndi9ejVDVA3dne37uDdzrwINS+O/0AzQTCgUjfCAwkkKFMT4Kr0aV3DicVAelGBesGYoCRcLKq5iBFR6SzOzrAwFWDFVYU2XT1oFaRJk2JBDOwVk1LFZZfwY7tQBYMGdECFA1cLZAg0IlfCTCMgZ4afRQBNvXSuMORVUTxTLSTgMFoUtaGLIr524yIM+INSFFIOHQ4TG5NZbd3Su3Nu9raSLd/ueibSYpAL0D42ZkAtD0pnXrfTxYPBw+mAt1cKPCPmDNMCDYCBiQwmANVhdDjBwsdIKyfH1slCvWbJC4QO8SBxi6A+GEpDBN6UQnPaEvBqFk3TwChKSowEENpyAueDIFs6OxxLRmFSUFpjWgYpECgDgfVBJjhg4GGcI9CD0S3igCrdziS3ZoYHlQE+7AELdvbebTVsdRvrPHCgiAbSYzUN0z0SCshLjaUaREEREQQRHNKAgAS9o0kukdJx0ulaJk0kINzlUYN0wWXLLsmRgSG1BEJNh5sCuVtIybGlKUW29BziJUTpqcA8UCCLtOGU0hH17BYTERfPKhCAwxJqSSSMd+umawlsykXZiKHesslqlVDKEHPzFhIWwJHTfcYCGE9dQK9sKixjNifLkW1iLnyZo57BBx2jksXPYjcaA6Z6rlYTl9ocZHn2URKVXnY/Wsrc5l3aym6Uq7u9eu2szSbJgwhqPqfOR1JCCZl7/AehLVBSIXc9npUk8IDzrRCS9XKMeamSDmFxK6OQDhwNnxubbnQygQb4DEL6oD5qkkG6F03dyDAUJB/awNUoDCa3CmYy2QIsK0Z46BoX1N4kY8aGNFB8WZAfWvaHeUT4gYIjEsZBBARIFAk2jCTxAmpW03GtdW4WCN0bLJiiqY3ixmHAWRqqQKqgS2hlf8mwszkhUy3LDx3GLdo5AHGAgC4BogUAVgH4QM0AGAImwbS6gwANIep0rJIU3hBgaeKAEcnzfs+g/sJZnETvInDcAH5fE7azmr8EyIFx77caxbrDBC64CEU8wCqzAHPgkk4kiPREKYHn2HaoDBWCCrFBrhR+XpeNQkdbzCBHee2hW8EW373k/qd/PxGC2R+IO4vmNEAl1AE0l4bEvmnfd5/JYs5gl9XpgQIS7g/LAK7owBwgso9j0yEB9MRIBjqmkLdG5uED3tICA6PYXe4WItRawAenfJ0lCFupoGvajxuQC/5YQPnwFpgQBMNgBndpgVNJcyw+5vCJgHtWU0EDYk2HsvD8Qkg6ANAd8UQXGH/3X3gXgNDefHyaQ/wd93Xx87hWWtW0kPCQGR+KYiPeMQse27PdNLGwhlz8WJObSnEQyHJw1JmStJXTtIg0ZKEHrLZCXd1ljLGkkxtpsDofXUiBH0LLEM43kb2waJ26KZsJ9sBbxcAqzUgWxzogNFm4vSxjMR58r5Xm8H2+6ItGcNX2AK3GhDIMzSX3YyFsbNG0u0MxvZzGFv19k2E45tXrK+1OKUYRiH2OT2Fs7kqtxMDrANVp2nxreAZg02UaFEsuf6+urQi1PxvNOhuacrStndOnonV3e5Du+Xjp8mjhiHYPNexu7UKSbt0Gs2rPIVVVSFyQ7phtQ0ZOUySoyZA79muzuLBZaLAW20gZIeuJDacErguFE3e70svo0S0mRBMBu33rjqVrNEN9A5PHvOgukEPEgb0tYAMrvcvIXB5ydzJHXQ1n+t7BUI24oJtSCTAUet75rBpXL4ylQ4LGBpbQeQCiOku+8rq90o18ga4WEGBDhvHB0YYd/CDLIMdDh2cO/i/RppcEi3Zd+CCU8OdxAAiOgi5qeghJkUnO6YGZi5LEilo2WhSiEVsU2IK7unV2rXG61Q/LbUqGx72rn2Uzx/q/fzsCWUFCQyAA+XqfGVGvL1kml0MVpjJl1A9vYoYTSatnV1+z2czsdoc4QFWLILHn1S71/r3V1S/fJMgDlXX6DVv8+FeECNi1u8zf8K8r1Khq7twFu5xPfZJT+PLpYUZWgGNDG0Jlq4rsQy86u95xqTdO0TbSGBdDOUSyyGHQAmP5mgNfVvgeY2tPzlKbyrvnaZhgQ7aWeJjzbF4mjPlro1hYjmnWUshKxVsQ6pveK850taANOgIE/aJvr0IAC0g2H2d1agVwnBkAF1kl7IPZc8mBthvlYish4AqABgI9hw2cExRabO+8Xz31+enwlCxSbnfVFlqig3UKGBQiybpEBGQLIxuoUMVYLTt53sY+lPlxSAq9f3lfnVlFmiBFrOhAeAF/0/N6HI6/+rsQ2+D5U5fenadDmtFFgeZLLESwOgWWIlgWFo+uFROhke3lKQ4bf0mLH3XSOgtDGd73hfMwDM2aF7Lonl7AlbiPbV2zY2lvu1Vj7jzlmFYoKieH93wt3fLhBXgYUGJEjga5YWEVyE00qIYWXSKd0ZaZy+vuCQlhaz5ELs9n/pjuFAHpoDCMEEtseECQF+Rk58EyW3nzCdlyCeY5WPItdkDZ4egXmjfZTLSVT29ku6KCGxHbdTBD3z52SxkuXkpoaHyy3t25+JwX5zFdYawDASl7397IB2tunNbt2FygaTBIO5qrG0asQmxEVRGCn26UX6DewTmic/QqkLZjdCTqjQDGlxy4IODucyQlmE0zkwSkR02cZjZcA1MzMczZAf1hfPnZT1IGtWIJGOcpzgYwCGyiNtoxRkupRElCCAgWJcE4igRJEQogPHYVAVBAEYDBkUEBIOSMK3KJNwQllpqWZARLCgMM8TkQoHOSZTDbSrjS6QtkYsQSloWSmQ4BlMjEJuuWh0ERMIVRLbcNDDQalLRQiEoBIUKZaiQpZQ1KoooVlNtjVVGAsG6WkNS84MJcoYIgjBrKaODOaUZG6QUZlCUGKy25MUVYGMWC+95zG4FRE0iyDRISulc0GQJt6m5u8WSQD4NAiDAMD9y0Q4TBGAaAIGe6PfdX9zl9Xginufp+HmPiAGfY8ZoDAarMoQAD9kA2OUJQV3lBq86RzpT8nbXPtqxsvN4YTDyOQgGEarV4Tc5h1yv2Npz+65PJpxO/Tefe5S5U1n8asAC3AQIACrUA5XacxgALbHvUfi9ApR956Do3PCWymCzTo7JjufU9DsGcQWqAFwwZfDzR+m6436pzvncYkARkLKOxX23RuLsQeK067Y/Fq8tB7igBMvb836/03fkV4qZ5YY4pFxADLifQb2iaUAwjesDs8Nhx5vnIw3rZOyb9+jyaYazgr2vbSKuf82URMcyf+99L2sWJHqW/I0PfaMR0KsULcnf9Lx/fJFzattuUwcjv8vdJed+FY1s49FrvJMbRVa82imzbdgSpDhEtleDphWrjgzVu59jsXKG/3f88zolkjqRQUk+Xm8F72190OzfqwfT5XAYbvq8WBzq/B+4rLP8j5PDfiytkicVOAAJ6QOe+hWqqwgfq61qtJ7jrsz89u1dDqsK/9Wur9Po5K1vHsXseRHoyF+LoewZ3uHaanw5S9LCW9Gj8k3e5ObY3NfjabO0cbzotaAPB3XIg+av5zaHst8ijMqapTpVtdwy211QZINMi1UCIHnAB3ZLFDZQuraVlNALggow5ygAhEo9EDHUCSm8+Hhev7eTufm8onZ7pATIUwBEBBUUEPBw/zcrl+pwtDJe2XApoPk8CJjTqtqbv7DYwZWFs/M8EhDcYE8AK8A+GfX/aQkYgSLdftV0Id/5gf3lOuNNC0799E3uYYtpMg6yABaJz5en+HpUfveNBXeYA8Whj8TtZK60F8V863ndv3PwKagCzpXtfv1APjaUgxkGLtptiZPR9vldS2Bfy0pT3RXWJlLCCj+GpAz28S4v0YQrYE7We9WpbVXz7KVTWEtoXM/UPZhYnpzdeokWJdNHQ6JQLxp7bOfci50rBcdOdhOqmyeC7B2rL6rxd969Xxc9L4zMrsqZ0+DoaPeSn8Y5QMLTOLpdvz1qaOO5xT1xPjgKnhTYa5pzi5U+bDcHXzYdxpgAbbhf/e8aBprxka5aM2J3lYXBG5G/r7CunzcPyjz2o79z8eDKkMvdO9WixswXLu3TkpoYcV0465fwUxoxC6L9Zwc+QsLDfqipk3wMSSRkBPM8Bxrwt0Mjr4IWW9Tw+Kw23yTbUyYJqrgNaq7saBKAdzYXMQ6mkrfqt72Lk0YwiZmIKkXUgChISCZMMrwdnjWbJDoR5ZXGxxAX5uRBfHBOk6JS8VVVWd56zxf8v3uR0/zON57e6BDuqIcQDJ7H0q5BNPaWbExYw2Bj4tRM9kB+JfynyyEfR/7ZiPXRFLmwpGGjLF9G6/J65mkUZEaKrUdBZYUxFKqGJL4LAbEfZjLi4GYXhv+x3ZpHkC3YADdMsKeYmfKgtzUd+Y7dVngbdcEFGAL3VqaYfYAYMtY3YKIQumTVXUFTFQyU0bqIeMgV2WOcZFXICpoMvueYVy0mHAiaeyNg1p5/QmSbYgyb7WQdUPfY3QeKc0hewGB2z2vH9t+pvy7B6P21pG+wXCMQHZl30TJonLPhQg8nka+raw1OLPUVWvIidrloKjcLH6/YAwepAoWEykQ9Bw2+YU/N5dbXnsNcPbubOszstYSwQYATYulLN0AHAgwb5t+VfATV6uhICgRgDGUaoVNNLc9ZMMW5+qKVhOyoRMLzJolo17ACLDPes+aoyeD5aIZm46HHKV7KqGX1IGbYEEDaAh0Vj+43wIMep+e+gsP4UEgVjmMAWTPz2XZhQDA6/Vzbk0fK+v0+bNB12LRbfmsufKzRgw7Hp7b+J+N2LqWXdwWTvhQ2rIPjc2cgS2A4Ub7IflPitJFAPyFvbvHK+tXi0Zcbi6mO6HTaIydOeYDmSYUIACAZwJCEgueoJnU7W6WfGdWtl1TdD4WHQ8AgDnmNUD+2YrjxNum3+1R9B+XSiSGrVLcFrVC/Z9R7D8DslIGyMPXbJAFthAMNYs7OdlqPilZtnwtReItC2Ff5vD8mQHwayX/vh1LB+HwoefoZ6LWUKb7WH6D0FmEhEKgwAayAYsoKUCcPepjDQYfA2TMWHoiS1lspYmEi2HdFULic/ucQlrFCCwPxyDeITAUsiAUFggCtZuDuVPLvVtM4WCG6DlrLwBL1JAaQFWuf7/uHZ1WAHEBuz9BMrshS8OhZpwrmYpgUIFoauEJQxtrw2iu9bT1ZLik/F26jhZblz7739qomvexIWc5hKq/GfFAebrnq/23mGuisbZhiROtNdFBDwqCBc2zrTYMfhMPwIF0s37CzzvYKeLjIfQZ3D2N6o+FRgDOkDGFGjCDiy9cJBVMOBWJ1AjDIxTAz/LwSRYuyzhHyDiECf0P53hWshYcMslf0PC0tWfLlUztN1xTxhwgkAudx+IE+NuS3phgEhRBo5lXEG6KhGydUzSU2WphfuFy0VkjH2AIPddbJ679s70tkL1rBEEEEmFgwK5pRCB6ZC5EX7ZCkCTI1pQUDJAwhQoosjBZFAjelFmydnwH9j46Ei5DD9ZaOvgT54UpSh4mD7FR2rjbJjFFdyOauUAjNr/DYBQJkLsUsd2mAXDIMHOuu8ULJhkx21G0UL7fnlqIPfiwdblRpcEaxVjru+6bHpdvj38qAOr1rUACbHrKGDWLFjGCBGYoGREGZBh4aGauRARRTmJdfJBWYoCDdFrBtCgYo6H8NyRIvFfbeTFjxF9riIiIiJABkRljjGMYx1mizcSoJ9AAFqKHXgBBgYnYjs06fFb2fl/bceQ8TeN4h1jrKPd/Pbtl3dl3fnbu7u7u7u7u7u7u7u7u79ZxeoA2gbgjyqd70779v47Lsepzo6y18vJkhQMaDKDNhYbWPpJA6hsD3pzguE4gtOhzrtDoDA3oMbPVBY/3fi0DbkWt7GQwMw2BtpNpeKt+v6KytGxxqCQ8JoLCGKIALFxqwIOeI7fqckjnW8eHjcW3xehEp2SWhvmrtDDdoBSOn6jSjQCgLuhd+EBOwr3q9GbUewJDA4QvH+DpFwt+JbtP30yJTy10KFMLT8MmAGUKkqn3DQHSmTACxjEheIpDhGuZT/WrsHgP+ly7Bsto8UYb2bBvwPRV1O/WaEbmIEMEbQtfphLgUDADF7nayfXs1CXBxYOi1aG36B7rr5EX31tzoym2bTIWw0maxvM3Gs+KAOSMztimS4oGQokBRf5dGKNykDp8tH9chWc9k7/6I+SxG5cZSnx52CFhoDqaZ8wBethxjRVKaRfCZTeBpi6ZNdZFjROy9x6tdgMem0rtuH6wbAz9tKvlhJ0JUP1e+2xVgroJFw8tQxLPdwVnLVMDu+mmfk9b5mK3qMNwiMyBqFaajMIgCDBYUXbdKwwVVhoMXL5YLkI5FFviIkYQTNamuapRILAqCSAYSsIOOVAtAUUrDwBSthRBgyVAM1wBrIQhhTlJKQIwFnj+b+aXuJyerhwx7HxQLofddtH71c6UuefecFIrANhfgkaIt5KL4iV43tMeP17BD8D7Dl8+AQTGQfz/rp3JWOfDodJOcvDAquYl1QQiHknUmAQ3lYpRUtJEUowXnnJnOZjZzdINlj+y7lXBb2uPR6a2E5AC3S6dBaJxYl1qyRXwQ15QflVkAK8AmAwql/n4frTztb/XRXV9J3eXRfv0MuB1OShRrtbrfdudwKxsAYC+QHiNISbAQu46ffUU/Flrw68uJ5L+7p69JjfglHs5PSd0bjADZeFsIWCqy0kQ20m3CskYLPShb0aoDdHoJBUQVEirAUgeRTtUBwAa0INXTIBPMHp9AongtXzSfuWCFQfDtzRuYRVG3WIXUjEg7b2vBZKT4ESq2tTcMyGXlqZN+uJ3CaGHEJB/3Q6/xrGIGIxyzCG5tLlSXx61sy0Bra4IFaYrjF1zJj5JPK/SslbN65uYffnqtyIX9zren+rrSsXVVhq8VZ6DFpnBVlD48AoMeltsyGSZSpdUjR6bM9J+oHRVmhpp2HBv+N4PXeS76ctP4LOLvreBzzyCr2v1K7eBo+dr2gwZ2x9k6EpHd7pNRl6Pv+IgXtj4WmtlEUQxkzWOVcT6jcLrhax5PVvgurz9q7DtdWriVdnpnTlTrQqdvWN6ZNr4OdpMM/T5Gg8irLXS/YOgvhteS49VEj8+IfNiPOf8MfMkUw+lYehdNxKZnNbjIoJiqRY1KVGIOWpRtq4m6GCyiypZKKzWBQq5j8RYJE0NCiyjJmgUmDBi8BoJgMVJYXMF4aGDL2XQ4HDKaRGaGhctNBrShK0bSU1BpFoRaTkkCCUWaDCx1MUXQCaGRhgoqhCHmzrFyZwUFG27KVdmNgbChCbZNAMghZRoXKM0CMEXaUTZswtBpLoCkxONrpa2wL0qn0mw2eV0yXs1MGgGSTcAo/GELIbpoe+8gKSqpV0ZIoIa4UCcM2EdVikuAPuDlU89YsXrb9Zb+Pr/F8NexBBbEwTQs9HmsQGBYPoK6bZKDvj9yyALrlOaMbLpKxRM+njvB4id/1Y1WPm3K2A0BVSlgWJNjYxne6JZ8mZfv7w1Nm3/GFOiwonktduZaRH2loGGhNBUlQiHENkybM8pBim0iaXcpE8dAF4GodlriMfOGH6hHY20huVvSlLDBRKHQ4Y3SyKrmCcy7ZZMDyNqVWWwpS+RHQaYnmEURGCKmQc8ARghpQffVMwK2vz6V97O+59X5foz4jUfN33Z49cKeKObXDE1rNvV2QaDOLOi+R0fl+RM8jVQ7QgNiDMzMgUCLlYO71Vn7X7vF0UcSZX1pu+s+xC4MZXNQCl0/rb68aAY3rOJ/jaw7EOYIIlln6V+oFpwZLOUjUVHfe6pdjXgAqsD219Ri16edZ03hcjePW71C29Wy0nTw5YIfs/Y9sNovb+v8vA1P7beB5bQmvEv59b+BnUs8yqQ5/cLKV0EZRMOGHmpsMrPidWDXTyP3fuO+w/9+kbujeEbdg+n4WXJQBn1kL3Py/M1JnkOu70oufaRPG6bsd6SUhq1TALBZAhKpoyMIvkQGRAzJD+udGR9e+WlVzjlJeqELl+D2smL4vG6BUFpiKHDwqftFBbX+9VV338vNg+5kL11bd1yrZaYZrGW36mrUIRi/MVgrNNITCj++zpFSOrRLE+Prlr3mYOP1TtXvtpOwLP5Kmt+3zZvXSsOXW+ix6mXS5mb1MnTvW0u8yHF356RuzXUyeGiLTe+IvXvKmJrEymIxQT9QMSU8WTHgnJi1BgP/WoqICgO21v9Hiw8IaXJY1619oEj/3cb/7R/nddLm6VA5xoN0t3XY6Hiep4VGnzs/Od0hj8f39YuAC5HvfwvWuOeV5fz820AAGglyrLFDjUrv//M/fwNdsEvj0MrTXrV8vLZfMvKMAzJ0/Sda/28/N0QniGmKhoagYUYMGp8IFDrOoi40L48r/SLxfSSDw9TM4P4vUeHE+iTmchyj7Vmwp7m7dejVSNZx+2Is5jzuf+HmHr2aml3fWein0wnXnxne72A86Cc3hrzXgbfc7lNQiJuGMljn2Y8pgXjrTczIy1teeafy8Tz8vmzBWAAFXfojX/x4Kv/YFNprgURbUBytnsI9/0WeuKmZjrWcumUGQgRDIEUsAwZkQMwPsGTJjpTEw7YAwCs7Oxn2XE+hexXn+z/L7HC65bJhCR3SxMdHngfkGgqJnhYzTGjw9StB6E4VI6SgkdNEdesLFW0cgxeYq7YABEPlMspZSBtZDQYZMvK9Cbu/UzXvja7MLlO4BfVYkMH5dwAfQ3u9WEkCoveLyp86iGmleemxREJQ0NoFyWpMxsNQCuuLGCdP703Uv1a3JeT7vfpxp8J+o/ft+J70dz7dV+1QEcxyT6REE6vsl2+0Yd8ayjKWBg2j8pRTeGhVxiYZDc6/YatrSzsw56wbWzGkp3FLpa8+60pan1LSvb+rcfyjTyEM7yC5BVyZL4r0qVCMZRc+AMHxlyZMP5QQiFATNqpVSdy8i66S7oSIl4APKPMzOTus/KeI8rrY6qBkuRSWT0y7LGvNz4KBjigkR4r0v9/bluxFmxePnvZRhpjgezOiX6bPa5LZkzsaLjmf6NzPP1ZfH9p7j4MsQL0YMETXjeb/5lAYcJWU1RECXppb+33HdO5Etl4xLXPxfV8cGZ43FFYXKVoMFQHssoAIzyiClcZR8W8vqiACqmcw8DAwzLM+FeLFaAYRiJ1DFqKh2Fcs+6Zd6erYKNpF09oZhCZNX4DO1OL94JPGTBXIPMmPjmDb0GlmwFaWG2CUqSjhc20YNd6Wwzu52BklGYvDcMnERi4Yh1wqwcOlqiLatNe4rj8FcXDxqMSsgYP5/FnSoTq2VVKttXQ3Gxq0q0Shp+qCbIAeWxu1Ynpd88H5zJfn/V+v+5/N7nyR7Q+n02bmML7aF1Sg+a32Ud2eQx2a8dQqTABf2SKJgvKADJgAJV8Rd0Wt1oIVj9nr/ZfC7fkbdqnS9R4eIbqH2HVNjOYdggfFeSAHKIkaC5R2rzEzdxs7dDCzizsiB7OluhJplyBBWKXPmS0tsUNnNs2D8zfW/QTSAr0EcsnQ/YPZBD4D0rHa3rkC2DHq+G97XfliTeY63fQow3RQpyKsCFgdUC2sF7aep4TmSDjlnDDpfIUJ3Ne7AMT4D7xpuM+j1hXBxYcyIpO3bvLubMhwY3Lrr6KfLP4PF0tpDjMOew5rBbSSUJPAfRMkDCSBum/B7S97oYaYZS56rtu79Vh408mfXcm6HcL0Qe7fRiqav0GhPcuxMpZIm/WHpICgBUirY8aK56MaW53+L/x+BbXNrjaySqntSLsoHFEiExu5hX7+yaqu7Ss2LrWVpPp9L8fuVDJdVcPqIQRFv/gWlUadkCUYMxFQf26Nlq3czS1/zwLAGILGRazcevp3q9/0O/YUWwXKvQTQghgHliLIIbcY0XxVr/9oV2++gsQ57NkRK084MjYapPJJ6Gd7WONsJRq6iIJo0GH/kO9e74wvERAiMW7UqLI+2obG59Xcazzvdk2UIhBDN4V/KqrwHJ9EpMftxjsugftMee96M9+G1DfnomWt7OmvNC5TP5/Fa50GNfJjieHFJ0mwlIothDYzg3BQyahykpudGZEmgiK9ViiKhI9ypBUuKuau8PitJWe1r0kVIrV4VRDTDa74vSvBytKDcNCzJ66Oq5G+hTTGgbpBMS6pJTOmrIjb0m9HsPvrI3rQhSkRYc1aEmn4+CFS9MpIxTpLccqtp+dpwTDqQfFDvleEeOfwGuSJEiR4QBtGkWjWrKysrJEiRI3Pd252xBk1NTBRRRZZZZZZZZZe4EJvbjqWGaaZgEypipYBc9da7d615Ozv+0TPBMoiPZt+OB7H2evtWBqyXzg9jgyNarCYQHxeABDu8KyT59xFO4fpXed3nMVTnQhwffnGz0DpW+c5RkbdjYgCQgDV6Sk3OZyVhq5u3M66CH4jQq6byDLwIv8D7ipARoPE7/rm7y2+93QALi1QT9F/QCxMDOQkHeUdC+o3NN9GXve/W1Ua/wcVgmxFD1YTuKB+xQIiSdMyXLjSbjWwNfsJH8DqADRWZHIyjHLolbAN4CAMrT3YQqcfwcVf9TtpcgPfzwWRN7XWJzrS1KzOVWXccRQ+9TusY64JEtzfyHJnKixBwcbgCBAgQiIiIiiqp3Pje3Y4/hFGgiIiqrTGMYxtsZSR3dlixYyrLVZTH79fh8yNTc4ezofRU9vjHOIATEYEQNb4IG7bzkD59jIzRNInn9c62cuu1ZkYpfHu7uokt8nd1Hc6ApKjEt2qqbEG2l6oUPERCkrFLjmUay3EPnj2vUe43MqIYdrm3PZT7WrLfnw7y9is1SEtuI3OsO3EW80l8imWVq1Yje2a7qnbRVNK7eZSUzwnE6j9CLm24oqbZ35UTokBKroRjwJNyCBEACLMRjnOy84O5zJREd0g8Xa+y0W7O3tcCI+46EvAjDUyqYnOCQAfEhYjlWVo9HFVl0Fk1g6rWywYXLyW9gmyJHKcFdans6g078Q9ryUjaXacP7/PvwauCguS3VK61FsSTIa5RZd+GJqurSiskfDyz7d0Bd7WxYHfJfTrpTamo87sRYMCEdyYaUdCzhu3027ABTtQCAnwKi9q3KK/rIpk6zEjGHEvADnOwuJ1nOvPr8XZNswFPZ07G/LauwBMG1tOWNT76s7Jw1OxxW1BImaJT6XUIQ/1VPRP6UZLBjAVwit2h7xS6TLbCUnzPvqOrOfrbFh/ZAFnP7jW/zIMkMNMUk5C20iKshen2HLTcv3ge8jBXRbUso7c88qlYXXozqDXWcHg21XXWzupu9YmNN2aY8W/tJ3ru1cs4YtK5b/YBitp4WYoOvZCpCIC0Ju2+xw3MABgLVFBetW9KA2pqTQMLlkKFfMNANN6+JBLD7W6/i0AiMi2fIgslxtlD+bdgBbDk1FxvsbR+npU23xUVtnBjvadzYRwqwnvWSPbrgxgFM01Y2yuGIJh4HBXDlmKSUokWxg39HUAD4u4+D8ivAiXNQkqnkKxTsDkVM+u/s6rx/w/VPZ1yL9nnzJm2YZ9Wl+9izPDiRnfzWU5Eo5duybQnktKu3b+J3pVuuBmmnebBXfiZtkpUjLRKvtuhD3GDAd3t8lPpMQgVQmkICwxxqhUhLQMPWxbwjlswPn5rmN8Fi0j25H0DYQMgIsU4+OvNxfxINfZR+ndisEVJrn6M1cgs+qsqW2AYv5gIBUG2nAI2sRJdPp0pkIFsJQ9DC0Exajuxg+5pGLShRHi9wPxlNGkITynkwYgPc5Bjm1ceZiqsTuXbr2ZrcqBszMKehW3A7cYHig2nqO46ef4275H+NjUxZ7Yxj0XWdJ+CBStOyj3EqZrP6f8049HRTOibY6aHBkysu7Zy/0S6gyH3v1st5NJVth4dqmwuarDr5z62e9OpPUqH6te3WRJmOs5XNggNsBgGGgo4SSlh/wYAXsqj3aHIiODcmQbAbQltCKcIoU5klptJHQ0l2P4Tgjad8WBWp9XyPm/j3QYeU5tV+GSJ4bCaYcK2PA4Spq7rr4bGK2La8fhcB+ZpbeVZdDoKcxwCBZQgvQmADvnSmoonhrOe7esVg+7JS5aUYwMCekjlC6YlQHUxfh1evKIB8OGrutYZ4YX41h6Jq6hHuvnBsJnjhYHY81i95iJiJTU6/T7VS3gB1qH0ACm35YBe58z7ceWShP5goYAvCcHOTphatcimJSi7e8cPtVNlLBeanev47WzlgmaIlrfg8PQALIwuyc+Ce7PTEdI6IMaL62wH5dzYaANEsRgmxYif+uWKupAwqrJ4eXO3BFsHrOiYQRSnB5GwA01qir3ZWamHuBtKIrzLS3by/XYFMY2AJEnhaR7ycHZFV8q2AKplu2J5dsQ24LL0qZisABXaOzHlwBFOQv0vOYWldhDsVt5f3Y4pEAsNwPQChB5QmJB9EYeqbx1Mx3plDVGMY02NMYxjG228wkHXLQBuctwIzDl0DNb2d3Zr2eV57mni8HxuT3pPieEQB9MdPlRq2ASoAJ5D34BKD2+jwhMSM3k9e3pXf6aOC4LK2IgIYJ4xQMEhhPzy+0BRQRAMTrG+uVq2FlPAAWvayCMW6HdOctiAZvYzmADuOlcPkF5QWJAaMRsb5I0Onl1kWwDFstny1tu3cPUt/f34gagGAiIG0z+LwJMwuBjAAO0oXQ+j2OhzkkDWu/H1iOt9LZS2d9xud3NjEIOUBcEGiLbYAIhuk6kG3QiZ7Vx448qOR0823ux6gaDAo/m7VGENCDY55QyihE8PY2c3FAOq0eB5VrR2rVOD8Pk54g10gYFruoShyCA600IlGADNkNWFwSUq26fo1MfJozZb8ivAWwKtUCnsIy1VVc6gilxgZXuOpIn5NqpQ4t1rnTCc+zVGQ8dLhuE4NDF7wA+sXOKNy3yzCWV69Yg3C0AUAEgSDmXcoIVu+dFgcdgdaEhA+iWl1AC/p9ikx5Lmxupjb3zEXwOwav5pXeGFu/i1uQdRtu2CBnIi7j7vIXJ+0+JkKDrtuikSysRrZuAkIPGGIXa2KOvhm+tzKtliPPcIGhgwSePz0mjUO5L7zzmcZMHoTM00cmhmTJXLHXXVL0wJj4s1MzRHFFiZHJnI5xbqYKxtqajjQWsuDBeCnFPf3bjFXVC0XXPfJZnZvcUOvlJ5TfVc9np7+YKcF8Pr101cACqIsDSQrhevDLMRutoELrdyRd4yc4EBhnWVGVUo4LsLWMYimrKjHNShUXacMGzWd1rteL0aqM9Wd9vU8jWwVgD0CDq0ypYdiu5V1wDsEFjDwLXJ6pe46MvOgOONLlAwPQwQmNUX+2AdnCCSJdjtaAefC8AY7bANwtVktFIQWVBQ95dSmjz8VnKFc5xsXgOQl3TQHPvghbPELlyOR3/IjaKbR4oXeqF4EjmEktr0SghMIXS60jhlBQIfEIJnyehMgiETwigxDpiHows1RgnEalhk2EzYwRLmRwajUmIaCFSzCXWStGaaJgaMaFOidK9crUyN2ZuYmDCMxbjQvOVrOaRTDXXVeCjhum+v9g5xzwDtdCQ0k+kA7IgR/IB4DE2B6gEv0Dv6l1YUCwQl4cgIQLDp7+vyQ0Ua6AogR/cA0tRku3sTszsBxdKvDwb0HSuapgWAtRzrmM+GLTWgg8og8IOyt6ZvFLTvQ6TdIU4jAZ9qJLorPPx8ToMIzve9bunjAzUZTwZAuejvlIVhEDGHZ43P+c2vnuH0s6xLjGN5IxE0xoW1w0CkEhDEzZIIIKKKJQkS+HFVRzrtPvD4ASgRgCszCJ7egCW+IZ1AZrFQIbETEL8gYz6s0SYtQwYi6Qsmdq1IQVCNcDQEDNHPNnw9vKmss525+DcQrAWHAQARzWHlAGPJFvL0qtVnM2mDSOxfDb56lUUmGI9SmNfCBxBRJtxwA+2eJCOmpSpXLFbYv8diZyMpTv2LEbyMNcTJr20IxsYzUrvRbyu5dvYHUZsRs8gfCLXUEVYi8a2a9PXF+ZtLPx0ZOLRblX8XTa0QJJSoa+VKRIKD5RCmFKYOIiBoFAUCXYIXCCWZKNExSIoiMUmCpS01EkRLAsoE0NCxCz8oQK0iCYNZrgS0sWA4zJgpKMgxYZxIN0k6OoboxHmMgmKyNy3rUrA2BW11g0yU50ArBdUNYm7rW6l+FmQDmsfUcr8Nxpt6ME1pzmPW2YuvyqQA1FEqGKaOFgPS4YwF0qjqJ96aNghQyxO4ETMPCpx6cPhE1xsRksh7qapVjAG7QQVa6blYCqhJolWKylASeNpfutZRkWEfehrAM1hps1M6VN9y+8pnOeOL3eSrvGKkr3kEDbExtsYADtYMAhLoFzWdZo6F3T89cLurlkYDQ8iWVgjINJHQatNc/BZZPPYhX7J3dX5zJTnZ1pJIV4y+k2MF25BTUhIvz2okmED6ax7KgYdJtMkMMjHiBpMVmJIippQbqyHkJreoQDGrZe8QH4qNpIBqEHFpVTrJVwkLCu5ds3+pbccosPAGFjP4J0AB15EXRr4rcAbXmibqr2600yb4dM8VbMHACFOCBZhZIxpWCMkDUZIBUQoKpooWCkAnBzOK5na/LqSSLTATYIaabQCteZkFlqs0bDPpuWAcNiRn6GWSnwrsatNVFIK0+WUGVX3p1UghXmamW9amFzoPHfP2Z3WLhW9ZEaq0DQiqOJyRC17MYwQA84eUDjyR/GOBNpNoO1pV6NwwsBZoAgBWz+M+YS5GC+Su1IEB0A5in0LwPQxXq7joeDPBdd3DzF6z96RTojxR29u8vE3GnO6jAa0MBmCuoxyYl/SDsbSpYIlMINttOUZndGWJ2JgBs8s7bw1GhnALOxFBnZayRRjt4bSvH+Ma9WNZSaKBoUDtDEQNIMt5XAZJIvEFZSahWUgL7ADIBAjZYJVAK8NHljSCRbLZdxbuCkFfrZVirL+GkBWYaJFCoglTaEWtiguhCVZNjj+c9eMUMbOVJQmcHOmKmRIKboAMkAbohUflNANgubKuhTXDGSlSKY0PetmdL+7bQoIJCVRY+osfasgH1NADQYBBoYd+dccoSIhapDyYkRkhkYGAZDWCMlJReDHnRJZKAxUYiJmPGYriVoGAkdW2QI785BQQakRBFiFEknMOMGpw8jj8a7sLaWrGrZ5gDnB2Ys6AFHfczh5BvVw8R6n1P4QHEbDeIf/i7kinChIP/Mpng="
|
23 |
-
kernels = Kernel(
|
24 |
-
bz2.decompress(base64.b64decode(quantization_code)),
|
25 |
-
[
|
26 |
-
"int4_to_fp16",
|
27 |
-
"fp16_to_int4",
|
28 |
-
"int8_to_fp16",
|
29 |
-
"fp16_to_int8",
|
30 |
-
"int4_to_bf16",
|
31 |
-
"bf16_to_int4",
|
32 |
-
"int8_to_bf16",
|
33 |
-
"bf16_to_int8",
|
34 |
-
],
|
35 |
-
)
|
36 |
-
except Exception as exception:
|
37 |
-
kernels = None
|
38 |
-
logger.warning("Failed to load kernels:" + str(exception))
|
39 |
-
|
40 |
-
def quant4(weight: torch.Tensor, scale: torch.Tensor):
|
41 |
-
stream = torch.cuda.current_stream()
|
42 |
-
num_row = weight.size(0)
|
43 |
-
num_chan_fp16 = weight.size(1)
|
44 |
-
# 4bit
|
45 |
-
num_chan_int = num_chan_fp16 // 8
|
46 |
-
qweight = torch.zeros((num_row, num_chan_int), dtype=torch.int32, device=weight.device)
|
47 |
-
intweight = torch.empty(num_row, num_chan_fp16, dtype = torch.int32)
|
48 |
-
intweight = torch.clip(torch.round(weight.to(scale.dtype) / scale[:, None]),-16, 15).to(dtype=torch.int32)
|
49 |
-
|
50 |
-
for j in range(num_chan_int):
|
51 |
-
qweight[:, j] = ((intweight[:, j*8+7] & 0x0f) << 28) \
|
52 |
-
| ((intweight[:, j*8+6] & 0x0f) << 24) \
|
53 |
-
| ((intweight[:, j*8+5] & 0x0f) << 20) \
|
54 |
-
| ((intweight[:, j*8+4] & 0x0f) << 16) \
|
55 |
-
| ((intweight[:, j*8+3] & 0x0f) << 12) \
|
56 |
-
| ((intweight[:, j*8+2] & 0x0f) << 8) \
|
57 |
-
| ((intweight[:, j*8+1] & 0x0f) << 4) \
|
58 |
-
| ((intweight[:, j*8] & 0x0f))
|
59 |
-
return qweight
|
60 |
-
|
61 |
-
def dequant4(qweight: torch.Tensor, scale: torch.Tensor, input: torch.Tensor):
|
62 |
-
stream = torch.cuda.current_stream()
|
63 |
-
num_row = qweight.size(0)
|
64 |
-
num_chan_int = qweight.size(1)
|
65 |
-
# 4bit
|
66 |
-
num_chan_fp16 = num_chan_int * 8
|
67 |
-
|
68 |
-
out = torch.empty((num_row, num_chan_fp16), dtype=input.dtype, device=qweight.device)
|
69 |
-
|
70 |
-
blockDim = (128, 1, 1)
|
71 |
-
gridDim = ((num_chan_int + blockDim[0] - 1) // blockDim[0], num_row, 1)
|
72 |
-
if input.dtype == torch.bfloat16:
|
73 |
-
kernels.int4_to_bf16(
|
74 |
-
gridDim,
|
75 |
-
blockDim,
|
76 |
-
0,
|
77 |
-
stream,
|
78 |
-
[ctypes.c_void_p(out.data_ptr()), ctypes.c_void_p(qweight.data_ptr()),
|
79 |
-
ctypes.c_void_p(scale.data_ptr()), ctypes.c_int32(num_row), ctypes.c_int32(num_chan_int), ctypes.c_int32(num_chan_fp16)],
|
80 |
-
)
|
81 |
-
elif input.dtype == torch.float16:
|
82 |
-
kernels.int4_to_fp16(
|
83 |
-
gridDim,
|
84 |
-
blockDim,
|
85 |
-
0,
|
86 |
-
stream,
|
87 |
-
[ctypes.c_void_p(out.data_ptr()), ctypes.c_void_p(qweight.data_ptr()),
|
88 |
-
ctypes.c_void_p(scale.data_ptr()), ctypes.c_int32(num_row), ctypes.c_int32(num_chan_int), ctypes.c_int32(num_chan_fp16)],
|
89 |
-
)
|
90 |
-
return out
|
91 |
-
|
92 |
-
class QLinear(torch.nn.Module):
|
93 |
-
def __init__(self, bits: int, weight: torch.Tensor, bias=None):
|
94 |
-
super().__init__()
|
95 |
-
self.quant_bits = bits
|
96 |
-
self.scale = weight.abs().max(dim=-1).values / ((2 ** (bits - 1)) - 1)
|
97 |
-
self.scale = self.scale.to(torch.float32)
|
98 |
-
if self.quant_bits == 4:
|
99 |
-
self.weight = quant4(weight, self.scale)
|
100 |
-
elif self.quant_bits == 8:
|
101 |
-
self.weight = torch.round(weight.to(self.scale.dtype) / self.scale[:, None]).to(torch.int8)
|
102 |
-
if self.quant_bits == 8:
|
103 |
-
self.weight = self.weight.T
|
104 |
-
self.bias = None
|
105 |
-
|
106 |
-
def forward(self, input):
|
107 |
-
if self.quant_bits == 4:
|
108 |
-
assert(input.dtype == torch.bfloat16 or input.dtype == torch.float16)
|
109 |
-
|
110 |
-
if self.weight.device != input.device:
|
111 |
-
self.weight = self.weight.to(input.device)
|
112 |
-
self.scale = self.scale.to(input.device)
|
113 |
-
|
114 |
-
if self.quant_bits == 4:
|
115 |
-
self.scale = self.scale.to(input.dtype)
|
116 |
-
rweight = dequant4(self.weight, self.scale, input).T
|
117 |
-
output = torch.matmul(input, rweight)
|
118 |
-
elif self.quant_bits == 8:
|
119 |
-
rweight = self.weight.to(input.dtype) * self.scale.to(input.dtype)
|
120 |
-
output = torch.matmul(input, rweight)
|
121 |
-
if self.bias is not None:
|
122 |
-
output = output + self.bias
|
123 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Baichuan-13B-Chat-full/train_results.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"epoch": 2.0,
|
3 |
-
"train_loss": 0.5708327819994277,
|
4 |
-
"train_runtime": 105327.89,
|
5 |
-
"train_samples_per_second": 4.797,
|
6 |
-
"train_steps_per_second": 0.019
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Baichuan-13B-Chat-full/trainer_log.jsonl
DELETED
@@ -1,198 +0,0 @@
|
|
1 |
-
{"current_steps": 10, "total_steps": 1974, "loss": 0.9175, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9996834033646177e-05, "epoch": 0.01, "percentage": 0.51, "elapsed_time": "0:08:53", "remaining_time": "1 day, 5:06:00"}
|
2 |
-
{"current_steps": 20, "total_steps": 1974, "loss": 0.7595, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.998733693645213e-05, "epoch": 0.02, "percentage": 1.01, "elapsed_time": "0:17:16", "remaining_time": "1 day, 4:07:31"}
|
3 |
-
{"current_steps": 30, "total_steps": 1974, "loss": 0.7375, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.997151111381707e-05, "epoch": 0.03, "percentage": 1.52, "elapsed_time": "0:25:37", "remaining_time": "1 day, 3:40:03"}
|
4 |
-
{"current_steps": 40, "total_steps": 1974, "loss": 0.7227, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9949360574062774e-05, "epoch": 0.04, "percentage": 2.03, "elapsed_time": "0:33:53", "remaining_time": "1 day, 3:18:52"}
|
5 |
-
{"current_steps": 50, "total_steps": 1974, "loss": 0.7147, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9920890927418316e-05, "epoch": 0.05, "percentage": 2.53, "elapsed_time": "0:42:08", "remaining_time": "1 day, 3:01:22"}
|
6 |
-
{"current_steps": 60, "total_steps": 1974, "loss": 0.7102, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.988610938459917e-05, "epoch": 0.06, "percentage": 3.04, "elapsed_time": "0:50:24", "remaining_time": "1 day, 2:47:46"}
|
7 |
-
{"current_steps": 70, "total_steps": 1974, "loss": 0.7056, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9845024754980876e-05, "epoch": 0.07, "percentage": 3.55, "elapsed_time": "0:58:37", "remaining_time": "1 day, 2:34:35"}
|
8 |
-
{"current_steps": 80, "total_steps": 1974, "loss": 0.7128, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.979764744436784e-05, "epoch": 0.08, "percentage": 4.05, "elapsed_time": "1:06:53", "remaining_time": "1 day, 2:23:46"}
|
9 |
-
{"current_steps": 90, "total_steps": 1974, "loss": 0.6982, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9743989452357756e-05, "epoch": 0.09, "percentage": 4.56, "elapsed_time": "1:15:09", "remaining_time": "1 day, 2:13:11"}
|
10 |
-
{"current_steps": 100, "total_steps": 1974, "loss": 0.7258, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.968406436930243e-05, "epoch": 0.1, "percentage": 5.07, "elapsed_time": "1:23:27", "remaining_time": "1 day, 2:04:01"}
|
11 |
-
{"current_steps": 110, "total_steps": 1974, "loss": 0.7095, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.961788737286559e-05, "epoch": 0.11, "percentage": 5.57, "elapsed_time": "1:31:45", "remaining_time": "1 day, 1:54:50"}
|
12 |
-
{"current_steps": 120, "total_steps": 1974, "loss": 0.7048, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.954547522417877e-05, "epoch": 0.12, "percentage": 6.08, "elapsed_time": "1:40:03", "remaining_time": "1 day, 1:45:50"}
|
13 |
-
{"current_steps": 130, "total_steps": 1974, "loss": 0.6805, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.946684626359607e-05, "epoch": 0.13, "percentage": 6.59, "elapsed_time": "1:48:21", "remaining_time": "1 day, 1:36:59"}
|
14 |
-
{"current_steps": 140, "total_steps": 1974, "loss": 0.6798, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.938202040604898e-05, "epoch": 0.14, "percentage": 7.09, "elapsed_time": "1:56:36", "remaining_time": "1 day, 1:27:37"}
|
15 |
-
{"current_steps": 150, "total_steps": 1974, "loss": 0.7134, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.929101913600238e-05, "epoch": 0.15, "percentage": 7.6, "elapsed_time": "2:04:53", "remaining_time": "1 day, 1:18:36"}
|
16 |
-
{"current_steps": 160, "total_steps": 1974, "loss": 0.6895, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.919386550201299e-05, "epoch": 0.16, "percentage": 8.11, "elapsed_time": "2:13:08", "remaining_time": "1 day, 1:09:32"}
|
17 |
-
{"current_steps": 170, "total_steps": 1974, "loss": 0.705, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.909058411089174e-05, "epoch": 0.17, "percentage": 8.61, "elapsed_time": "2:21:25", "remaining_time": "1 day, 1:00:44"}
|
18 |
-
{"current_steps": 180, "total_steps": 1974, "loss": 0.6712, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8981201121471356e-05, "epoch": 0.18, "percentage": 9.12, "elapsed_time": "2:29:41", "remaining_time": "1 day, 0:51:58"}
|
19 |
-
{"current_steps": 190, "total_steps": 1974, "loss": 0.6744, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.886574423798097e-05, "epoch": 0.19, "percentage": 9.63, "elapsed_time": "2:37:59", "remaining_time": "1 day, 0:43:26"}
|
20 |
-
{"current_steps": 200, "total_steps": 1974, "loss": 0.6675, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.874424270302927e-05, "epoch": 0.2, "percentage": 10.13, "elapsed_time": "2:46:13", "remaining_time": "1 day, 0:34:29"}
|
21 |
-
{"current_steps": 210, "total_steps": 1974, "loss": 0.6726, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.861672729019797e-05, "epoch": 0.21, "percentage": 10.64, "elapsed_time": "3:06:14", "remaining_time": "1 day, 2:04:28"}
|
22 |
-
{"current_steps": 220, "total_steps": 1974, "loss": 0.6821, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.848323029624761e-05, "epoch": 0.22, "percentage": 11.14, "elapsed_time": "3:14:32", "remaining_time": "1 day, 1:50:57"}
|
23 |
-
{"current_steps": 230, "total_steps": 1974, "loss": 0.7133, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.834378553293748e-05, "epoch": 0.23, "percentage": 11.65, "elapsed_time": "3:22:48", "remaining_time": "1 day, 1:37:50"}
|
24 |
-
{"current_steps": 240, "total_steps": 1974, "loss": 0.6681, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.81984283184619e-05, "epoch": 0.24, "percentage": 12.16, "elapsed_time": "3:31:01", "remaining_time": "1 day, 1:24:41"}
|
25 |
-
{"current_steps": 250, "total_steps": 1974, "loss": 0.682, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.804719546850487e-05, "epoch": 0.25, "percentage": 12.66, "elapsed_time": "3:39:18", "remaining_time": "1 day, 1:12:19"}
|
26 |
-
{"current_steps": 260, "total_steps": 1974, "loss": 0.6755, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.789012528691558e-05, "epoch": 0.26, "percentage": 13.17, "elapsed_time": "3:47:36", "remaining_time": "1 day, 1:00:28"}
|
27 |
-
{"current_steps": 270, "total_steps": 1974, "loss": 0.68, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.772725755600682e-05, "epoch": 0.27, "percentage": 13.68, "elapsed_time": "3:55:51", "remaining_time": "1 day, 0:48:32"}
|
28 |
-
{"current_steps": 280, "total_steps": 1974, "loss": 0.6663, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.755863352647909e-05, "epoch": 0.28, "percentage": 14.18, "elapsed_time": "4:04:07", "remaining_time": "1 day, 0:36:58"}
|
29 |
-
{"current_steps": 290, "total_steps": 1974, "loss": 0.6672, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.738429590697271e-05, "epoch": 0.29, "percentage": 14.69, "elapsed_time": "4:12:21", "remaining_time": "1 day, 0:25:24"}
|
30 |
-
{"current_steps": 300, "total_steps": 1974, "loss": 0.6466, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.720428885325069e-05, "epoch": 0.3, "percentage": 15.2, "elapsed_time": "4:20:38", "remaining_time": "1 day, 0:14:20"}
|
31 |
-
{"current_steps": 310, "total_steps": 1974, "loss": 0.6668, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.701865795701505e-05, "epoch": 0.31, "percentage": 15.7, "elapsed_time": "4:28:57", "remaining_time": "1 day, 0:03:40"}
|
32 |
-
{"current_steps": 320, "total_steps": 1974, "loss": 0.6591, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.684682059461469e-05, "epoch": 0.32, "percentage": 16.21, "elapsed_time": "4:37:10", "remaining_time": "23:52:39"}
|
33 |
-
{"current_steps": 330, "total_steps": 1974, "loss": 0.661, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.665063509461097e-05, "epoch": 0.33, "percentage": 16.72, "elapsed_time": "4:45:27", "remaining_time": "23:42:06"}
|
34 |
-
{"current_steps": 340, "total_steps": 1974, "loss": 0.6749, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.644896598002736e-05, "epoch": 0.34, "percentage": 17.22, "elapsed_time": "4:53:43", "remaining_time": "23:31:35"}
|
35 |
-
{"current_steps": 350, "total_steps": 1974, "loss": 0.6654, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.624186432907437e-05, "epoch": 0.35, "percentage": 17.73, "elapsed_time": "5:01:59", "remaining_time": "23:21:16"}
|
36 |
-
{"current_steps": 360, "total_steps": 1974, "loss": 0.6716, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.602938259590072e-05, "epoch": 0.36, "percentage": 18.24, "elapsed_time": "5:10:16", "remaining_time": "23:11:05"}
|
37 |
-
{"current_steps": 370, "total_steps": 1974, "loss": 0.6796, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.581157459730783e-05, "epoch": 0.37, "percentage": 18.74, "elapsed_time": "5:18:35", "remaining_time": "23:01:09"}
|
38 |
-
{"current_steps": 380, "total_steps": 1974, "loss": 0.6794, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.558849549911931e-05, "epoch": 0.39, "percentage": 19.25, "elapsed_time": "5:26:55", "remaining_time": "22:51:20"}
|
39 |
-
{"current_steps": 390, "total_steps": 1974, "loss": 0.6651, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.536020180220871e-05, "epoch": 0.4, "percentage": 19.76, "elapsed_time": "5:35:12", "remaining_time": "22:41:26"}
|
40 |
-
{"current_steps": 400, "total_steps": 1974, "loss": 0.6823, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.515032675559024e-05, "epoch": 0.41, "percentage": 20.26, "elapsed_time": "5:43:27", "remaining_time": "22:31:30"}
|
41 |
-
{"current_steps": 410, "total_steps": 1974, "loss": 0.6677, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.4912285699446786e-05, "epoch": 0.42, "percentage": 20.77, "elapsed_time": "6:04:58", "remaining_time": "23:12:15"}
|
42 |
-
{"current_steps": 420, "total_steps": 1974, "loss": 0.6704, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.4669201313179155e-05, "epoch": 0.43, "percentage": 21.28, "elapsed_time": "6:13:18", "remaining_time": "23:01:12"}
|
43 |
-
{"current_steps": 430, "total_steps": 1974, "loss": 0.6481, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.442113516454638e-05, "epoch": 0.44, "percentage": 21.78, "elapsed_time": "6:21:37", "remaining_time": "22:50:18"}
|
44 |
-
{"current_steps": 440, "total_steps": 1974, "loss": 0.665, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.416815008307488e-05, "epoch": 0.45, "percentage": 22.29, "elapsed_time": "6:29:58", "remaining_time": "22:39:35"}
|
45 |
-
{"current_steps": 450, "total_steps": 1974, "loss": 0.6658, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.391031014414514e-05, "epoch": 0.46, "percentage": 22.8, "elapsed_time": "6:38:16", "remaining_time": "22:28:49"}
|
46 |
-
{"current_steps": 460, "total_steps": 1974, "loss": 0.6699, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.364768065276284e-05, "epoch": 0.47, "percentage": 23.3, "elapsed_time": "6:46:39", "remaining_time": "22:18:26"}
|
47 |
-
{"current_steps": 470, "total_steps": 1974, "loss": 0.6664, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.338032812701867e-05, "epoch": 0.48, "percentage": 23.81, "elapsed_time": "6:55:02", "remaining_time": "22:08:08"}
|
48 |
-
{"current_steps": 480, "total_steps": 1974, "loss": 0.6817, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.310832028124069e-05, "epoch": 0.49, "percentage": 24.32, "elapsed_time": "7:03:24", "remaining_time": "21:57:52"}
|
49 |
-
{"current_steps": 490, "total_steps": 1974, "loss": 0.6791, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.283172600884393e-05, "epoch": 0.5, "percentage": 24.82, "elapsed_time": "7:11:47", "remaining_time": "21:47:43"}
|
50 |
-
{"current_steps": 500, "total_steps": 1974, "loss": 0.6679, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.2550615364881194e-05, "epoch": 0.51, "percentage": 25.33, "elapsed_time": "7:20:10", "remaining_time": "21:37:38"}
|
51 |
-
{"current_steps": 510, "total_steps": 1974, "loss": 0.6476, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.226505954829973e-05, "epoch": 0.52, "percentage": 25.84, "elapsed_time": "7:28:32", "remaining_time": "21:27:33"}
|
52 |
-
{"current_steps": 520, "total_steps": 1974, "loss": 0.6721, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.197513088390813e-05, "epoch": 0.53, "percentage": 26.34, "elapsed_time": "7:36:52", "remaining_time": "21:17:30"}
|
53 |
-
{"current_steps": 530, "total_steps": 1974, "loss": 0.6563, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.1680902804058095e-05, "epoch": 0.54, "percentage": 26.85, "elapsed_time": "7:45:10", "remaining_time": "21:07:22"}
|
54 |
-
{"current_steps": 540, "total_steps": 1974, "loss": 0.6391, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.138244983004574e-05, "epoch": 0.55, "percentage": 27.36, "elapsed_time": "7:53:26", "remaining_time": "20:57:14"}
|
55 |
-
{"current_steps": 550, "total_steps": 1974, "loss": 0.6672, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.107984755323697e-05, "epoch": 0.56, "percentage": 27.86, "elapsed_time": "8:01:42", "remaining_time": "20:47:11"}
|
56 |
-
{"current_steps": 560, "total_steps": 1974, "loss": 0.6497, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.077317261592194e-05, "epoch": 0.57, "percentage": 28.37, "elapsed_time": "8:09:57", "remaining_time": "20:37:08"}
|
57 |
-
{"current_steps": 570, "total_steps": 1974, "loss": 0.668, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.04625026919033e-05, "epoch": 0.58, "percentage": 28.88, "elapsed_time": "8:18:10", "remaining_time": "20:27:04"}
|
58 |
-
{"current_steps": 580, "total_steps": 1974, "loss": 0.6682, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.0147916466823174e-05, "epoch": 0.59, "percentage": 29.38, "elapsed_time": "8:26:24", "remaining_time": "20:17:07"}
|
59 |
-
{"current_steps": 590, "total_steps": 1974, "loss": 0.6352, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.982949361823388e-05, "epoch": 0.6, "percentage": 29.89, "elapsed_time": "8:34:38", "remaining_time": "20:07:14"}
|
60 |
-
{"current_steps": 600, "total_steps": 1974, "loss": 0.6698, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.950731479541743e-05, "epoch": 0.61, "percentage": 30.4, "elapsed_time": "8:42:55", "remaining_time": "19:57:30"}
|
61 |
-
{"current_steps": 610, "total_steps": 1974, "loss": 0.6549, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.918146159895882e-05, "epoch": 0.62, "percentage": 30.9, "elapsed_time": "9:01:46", "remaining_time": "20:11:25"}
|
62 |
-
{"current_steps": 620, "total_steps": 1974, "loss": 0.6516, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.8852016560078605e-05, "epoch": 0.63, "percentage": 31.41, "elapsed_time": "9:10:12", "remaining_time": "20:01:35"}
|
63 |
-
{"current_steps": 630, "total_steps": 1974, "loss": 0.6629, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.851906311972943e-05, "epoch": 0.64, "percentage": 31.91, "elapsed_time": "9:18:37", "remaining_time": "19:51:44"}
|
64 |
-
{"current_steps": 640, "total_steps": 1974, "loss": 0.6764, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.821647502051616e-05, "epoch": 0.65, "percentage": 32.42, "elapsed_time": "9:26:58", "remaining_time": "19:41:46"}
|
65 |
-
{"current_steps": 650, "total_steps": 1974, "loss": 0.6415, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.787708866250794e-05, "epoch": 0.66, "percentage": 32.93, "elapsed_time": "9:35:20", "remaining_time": "19:31:54"}
|
66 |
-
{"current_steps": 660, "total_steps": 1974, "loss": 0.6463, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.7534440830144466e-05, "epoch": 0.67, "percentage": 33.43, "elapsed_time": "9:43:42", "remaining_time": "19:22:06"}
|
67 |
-
{"current_steps": 670, "total_steps": 1974, "loss": 0.6508, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.71886183083464e-05, "epoch": 0.68, "percentage": 33.94, "elapsed_time": "9:52:04", "remaining_time": "19:12:19"}
|
68 |
-
{"current_steps": 680, "total_steps": 1974, "loss": 0.6411, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.683970868611123e-05, "epoch": 0.69, "percentage": 34.45, "elapsed_time": "10:00:24", "remaining_time": "19:02:31"}
|
69 |
-
{"current_steps": 690, "total_steps": 1974, "loss": 0.6266, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.648780033432891e-05, "epoch": 0.7, "percentage": 34.95, "elapsed_time": "10:08:43", "remaining_time": "18:52:44"}
|
70 |
-
{"current_steps": 700, "total_steps": 1974, "loss": 0.6409, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.613298238339955e-05, "epoch": 0.71, "percentage": 35.46, "elapsed_time": "10:17:01", "remaining_time": "18:42:58"}
|
71 |
-
{"current_steps": 710, "total_steps": 1974, "loss": 0.6594, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5775344700658705e-05, "epoch": 0.72, "percentage": 35.97, "elapsed_time": "10:25:18", "remaining_time": "18:33:13"}
|
72 |
-
{"current_steps": 720, "total_steps": 1974, "loss": 0.6427, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5414977867616006e-05, "epoch": 0.73, "percentage": 36.47, "elapsed_time": "10:33:40", "remaining_time": "18:23:38"}
|
73 |
-
{"current_steps": 730, "total_steps": 1974, "loss": 0.6462, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.505197315701292e-05, "epoch": 0.74, "percentage": 36.98, "elapsed_time": "10:41:59", "remaining_time": "18:14:01"}
|
74 |
-
{"current_steps": 740, "total_steps": 1974, "loss": 0.6277, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.468642250970547e-05, "epoch": 0.75, "percentage": 37.49, "elapsed_time": "10:50:18", "remaining_time": "18:04:25"}
|
75 |
-
{"current_steps": 750, "total_steps": 1974, "loss": 0.6551, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.431841851137764e-05, "epoch": 0.76, "percentage": 37.99, "elapsed_time": "10:58:35", "remaining_time": "17:54:48"}
|
76 |
-
{"current_steps": 760, "total_steps": 1974, "loss": 0.6402, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.394805436909157e-05, "epoch": 0.77, "percentage": 38.5, "elapsed_time": "11:06:52", "remaining_time": "17:45:15"}
|
77 |
-
{"current_steps": 770, "total_steps": 1974, "loss": 0.6515, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.357542388768033e-05, "epoch": 0.78, "percentage": 39.01, "elapsed_time": "11:15:12", "remaining_time": "17:35:47"}
|
78 |
-
{"current_steps": 780, "total_steps": 1974, "loss": 0.6489, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.3200621445989226e-05, "epoch": 0.79, "percentage": 39.51, "elapsed_time": "11:23:30", "remaining_time": "17:26:18"}
|
79 |
-
{"current_steps": 790, "total_steps": 1974, "loss": 0.6568, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.282374197297185e-05, "epoch": 0.8, "percentage": 40.02, "elapsed_time": "11:31:50", "remaining_time": "17:16:53"}
|
80 |
-
{"current_steps": 800, "total_steps": 1974, "loss": 0.615, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.2444880923646674e-05, "epoch": 0.81, "percentage": 40.53, "elapsed_time": "11:40:07", "remaining_time": "17:07:26"}
|
81 |
-
{"current_steps": 810, "total_steps": 1974, "loss": 0.6447, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.20641342549205e-05, "epoch": 0.82, "percentage": 41.03, "elapsed_time": "12:02:31", "remaining_time": "17:18:17"}
|
82 |
-
{"current_steps": 820, "total_steps": 1974, "loss": 0.6159, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.168159840128472e-05, "epoch": 0.83, "percentage": 41.54, "elapsed_time": "12:10:54", "remaining_time": "17:08:37"}
|
83 |
-
{"current_steps": 830, "total_steps": 1974, "loss": 0.6347, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.129737025039068e-05, "epoch": 0.84, "percentage": 42.05, "elapsed_time": "12:19:18", "remaining_time": "16:58:59"}
|
84 |
-
{"current_steps": 840, "total_steps": 1974, "loss": 0.6361, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.091154711851022e-05, "epoch": 0.85, "percentage": 42.55, "elapsed_time": "12:27:42", "remaining_time": "16:49:24"}
|
85 |
-
{"current_steps": 850, "total_steps": 1974, "loss": 0.6504, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.052422672588765e-05, "epoch": 0.86, "percentage": 43.06, "elapsed_time": "12:36:05", "remaining_time": "16:39:48"}
|
86 |
-
{"current_steps": 860, "total_steps": 1974, "loss": 0.6467, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.013550717198948e-05, "epoch": 0.87, "percentage": 43.57, "elapsed_time": "12:44:27", "remaining_time": "16:30:14"}
|
87 |
-
{"current_steps": 870, "total_steps": 1974, "loss": 0.6364, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9745486910657993e-05, "epoch": 0.88, "percentage": 44.07, "elapsed_time": "12:52:51", "remaining_time": "16:20:44"}
|
88 |
-
{"current_steps": 880, "total_steps": 1974, "loss": 0.6361, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9354264725175185e-05, "epoch": 0.89, "percentage": 44.58, "elapsed_time": "13:01:16", "remaining_time": "16:11:15"}
|
89 |
-
{"current_steps": 890, "total_steps": 1974, "loss": 0.6441, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8961939703243122e-05, "epoch": 0.9, "percentage": 45.09, "elapsed_time": "13:09:39", "remaining_time": "16:01:47"}
|
90 |
-
{"current_steps": 900, "total_steps": 1974, "loss": 0.6404, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.856861121188735e-05, "epoch": 0.91, "percentage": 45.59, "elapsed_time": "13:18:01", "remaining_time": "15:52:19"}
|
91 |
-
{"current_steps": 910, "total_steps": 1974, "loss": 0.6307, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8174378872289446e-05, "epoch": 0.92, "percentage": 46.1, "elapsed_time": "13:26:21", "remaining_time": "15:42:49"}
|
92 |
-
{"current_steps": 920, "total_steps": 1974, "loss": 0.6484, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.777934253455522e-05, "epoch": 0.93, "percentage": 46.61, "elapsed_time": "13:34:42", "remaining_time": "15:33:21"}
|
93 |
-
{"current_steps": 930, "total_steps": 1974, "loss": 0.6237, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7383602252424985e-05, "epoch": 0.94, "percentage": 47.11, "elapsed_time": "13:43:00", "remaining_time": "15:23:53"}
|
94 |
-
{"current_steps": 940, "total_steps": 1974, "loss": 0.6161, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6987258257932175e-05, "epoch": 0.95, "percentage": 47.62, "elapsed_time": "13:51:20", "remaining_time": "15:14:29"}
|
95 |
-
{"current_steps": 950, "total_steps": 1974, "loss": 0.6381, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6590410936016895e-05, "epoch": 0.96, "percentage": 48.13, "elapsed_time": "13:59:40", "remaining_time": "15:05:05"}
|
96 |
-
{"current_steps": 960, "total_steps": 1974, "loss": 0.6366, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.619316079910063e-05, "epoch": 0.97, "percentage": 48.63, "elapsed_time": "14:07:59", "remaining_time": "14:55:41"}
|
97 |
-
{"current_steps": 970, "total_steps": 1974, "loss": 0.6202, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5795608461628802e-05, "epoch": 0.98, "percentage": 49.14, "elapsed_time": "14:16:20", "remaining_time": "14:46:21"}
|
98 |
-
{"current_steps": 980, "total_steps": 1974, "loss": 0.6334, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5397854614587334e-05, "epoch": 0.99, "percentage": 49.65, "elapsed_time": "14:24:38", "remaining_time": "14:36:59"}
|
99 |
-
{"current_steps": 990, "total_steps": 1974, "loss": 0.5954, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5e-05, "epoch": 1.0, "percentage": 50.15, "elapsed_time": "14:32:58", "remaining_time": "14:27:41"}
|
100 |
-
{"current_steps": 1000, "total_steps": 1974, "loss": 0.4963, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.460214538541267e-05, "epoch": 1.01, "percentage": 50.66, "elapsed_time": "14:41:17", "remaining_time": "14:18:23"}
|
101 |
-
{"current_steps": 1010, "total_steps": 1974, "loss": 0.487, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4204391538371207e-05, "epoch": 1.02, "percentage": 51.17, "elapsed_time": "15:03:28", "remaining_time": "14:22:20"}
|
102 |
-
{"current_steps": 1020, "total_steps": 1974, "loss": 0.489, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3806839200899377e-05, "epoch": 1.03, "percentage": 51.67, "elapsed_time": "15:11:48", "remaining_time": "14:12:48"}
|
103 |
-
{"current_steps": 1030, "total_steps": 1974, "loss": 0.4805, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3409589063983117e-05, "epoch": 1.04, "percentage": 52.18, "elapsed_time": "15:20:06", "remaining_time": "14:03:17"}
|
104 |
-
{"current_steps": 1040, "total_steps": 1974, "loss": 0.4907, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3012741742067838e-05, "epoch": 1.05, "percentage": 52.68, "elapsed_time": "15:28:27", "remaining_time": "13:53:49"}
|
105 |
-
{"current_steps": 1050, "total_steps": 1974, "loss": 0.4719, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.261639774757503e-05, "epoch": 1.06, "percentage": 53.19, "elapsed_time": "15:36:47", "remaining_time": "13:44:22"}
|
106 |
-
{"current_steps": 1060, "total_steps": 1974, "loss": 0.4914, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2220657465444782e-05, "epoch": 1.07, "percentage": 53.7, "elapsed_time": "15:45:07", "remaining_time": "13:34:56"}
|
107 |
-
{"current_steps": 1070, "total_steps": 1974, "loss": 0.4775, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.182562112771056e-05, "epoch": 1.08, "percentage": 54.2, "elapsed_time": "15:53:27", "remaining_time": "13:25:32"}
|
108 |
-
{"current_steps": 1080, "total_steps": 1974, "loss": 0.4935, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.143138878811265e-05, "epoch": 1.09, "percentage": 54.71, "elapsed_time": "16:01:47", "remaining_time": "13:16:09"}
|
109 |
-
{"current_steps": 1090, "total_steps": 1974, "loss": 0.5082, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.1038060296756883e-05, "epoch": 1.1, "percentage": 55.22, "elapsed_time": "16:10:09", "remaining_time": "13:06:48"}
|
110 |
-
{"current_steps": 1100, "total_steps": 1974, "loss": 0.4868, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.064573527482482e-05, "epoch": 1.11, "percentage": 55.72, "elapsed_time": "16:18:28", "remaining_time": "12:57:26"}
|
111 |
-
{"current_steps": 1110, "total_steps": 1974, "loss": 0.4988, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.025451308934201e-05, "epoch": 1.12, "percentage": 56.23, "elapsed_time": "16:26:44", "remaining_time": "12:48:03"}
|
112 |
-
{"current_steps": 1120, "total_steps": 1974, "loss": 0.4653, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9864492828010526e-05, "epoch": 1.13, "percentage": 56.74, "elapsed_time": "16:35:02", "remaining_time": "12:38:43"}
|
113 |
-
{"current_steps": 1130, "total_steps": 1974, "loss": 0.4915, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9475773274112354e-05, "epoch": 1.14, "percentage": 57.24, "elapsed_time": "16:43:23", "remaining_time": "12:29:25"}
|
114 |
-
{"current_steps": 1140, "total_steps": 1974, "loss": 0.4763, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9088452881489787e-05, "epoch": 1.16, "percentage": 57.75, "elapsed_time": "16:51:43", "remaining_time": "12:20:09"}
|
115 |
-
{"current_steps": 1150, "total_steps": 1974, "loss": 0.4807, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8702629749609324e-05, "epoch": 1.17, "percentage": 58.26, "elapsed_time": "17:00:05", "remaining_time": "12:10:54"}
|
116 |
-
{"current_steps": 1160, "total_steps": 1974, "loss": 0.4653, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8318401598715284e-05, "epoch": 1.18, "percentage": 58.76, "elapsed_time": "17:08:24", "remaining_time": "12:01:39"}
|
117 |
-
{"current_steps": 1170, "total_steps": 1974, "loss": 0.4778, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.793586574507951e-05, "epoch": 1.19, "percentage": 59.27, "elapsed_time": "17:16:43", "remaining_time": "11:52:24"}
|
118 |
-
{"current_steps": 1180, "total_steps": 1974, "loss": 0.4839, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7555119076353338e-05, "epoch": 1.2, "percentage": 59.78, "elapsed_time": "17:25:04", "remaining_time": "11:43:12"}
|
119 |
-
{"current_steps": 1190, "total_steps": 1974, "loss": 0.4718, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7176258027028152e-05, "epoch": 1.21, "percentage": 60.28, "elapsed_time": "17:33:23", "remaining_time": "11:33:59"}
|
120 |
-
{"current_steps": 1200, "total_steps": 1974, "loss": 0.4793, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6799378554010773e-05, "epoch": 1.22, "percentage": 60.79, "elapsed_time": "17:41:44", "remaining_time": "11:24:49"}
|
121 |
-
{"current_steps": 1210, "total_steps": 1974, "loss": 0.4825, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6424576112319672e-05, "epoch": 1.23, "percentage": 61.3, "elapsed_time": "18:04:33", "remaining_time": "11:24:47"}
|
122 |
-
{"current_steps": 1220, "total_steps": 1974, "loss": 0.4857, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6051945630908426e-05, "epoch": 1.24, "percentage": 61.8, "elapsed_time": "18:12:53", "remaining_time": "11:15:26"}
|
123 |
-
{"current_steps": 1230, "total_steps": 1974, "loss": 0.4802, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5681581488622367e-05, "epoch": 1.25, "percentage": 62.31, "elapsed_time": "18:21:13", "remaining_time": "11:06:06"}
|
124 |
-
{"current_steps": 1240, "total_steps": 1974, "loss": 0.4812, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5313577490294538e-05, "epoch": 1.26, "percentage": 62.82, "elapsed_time": "18:29:36", "remaining_time": "10:56:49"}
|
125 |
-
{"current_steps": 1250, "total_steps": 1974, "loss": 0.4682, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4948026842987084e-05, "epoch": 1.27, "percentage": 63.32, "elapsed_time": "18:38:01", "remaining_time": "10:47:33"}
|
126 |
-
{"current_steps": 1260, "total_steps": 1974, "loss": 0.4974, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4585022132384008e-05, "epoch": 1.28, "percentage": 63.83, "elapsed_time": "18:46:25", "remaining_time": "10:38:18"}
|
127 |
-
{"current_steps": 1270, "total_steps": 1974, "loss": 0.4737, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4224655299341304e-05, "epoch": 1.29, "percentage": 64.34, "elapsed_time": "18:54:44", "remaining_time": "10:29:01"}
|
128 |
-
{"current_steps": 1280, "total_steps": 1974, "loss": 0.4877, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3867017616600456e-05, "epoch": 1.3, "percentage": 64.84, "elapsed_time": "19:03:02", "remaining_time": "10:19:44"}
|
129 |
-
{"current_steps": 1290, "total_steps": 1974, "loss": 0.4753, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3512199665671094e-05, "epoch": 1.31, "percentage": 65.35, "elapsed_time": "19:11:23", "remaining_time": "10:10:30"}
|
130 |
-
{"current_steps": 1300, "total_steps": 1974, "loss": 0.4638, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.316029131388878e-05, "epoch": 1.32, "percentage": 65.86, "elapsed_time": "19:19:45", "remaining_time": "10:01:17"}
|
131 |
-
{"current_steps": 1310, "total_steps": 1974, "loss": 0.4626, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2811381691653607e-05, "epoch": 1.33, "percentage": 66.36, "elapsed_time": "19:28:04", "remaining_time": "9:52:03"}
|
132 |
-
{"current_steps": 1320, "total_steps": 1974, "loss": 0.4786, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2465559169855535e-05, "epoch": 1.34, "percentage": 66.87, "elapsed_time": "19:36:26", "remaining_time": "9:42:52"}
|
133 |
-
{"current_steps": 1330, "total_steps": 1974, "loss": 0.4717, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.212291133749206e-05, "epoch": 1.35, "percentage": 67.38, "elapsed_time": "19:44:49", "remaining_time": "9:33:42"}
|
134 |
-
{"current_steps": 1340, "total_steps": 1974, "loss": 0.4803, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.178352497948384e-05, "epoch": 1.36, "percentage": 67.88, "elapsed_time": "19:53:08", "remaining_time": "9:24:31"}
|
135 |
-
{"current_steps": 1350, "total_steps": 1974, "loss": 0.4803, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1447486054694112e-05, "epoch": 1.37, "percentage": 68.39, "elapsed_time": "20:01:28", "remaining_time": "9:15:20"}
|
136 |
-
{"current_steps": 1360, "total_steps": 1974, "loss": 0.4739, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1114879674157233e-05, "epoch": 1.38, "percentage": 68.9, "elapsed_time": "20:09:47", "remaining_time": "9:06:11"}
|
137 |
-
{"current_steps": 1370, "total_steps": 1974, "loss": 0.471, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0785790079522001e-05, "epoch": 1.39, "percentage": 69.4, "elapsed_time": "20:18:06", "remaining_time": "8:57:01"}
|
138 |
-
{"current_steps": 1380, "total_steps": 1974, "loss": 0.4799, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.046030062171512e-05, "epoch": 1.4, "percentage": 69.91, "elapsed_time": "20:26:25", "remaining_time": "8:47:53"}
|
139 |
-
{"current_steps": 1390, "total_steps": 1974, "loss": 0.4689, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0138493739830352e-05, "epoch": 1.41, "percentage": 70.42, "elapsed_time": "20:34:44", "remaining_time": "8:38:46"}
|
140 |
-
{"current_steps": 1400, "total_steps": 1974, "loss": 0.4599, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.820450940248544e-06, "epoch": 1.42, "percentage": 70.92, "elapsed_time": "20:43:03", "remaining_time": "8:29:39"}
|
141 |
-
{"current_steps": 1410, "total_steps": 1974, "loss": 0.5019, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.506252775993882e-06, "epoch": 1.43, "percentage": 71.43, "elapsed_time": "21:01:37", "remaining_time": "8:24:39"}
|
142 |
-
{"current_steps": 1420, "total_steps": 1974, "loss": 0.4764, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.195978826331697e-06, "epoch": 1.44, "percentage": 71.94, "elapsed_time": "21:10:01", "remaining_time": "8:15:29"}
|
143 |
-
{"current_steps": 1430, "total_steps": 1974, "loss": 0.4579, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.889707676612791e-06, "epoch": 1.45, "percentage": 72.44, "elapsed_time": "21:18:24", "remaining_time": "8:06:19"}
|
144 |
-
{"current_steps": 1440, "total_steps": 1974, "loss": 0.4592, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.587516898369589e-06, "epoch": 1.46, "percentage": 72.95, "elapsed_time": "21:26:47", "remaining_time": "7:57:11"}
|
145 |
-
{"current_steps": 1450, "total_steps": 1974, "loss": 0.4861, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.289483029668972e-06, "epoch": 1.47, "percentage": 73.45, "elapsed_time": "21:35:09", "remaining_time": "7:48:02"}
|
146 |
-
{"current_steps": 1460, "total_steps": 1974, "loss": 0.4753, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.99568155572701e-06, "epoch": 1.48, "percentage": 73.96, "elapsed_time": "21:43:33", "remaining_time": "7:38:55"}
|
147 |
-
{"current_steps": 1470, "total_steps": 1974, "loss": 0.4929, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.706186889790209e-06, "epoch": 1.49, "percentage": 74.47, "elapsed_time": "21:51:52", "remaining_time": "7:29:47"}
|
148 |
-
{"current_steps": 1480, "total_steps": 1974, "loss": 0.4594, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.421072354288302e-06, "epoch": 1.5, "percentage": 74.97, "elapsed_time": "22:00:14", "remaining_time": "7:20:40"}
|
149 |
-
{"current_steps": 1490, "total_steps": 1974, "loss": 0.4912, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.140410162263414e-06, "epoch": 1.51, "percentage": 75.48, "elapsed_time": "22:08:35", "remaining_time": "7:11:34"}
|
150 |
-
{"current_steps": 1500, "total_steps": 1974, "loss": 0.4681, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.86427139908008e-06, "epoch": 1.52, "percentage": 75.99, "elapsed_time": "22:16:55", "remaining_time": "7:02:28"}
|
151 |
-
{"current_steps": 1510, "total_steps": 1974, "loss": 0.4816, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.5927260044209655e-06, "epoch": 1.53, "percentage": 76.49, "elapsed_time": "22:25:16", "remaining_time": "6:53:22"}
|
152 |
-
{"current_steps": 1520, "total_steps": 1974, "loss": 0.4723, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.3258427545727e-06, "epoch": 1.54, "percentage": 77.0, "elapsed_time": "22:33:37", "remaining_time": "6:44:18"}
|
153 |
-
{"current_steps": 1530, "total_steps": 1974, "loss": 0.4856, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.063689245006443e-06, "epoch": 1.55, "percentage": 77.51, "elapsed_time": "22:41:56", "remaining_time": "6:35:13"}
|
154 |
-
{"current_steps": 1540, "total_steps": 1974, "loss": 0.4829, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.806331873257462e-06, "epoch": 1.56, "percentage": 78.01, "elapsed_time": "22:50:16", "remaining_time": "6:26:10"}
|
155 |
-
{"current_steps": 1550, "total_steps": 1974, "loss": 0.4741, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.553835822108152e-06, "epoch": 1.57, "percentage": 78.52, "elapsed_time": "22:58:38", "remaining_time": "6:17:07"}
|
156 |
-
{"current_steps": 1560, "total_steps": 1974, "loss": 0.4654, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.306265043078693e-06, "epoch": 1.58, "percentage": 79.03, "elapsed_time": "23:06:58", "remaining_time": "6:08:04"}
|
157 |
-
{"current_steps": 1570, "total_steps": 1974, "loss": 0.4668, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.0636822402296165e-06, "epoch": 1.59, "percentage": 79.53, "elapsed_time": "23:15:15", "remaining_time": "5:59:02"}
|
158 |
-
{"current_steps": 1580, "total_steps": 1974, "loss": 0.4723, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.826148854280277e-06, "epoch": 1.6, "percentage": 80.04, "elapsed_time": "23:23:36", "remaining_time": "5:50:00"}
|
159 |
-
{"current_steps": 1590, "total_steps": 1974, "loss": 0.4639, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.593725047047293e-06, "epoch": 1.61, "percentage": 80.55, "elapsed_time": "23:31:55", "remaining_time": "5:40:59"}
|
160 |
-
{"current_steps": 1600, "total_steps": 1974, "loss": 0.4777, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.3664696862069505e-06, "epoch": 1.62, "percentage": 81.05, "elapsed_time": "23:40:12", "remaining_time": "5:31:58"}
|
161 |
-
{"current_steps": 1610, "total_steps": 1974, "loss": 0.4546, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.144440330385347e-06, "epoch": 1.63, "percentage": 81.56, "elapsed_time": "1 day, 0:03:58", "remaining_time": "5:26:27"}
|
162 |
-
{"current_steps": 1620, "total_steps": 1974, "loss": 0.4543, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.927693214580075e-06, "epoch": 1.64, "percentage": 82.07, "elapsed_time": "1 day, 0:12:13", "remaining_time": "5:17:20"}
|
163 |
-
{"current_steps": 1630, "total_steps": 1974, "loss": 0.4543, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.71628323591722e-06, "epoch": 1.65, "percentage": 82.57, "elapsed_time": "1 day, 0:20:27", "remaining_time": "5:08:13"}
|
164 |
-
{"current_steps": 1640, "total_steps": 1974, "loss": 0.4659, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5102639397471214e-06, "epoch": 1.66, "percentage": 83.08, "elapsed_time": "1 day, 0:28:43", "remaining_time": "4:59:07"}
|
165 |
-
{"current_steps": 1650, "total_steps": 1974, "loss": 0.485, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.3096875060825845e-06, "epoch": 1.67, "percentage": 83.59, "elapsed_time": "1 day, 0:36:59", "remaining_time": "4:50:01"}
|
166 |
-
{"current_steps": 1660, "total_steps": 1974, "loss": 0.4768, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.11460473638282e-06, "epoch": 1.68, "percentage": 84.09, "elapsed_time": "1 day, 0:45:17", "remaining_time": "4:40:57"}
|
167 |
-
{"current_steps": 1670, "total_steps": 1974, "loss": 0.4635, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.925065040686642e-06, "epoch": 1.69, "percentage": 84.6, "elapsed_time": "1 day, 0:53:32", "remaining_time": "4:31:52"}
|
168 |
-
{"current_steps": 1680, "total_steps": 1974, "loss": 0.4681, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.741116425097995e-06, "epoch": 1.7, "percentage": 85.11, "elapsed_time": "1 day, 1:01:47", "remaining_time": "4:22:48"}
|
169 |
-
{"current_steps": 1690, "total_steps": 1974, "loss": 0.4492, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5628054796271063e-06, "epoch": 1.71, "percentage": 85.61, "elapsed_time": "1 day, 1:10:02", "remaining_time": "4:13:45"}
|
170 |
-
{"current_steps": 1700, "total_steps": 1974, "loss": 0.4664, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.390177366390273e-06, "epoch": 1.72, "percentage": 86.12, "elapsed_time": "1 day, 1:18:18", "remaining_time": "4:04:42"}
|
171 |
-
{"current_steps": 1710, "total_steps": 1974, "loss": 0.48, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.22327580817136e-06, "epoch": 1.73, "percentage": 86.63, "elapsed_time": "1 day, 1:26:34", "remaining_time": "3:55:40"}
|
172 |
-
{"current_steps": 1720, "total_steps": 1974, "loss": 0.4616, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0621430773477947e-06, "epoch": 1.74, "percentage": 87.13, "elapsed_time": "1 day, 1:34:47", "remaining_time": "3:46:38"}
|
173 |
-
{"current_steps": 1730, "total_steps": 1974, "loss": 0.4854, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.906819985183908e-06, "epoch": 1.75, "percentage": 87.64, "elapsed_time": "1 day, 1:43:03", "remaining_time": "3:37:38"}
|
174 |
-
{"current_steps": 1740, "total_steps": 1974, "loss": 0.4846, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7573458714944063e-06, "epoch": 1.76, "percentage": 88.15, "elapsed_time": "1 day, 1:51:18", "remaining_time": "3:28:37"}
|
175 |
-
{"current_steps": 1750, "total_steps": 1974, "loss": 0.4552, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6137585946804674e-06, "epoch": 1.77, "percentage": 88.65, "elapsed_time": "1 day, 1:59:35", "remaining_time": "3:19:37"}
|
176 |
-
{"current_steps": 1760, "total_steps": 1974, "loss": 0.4615, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4760945221410638e-06, "epoch": 1.78, "percentage": 89.16, "elapsed_time": "1 day, 2:07:51", "remaining_time": "3:10:38"}
|
177 |
-
{"current_steps": 1770, "total_steps": 1974, "loss": 0.4735, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3443885210619428e-06, "epoch": 1.79, "percentage": 89.67, "elapsed_time": "1 day, 2:16:10", "remaining_time": "3:01:39"}
|
178 |
-
{"current_steps": 1780, "total_steps": 1974, "loss": 0.4705, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2186739495845477e-06, "epoch": 1.8, "percentage": 90.17, "elapsed_time": "1 day, 2:24:26", "remaining_time": "2:52:41"}
|
179 |
-
{"current_steps": 1790, "total_steps": 1974, "loss": 0.4653, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0989826483571552e-06, "epoch": 1.81, "percentage": 90.68, "elapsed_time": "1 day, 2:32:40", "remaining_time": "2:43:42"}
|
180 |
-
{"current_steps": 1800, "total_steps": 1974, "loss": 0.4632, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.85344932470364e-07, "epoch": 1.82, "percentage": 91.19, "elapsed_time": "1 day, 2:40:51", "remaining_time": "2:34:44"}
|
181 |
-
{"current_steps": 1810, "total_steps": 1974, "loss": 0.481, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.77789583778979e-07, "epoch": 1.83, "percentage": 91.69, "elapsed_time": "1 day, 2:59:37", "remaining_time": "2:26:45"}
|
182 |
-
{"current_steps": 1820, "total_steps": 1974, "loss": 0.4773, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.763438436122122e-07, "epoch": 1.84, "percentage": 92.2, "elapsed_time": "1 day, 3:07:54", "remaining_time": "2:17:44"}
|
183 |
-
{"current_steps": 1830, "total_steps": 1974, "loss": 0.4791, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.810334058740736e-07, "epoch": 1.85, "percentage": 92.71, "elapsed_time": "1 day, 3:16:15", "remaining_time": "2:08:45"}
|
184 |
-
{"current_steps": 1840, "total_steps": 1974, "loss": 0.4793, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.918824105356797e-07, "epoch": 1.86, "percentage": 93.21, "elapsed_time": "1 day, 3:24:34", "remaining_time": "1:59:46"}
|
185 |
-
{"current_steps": 1850, "total_steps": 1974, "loss": 0.4647, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.08913437521169e-07, "epoch": 1.87, "percentage": 93.72, "elapsed_time": "1 day, 3:32:49", "remaining_time": "1:50:47"}
|
186 |
-
{"current_steps": 1860, "total_steps": 1974, "loss": 0.4765, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.3214750098869995e-07, "epoch": 1.88, "percentage": 94.22, "elapsed_time": "1 day, 3:41:06", "remaining_time": "1:41:48"}
|
187 |
-
{"current_steps": 1870, "total_steps": 1974, "loss": 0.4787, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.616040440080432e-07, "epoch": 1.89, "percentage": 94.73, "elapsed_time": "1 day, 3:49:26", "remaining_time": "1:32:50"}
|
188 |
-
{"current_steps": 1880, "total_steps": 1974, "loss": 0.4723, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.973009336361021e-07, "epoch": 1.9, "percentage": 95.24, "elapsed_time": "1 day, 3:57:44", "remaining_time": "1:23:53"}
|
189 |
-
{"current_steps": 1890, "total_steps": 1974, "loss": 0.453, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.392544563915883e-07, "epoch": 1.91, "percentage": 95.74, "elapsed_time": "1 day, 4:06:01", "remaining_time": "1:14:56"}
|
190 |
-
{"current_steps": 1900, "total_steps": 1974, "loss": 0.4561, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8747931413001795e-07, "epoch": 1.93, "percentage": 96.25, "elapsed_time": "1 day, 4:14:18", "remaining_time": "1:05:59"}
|
191 |
-
{"current_steps": 1910, "total_steps": 1974, "loss": 0.4612, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4198862032005488e-07, "epoch": 1.94, "percentage": 96.76, "elapsed_time": "1 day, 4:22:35", "remaining_time": "0:57:03"}
|
192 |
-
{"current_steps": 1920, "total_steps": 1974, "loss": 0.4774, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0279389672218365e-07, "epoch": 1.95, "percentage": 97.26, "elapsed_time": "1 day, 4:30:53", "remaining_time": "0:48:07"}
|
193 |
-
{"current_steps": 1930, "total_steps": 1974, "loss": 0.4635, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.990507047049676e-08, "epoch": 1.96, "percentage": 97.77, "elapsed_time": "1 day, 4:39:09", "remaining_time": "0:39:11"}
|
194 |
-
{"current_steps": 1940, "total_steps": 1974, "loss": 0.4761, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.3330471558378213e-08, "epoch": 1.97, "percentage": 98.28, "elapsed_time": "1 day, 4:47:22", "remaining_time": "0:30:16"}
|
195 |
-
{"current_steps": 1950, "total_steps": 1974, "loss": 0.4593, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3076830728713252e-08, "epoch": 1.98, "percentage": 98.78, "elapsed_time": "1 day, 4:55:39", "remaining_time": "0:21:21"}
|
196 |
-
{"current_steps": 1960, "total_steps": 1974, "loss": 0.4736, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.149277769132658e-09, "epoch": 1.99, "percentage": 99.29, "elapsed_time": "1 day, 5:03:51", "remaining_time": "0:12:27"}
|
197 |
-
{"current_steps": 1970, "total_steps": 1974, "loss": 0.4486, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.551340212760377e-09, "epoch": 2.0, "percentage": 99.8, "elapsed_time": "1 day, 5:12:08", "remaining_time": "0:03:33"}
|
198 |
-
{"current_steps": 1974, "total_steps": 1974, "loss": null, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.0, "percentage": 100.0, "elapsed_time": "1 day, 5:15:27", "remaining_time": "0:00:00"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Baichuan-13B-Chat-full/training_loss.png
DELETED
Binary file (44.1 kB)
|
|
Baichuan-13B-Chat-lora-Task/README.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
---
|
4 |
+
## Training procedure
|
5 |
+
|
6 |
+
### Framework versions
|
7 |
+
|
8 |
+
|
9 |
+
- PEFT 0.5.0
|
Baichuan-13B-Chat-lora-Task/adapter_config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_mapping": null,
|
3 |
+
"base_model_name_or_path": "baichuan-inc/Baichuan-13B-Chat",
|
4 |
+
"bias": "none",
|
5 |
+
"fan_in_fan_out": false,
|
6 |
+
"inference_mode": true,
|
7 |
+
"init_lora_weights": true,
|
8 |
+
"layers_pattern": null,
|
9 |
+
"layers_to_transform": null,
|
10 |
+
"lora_alpha": 32.0,
|
11 |
+
"lora_dropout": 0.1,
|
12 |
+
"modules_to_save": null,
|
13 |
+
"peft_type": "LORA",
|
14 |
+
"r": 8,
|
15 |
+
"revision": null,
|
16 |
+
"target_modules": [
|
17 |
+
"W_pack"
|
18 |
+
],
|
19 |
+
"task_type": "CAUSAL_LM"
|
20 |
+
}
|
Baichuan-13B-Chat-full/pytorch_model-00001-of-00003.bin → Baichuan-13B-Chat-lora-Task/adapter_model.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84594037c53e9a300bbdebbc3534f704f22f429b6b912fe36e32aeec5a928e3a
|
3 |
+
size 26243422
|
Baichuan-13B-Chat-lora-Task/all_results.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 2.0,
|
3 |
+
"eval_loss": 0.41885045170783997,
|
4 |
+
"eval_runtime": 69.6555,
|
5 |
+
"eval_samples_per_second": 15.821,
|
6 |
+
"eval_steps_per_second": 1.594,
|
7 |
+
"train_loss": 0.46561298847898175,
|
8 |
+
"train_runtime": 35477.4141,
|
9 |
+
"train_samples_per_second": 6.149,
|
10 |
+
"train_steps_per_second": 0.077
|
11 |
+
}
|
Baichuan-13B-Chat-lora-Task/eval_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 2.0,
|
3 |
+
"eval_loss": 0.41885045170783997,
|
4 |
+
"eval_runtime": 69.6555,
|
5 |
+
"eval_samples_per_second": 15.821,
|
6 |
+
"eval_steps_per_second": 1.594
|
7 |
+
}
|
{Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/special_tokens_map.json
RENAMED
File without changes
|
{Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/tokenization_baichuan.py
RENAMED
File without changes
|
{Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/tokenizer.model
RENAMED
File without changes
|
{Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/tokenizer_config.json
RENAMED
File without changes
|
Baichuan-13B-Chat-lora-Task/train_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 2.0,
|
3 |
+
"train_loss": 0.46561298847898175,
|
4 |
+
"train_runtime": 35477.4141,
|
5 |
+
"train_samples_per_second": 6.149,
|
6 |
+
"train_steps_per_second": 0.077
|
7 |
+
}
|
Baichuan-13B-Chat-lora-Task/trainer_log.jsonl
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"current_steps": 10, "total_steps": 2726, "loss": 1.5452, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.999865525734509e-05, "epoch": 0.01, "percentage": 0.37, "elapsed_time": "0:02:32", "remaining_time": "11:29:51"}
|
2 |
+
{"current_steps": 20, "total_steps": 2726, "loss": 1.3291, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9994621174046976e-05, "epoch": 0.01, "percentage": 0.73, "elapsed_time": "0:04:36", "remaining_time": "10:23:36"}
|
3 |
+
{"current_steps": 30, "total_steps": 2726, "loss": 1.1048, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9986985231938546e-05, "epoch": 0.02, "percentage": 1.1, "elapsed_time": "0:06:36", "remaining_time": "9:54:30"}
|
4 |
+
{"current_steps": 40, "total_steps": 2726, "loss": 0.9155, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.99760306731191e-05, "epoch": 0.03, "percentage": 1.47, "elapsed_time": "0:08:47", "remaining_time": "9:50:47"}
|
5 |
+
{"current_steps": 50, "total_steps": 2726, "loss": 0.8856, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9961758952505326e-05, "epoch": 0.04, "percentage": 1.83, "elapsed_time": "0:10:46", "remaining_time": "9:36:34"}
|
6 |
+
{"current_steps": 60, "total_steps": 2726, "loss": 0.8052, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9944171965578836e-05, "epoch": 0.04, "percentage": 2.2, "elapsed_time": "0:13:03", "remaining_time": "9:40:26"}
|
7 |
+
{"current_steps": 70, "total_steps": 2726, "loss": 0.7332, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.992327204813435e-05, "epoch": 0.05, "percentage": 2.57, "elapsed_time": "0:15:01", "remaining_time": "9:30:01"}
|
8 |
+
{"current_steps": 80, "total_steps": 2726, "loss": 0.6982, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.989906197596955e-05, "epoch": 0.06, "percentage": 2.93, "elapsed_time": "0:17:01", "remaining_time": "9:22:57"}
|
9 |
+
{"current_steps": 90, "total_steps": 2726, "loss": 0.6811, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.987154496451635e-05, "epoch": 0.07, "percentage": 3.3, "elapsed_time": "0:18:51", "remaining_time": "9:12:22"}
|
10 |
+
{"current_steps": 100, "total_steps": 2726, "loss": 0.6323, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.984072466841389e-05, "epoch": 0.07, "percentage": 3.67, "elapsed_time": "0:21:04", "remaining_time": "9:13:18"}
|
11 |
+
{"current_steps": 110, "total_steps": 2726, "loss": 0.6234, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.981016546765289e-05, "epoch": 0.08, "percentage": 4.04, "elapsed_time": "0:23:02", "remaining_time": "9:07:57"}
|
12 |
+
{"current_steps": 120, "total_steps": 2726, "loss": 0.6125, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.977308057009269e-05, "epoch": 0.09, "percentage": 4.4, "elapsed_time": "0:25:11", "remaining_time": "9:07:04"}
|
13 |
+
{"current_steps": 130, "total_steps": 2726, "loss": 0.5977, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.97327054653146e-05, "epoch": 0.1, "percentage": 4.77, "elapsed_time": "0:27:29", "remaining_time": "9:08:54"}
|
14 |
+
{"current_steps": 140, "total_steps": 2726, "loss": 0.6179, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.968904551569013e-05, "epoch": 0.1, "percentage": 5.14, "elapsed_time": "0:29:47", "remaining_time": "9:10:22"}
|
15 |
+
{"current_steps": 150, "total_steps": 2726, "loss": 0.5879, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9642106519863544e-05, "epoch": 0.11, "percentage": 5.5, "elapsed_time": "0:31:46", "remaining_time": "9:05:40"}
|
16 |
+
{"current_steps": 160, "total_steps": 2726, "loss": 0.5472, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.959189471198171e-05, "epoch": 0.12, "percentage": 5.87, "elapsed_time": "0:33:38", "remaining_time": "8:59:28"}
|
17 |
+
{"current_steps": 170, "total_steps": 2726, "loss": 0.602, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.953841676086613e-05, "epoch": 0.12, "percentage": 6.24, "elapsed_time": "0:35:33", "remaining_time": "8:54:43"}
|
18 |
+
{"current_steps": 180, "total_steps": 2726, "loss": 0.5773, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9481679769127275e-05, "epoch": 0.13, "percentage": 6.6, "elapsed_time": "0:37:48", "remaining_time": "8:54:48"}
|
19 |
+
{"current_steps": 190, "total_steps": 2726, "loss": 0.5615, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9421691272221167e-05, "epoch": 0.14, "percentage": 6.97, "elapsed_time": "0:39:45", "remaining_time": "8:50:36"}
|
20 |
+
{"current_steps": 200, "total_steps": 2726, "loss": 0.5704, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.935845923744865e-05, "epoch": 0.15, "percentage": 7.34, "elapsed_time": "0:41:50", "remaining_time": "8:48:29"}
|
21 |
+
{"current_steps": 200, "total_steps": 2726, "loss": null, "eval_loss": 0.5564362406730652, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.15, "percentage": 7.34, "elapsed_time": "0:41:50", "remaining_time": "8:48:29"}
|
22 |
+
{"current_steps": 210, "total_steps": 2726, "loss": 0.5803, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9291992062897183e-05, "epoch": 0.15, "percentage": 7.7, "elapsed_time": "0:44:59", "remaining_time": "8:59:06"}
|
23 |
+
{"current_steps": 220, "total_steps": 2726, "loss": 0.5655, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.922229857632545e-05, "epoch": 0.16, "percentage": 8.07, "elapsed_time": "0:46:42", "remaining_time": "8:52:03"}
|
24 |
+
{"current_steps": 230, "total_steps": 2726, "loss": 0.5769, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9149388033990966e-05, "epoch": 0.17, "percentage": 8.44, "elapsed_time": "0:49:02", "remaining_time": "8:52:13"}
|
25 |
+
{"current_steps": 240, "total_steps": 2726, "loss": 0.5862, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9073270119420635e-05, "epoch": 0.18, "percentage": 8.8, "elapsed_time": "0:51:04", "remaining_time": "8:49:08"}
|
26 |
+
{"current_steps": 250, "total_steps": 2726, "loss": 0.5506, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.899395494212471e-05, "epoch": 0.18, "percentage": 9.17, "elapsed_time": "0:53:13", "remaining_time": "8:47:07"}
|
27 |
+
{"current_steps": 260, "total_steps": 2726, "loss": 0.5183, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.891145303625408e-05, "epoch": 0.19, "percentage": 9.54, "elapsed_time": "0:55:40", "remaining_time": "8:48:05"}
|
28 |
+
{"current_steps": 270, "total_steps": 2726, "loss": 0.575, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.882577535920121e-05, "epoch": 0.2, "percentage": 9.9, "elapsed_time": "0:58:06", "remaining_time": "8:48:33"}
|
29 |
+
{"current_steps": 280, "total_steps": 2726, "loss": 0.5359, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8736933290144815e-05, "epoch": 0.21, "percentage": 10.27, "elapsed_time": "1:00:24", "remaining_time": "8:47:41"}
|
30 |
+
{"current_steps": 290, "total_steps": 2726, "loss": 0.5302, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8644938628538606e-05, "epoch": 0.21, "percentage": 10.64, "elapsed_time": "1:02:22", "remaining_time": "8:43:57"}
|
31 |
+
{"current_steps": 300, "total_steps": 2726, "loss": 0.5399, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8549803592544076e-05, "epoch": 0.22, "percentage": 11.01, "elapsed_time": "1:04:13", "remaining_time": "8:39:25"}
|
32 |
+
{"current_steps": 310, "total_steps": 2726, "loss": 0.5379, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.845154081740783e-05, "epoch": 0.23, "percentage": 11.37, "elapsed_time": "1:06:13", "remaining_time": "8:36:11"}
|
33 |
+
{"current_steps": 320, "total_steps": 2726, "loss": 0.5299, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.835016335378343e-05, "epoch": 0.23, "percentage": 11.74, "elapsed_time": "1:08:08", "remaining_time": "8:32:17"}
|
34 |
+
{"current_steps": 330, "total_steps": 2726, "loss": 0.535, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8245684665998073e-05, "epoch": 0.24, "percentage": 12.11, "elapsed_time": "1:10:23", "remaining_time": "8:31:06"}
|
35 |
+
{"current_steps": 340, "total_steps": 2726, "loss": 0.5145, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.813811863026436e-05, "epoch": 0.25, "percentage": 12.47, "elapsed_time": "1:12:33", "remaining_time": "8:29:13"}
|
36 |
+
{"current_steps": 350, "total_steps": 2726, "loss": 0.5126, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.802747953283732e-05, "epoch": 0.26, "percentage": 12.84, "elapsed_time": "1:14:40", "remaining_time": "8:26:55"}
|
37 |
+
{"current_steps": 360, "total_steps": 2726, "loss": 0.5012, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.791378206811704e-05, "epoch": 0.26, "percentage": 13.21, "elapsed_time": "1:16:47", "remaining_time": "8:24:39"}
|
38 |
+
{"current_steps": 370, "total_steps": 2726, "loss": 0.5373, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7797041336696995e-05, "epoch": 0.27, "percentage": 13.57, "elapsed_time": "1:19:07", "remaining_time": "8:23:47"}
|
39 |
+
{"current_steps": 380, "total_steps": 2726, "loss": 0.4778, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.767727284335852e-05, "epoch": 0.28, "percentage": 13.94, "elapsed_time": "1:21:18", "remaining_time": "8:21:59"}
|
40 |
+
{"current_steps": 390, "total_steps": 2726, "loss": 0.4894, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.755449249501155e-05, "epoch": 0.29, "percentage": 14.31, "elapsed_time": "1:23:03", "remaining_time": "8:17:32"}
|
41 |
+
{"current_steps": 400, "total_steps": 2726, "loss": 0.4986, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7428716598581934e-05, "epoch": 0.29, "percentage": 14.67, "elapsed_time": "1:25:10", "remaining_time": "8:15:20"}
|
42 |
+
{"current_steps": 400, "total_steps": 2726, "loss": null, "eval_loss": 0.4967592656612396, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.29, "percentage": 14.67, "elapsed_time": "1:25:10", "remaining_time": "8:15:20"}
|
43 |
+
{"current_steps": 410, "total_steps": 2726, "loss": 0.4928, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.729996185884571e-05, "epoch": 0.3, "percentage": 15.04, "elapsed_time": "1:28:14", "remaining_time": "8:18:25"}
|
44 |
+
{"current_steps": 420, "total_steps": 2726, "loss": 0.4807, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.716824537621042e-05, "epoch": 0.31, "percentage": 15.41, "elapsed_time": "1:30:05", "remaining_time": "8:14:40"}
|
45 |
+
{"current_steps": 430, "total_steps": 2726, "loss": 0.4734, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.703358464444397e-05, "epoch": 0.32, "percentage": 15.77, "elapsed_time": "1:32:27", "remaining_time": "8:13:42"}
|
46 |
+
{"current_steps": 440, "total_steps": 2726, "loss": 0.4603, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.689599754835122e-05, "epoch": 0.32, "percentage": 16.14, "elapsed_time": "1:34:29", "remaining_time": "8:10:56"}
|
47 |
+
{"current_steps": 450, "total_steps": 2726, "loss": 0.4661, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.6755502361398616e-05, "epoch": 0.33, "percentage": 16.51, "elapsed_time": "1:36:31", "remaining_time": "8:08:14"}
|
48 |
+
{"current_steps": 460, "total_steps": 2726, "loss": 0.5072, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.6612117743287234e-05, "epoch": 0.34, "percentage": 16.87, "elapsed_time": "1:38:36", "remaining_time": "8:05:42"}
|
49 |
+
{"current_steps": 470, "total_steps": 2726, "loss": 0.5056, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.646586273747452e-05, "epoch": 0.34, "percentage": 17.24, "elapsed_time": "1:40:39", "remaining_time": "8:03:07"}
|
50 |
+
{"current_steps": 480, "total_steps": 2726, "loss": 0.4391, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.631675676864503e-05, "epoch": 0.35, "percentage": 17.61, "elapsed_time": "1:43:01", "remaining_time": "8:02:03"}
|
51 |
+
{"current_steps": 490, "total_steps": 2726, "loss": 0.483, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.6164819640130595e-05, "epoch": 0.36, "percentage": 17.98, "elapsed_time": "1:45:28", "remaining_time": "8:01:17"}
|
52 |
+
{"current_steps": 500, "total_steps": 2726, "loss": 0.4774, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.601007153128014e-05, "epoch": 0.37, "percentage": 18.34, "elapsed_time": "1:47:35", "remaining_time": "7:59:00"}
|
53 |
+
{"current_steps": 510, "total_steps": 2726, "loss": 0.4848, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.5852532994779606e-05, "epoch": 0.37, "percentage": 18.71, "elapsed_time": "1:49:45", "remaining_time": "7:56:55"}
|
54 |
+
{"current_steps": 520, "total_steps": 2726, "loss": 0.5099, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.5692224953922266e-05, "epoch": 0.38, "percentage": 19.08, "elapsed_time": "1:51:38", "remaining_time": "7:53:35"}
|
55 |
+
{"current_steps": 530, "total_steps": 2726, "loss": 0.4851, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.5529168699829805e-05, "epoch": 0.39, "percentage": 19.44, "elapsed_time": "1:53:42", "remaining_time": "7:51:09"}
|
56 |
+
{"current_steps": 540, "total_steps": 2726, "loss": 0.498, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.536338588862459e-05, "epoch": 0.4, "percentage": 19.81, "elapsed_time": "1:55:51", "remaining_time": "7:48:59"}
|
57 |
+
{"current_steps": 550, "total_steps": 2726, "loss": 0.5398, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.519489853855341e-05, "epoch": 0.4, "percentage": 20.18, "elapsed_time": "1:58:05", "remaining_time": "7:47:11"}
|
58 |
+
{"current_steps": 560, "total_steps": 2726, "loss": 0.4566, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.50237290270632e-05, "epoch": 0.41, "percentage": 20.54, "elapsed_time": "1:59:55", "remaining_time": "7:43:50"}
|
59 |
+
{"current_steps": 570, "total_steps": 2726, "loss": 0.4942, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.484990008782893e-05, "epoch": 0.42, "percentage": 20.91, "elapsed_time": "2:01:51", "remaining_time": "7:40:56"}
|
60 |
+
{"current_steps": 580, "total_steps": 2726, "loss": 0.4625, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.467343480773433e-05, "epoch": 0.43, "percentage": 21.28, "elapsed_time": "2:04:02", "remaining_time": "7:38:55"}
|
61 |
+
{"current_steps": 590, "total_steps": 2726, "loss": 0.4703, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.44943566238056e-05, "epoch": 0.43, "percentage": 21.64, "elapsed_time": "2:06:02", "remaining_time": "7:36:17"}
|
62 |
+
{"current_steps": 600, "total_steps": 2726, "loss": 0.464, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.431268932009865e-05, "epoch": 0.44, "percentage": 22.01, "elapsed_time": "2:08:29", "remaining_time": "7:35:16"}
|
63 |
+
{"current_steps": 600, "total_steps": 2726, "loss": null, "eval_loss": 0.46821752190589905, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.44, "percentage": 22.01, "elapsed_time": "2:08:29", "remaining_time": "7:35:16"}
|
64 |
+
{"current_steps": 610, "total_steps": 2726, "loss": 0.4739, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.412845702454024e-05, "epoch": 0.45, "percentage": 22.38, "elapsed_time": "2:11:46", "remaining_time": "7:37:07"}
|
65 |
+
{"current_steps": 620, "total_steps": 2726, "loss": 0.4529, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.394168420572349e-05, "epoch": 0.45, "percentage": 22.74, "elapsed_time": "2:14:01", "remaining_time": "7:35:15"}
|
66 |
+
{"current_steps": 630, "total_steps": 2726, "loss": 0.4433, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.3752395669658086e-05, "epoch": 0.46, "percentage": 23.11, "elapsed_time": "2:16:41", "remaining_time": "7:34:47"}
|
67 |
+
{"current_steps": 640, "total_steps": 2726, "loss": 0.459, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.356061655647571e-05, "epoch": 0.47, "percentage": 23.48, "elapsed_time": "2:18:53", "remaining_time": "7:32:41"}
|
68 |
+
{"current_steps": 650, "total_steps": 2726, "loss": 0.4877, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.336637233709107e-05, "epoch": 0.48, "percentage": 23.84, "elapsed_time": "2:20:42", "remaining_time": "7:29:22"}
|
69 |
+
{"current_steps": 660, "total_steps": 2726, "loss": 0.4676, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.316968880981903e-05, "epoch": 0.48, "percentage": 24.21, "elapsed_time": "2:22:37", "remaining_time": "7:26:26"}
|
70 |
+
{"current_steps": 670, "total_steps": 2726, "loss": 0.4782, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.2970592096948236e-05, "epoch": 0.49, "percentage": 24.58, "elapsed_time": "2:24:37", "remaining_time": "7:23:48"}
|
71 |
+
{"current_steps": 680, "total_steps": 2726, "loss": 0.4778, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.276910864127168e-05, "epoch": 0.5, "percentage": 24.94, "elapsed_time": "2:26:47", "remaining_time": "7:21:39"}
|
72 |
+
{"current_steps": 690, "total_steps": 2726, "loss": 0.454, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.25652652025748e-05, "epoch": 0.51, "percentage": 25.31, "elapsed_time": "2:28:42", "remaining_time": "7:18:47"}
|
73 |
+
{"current_steps": 700, "total_steps": 2726, "loss": 0.4399, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.235908885408133e-05, "epoch": 0.51, "percentage": 25.68, "elapsed_time": "2:30:54", "remaining_time": "7:16:47"}
|
74 |
+
{"current_steps": 710, "total_steps": 2726, "loss": 0.5106, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.215060697885767e-05, "epoch": 0.52, "percentage": 26.05, "elapsed_time": "2:32:57", "remaining_time": "7:14:19"}
|
75 |
+
{"current_steps": 720, "total_steps": 2726, "loss": 0.4683, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.1939847266176e-05, "epoch": 0.53, "percentage": 26.41, "elapsed_time": "2:35:12", "remaining_time": "7:12:26"}
|
76 |
+
{"current_steps": 730, "total_steps": 2726, "loss": 0.4896, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.172683770783677e-05, "epoch": 0.54, "percentage": 26.78, "elapsed_time": "2:37:07", "remaining_time": "7:09:37"}
|
77 |
+
{"current_steps": 740, "total_steps": 2726, "loss": 0.4633, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.1511606594451016e-05, "epoch": 0.54, "percentage": 27.15, "elapsed_time": "2:39:14", "remaining_time": "7:07:20"}
|
78 |
+
{"current_steps": 750, "total_steps": 2726, "loss": 0.4486, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.1294182511682946e-05, "epoch": 0.55, "percentage": 27.51, "elapsed_time": "2:41:16", "remaining_time": "7:04:53"}
|
79 |
+
{"current_steps": 760, "total_steps": 2726, "loss": 0.4706, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.1074594336453384e-05, "epoch": 0.56, "percentage": 27.88, "elapsed_time": "2:43:11", "remaining_time": "7:02:09"}
|
80 |
+
{"current_steps": 770, "total_steps": 2726, "loss": 0.4797, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.085287123310455e-05, "epoch": 0.56, "percentage": 28.25, "elapsed_time": "2:44:59", "remaining_time": "6:59:07"}
|
81 |
+
{"current_steps": 780, "total_steps": 2726, "loss": 0.4251, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.062904264952657e-05, "epoch": 0.57, "percentage": 28.61, "elapsed_time": "2:47:04", "remaining_time": "6:56:49"}
|
82 |
+
{"current_steps": 790, "total_steps": 2726, "loss": 0.4687, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.0403138313246435e-05, "epoch": 0.58, "percentage": 28.98, "elapsed_time": "2:49:15", "remaining_time": "6:54:47"}
|
83 |
+
{"current_steps": 800, "total_steps": 2726, "loss": 0.48, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.017518822747976e-05, "epoch": 0.59, "percentage": 29.35, "elapsed_time": "2:51:34", "remaining_time": "6:53:03"}
|
84 |
+
{"current_steps": 800, "total_steps": 2726, "loss": null, "eval_loss": 0.4554018974304199, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.59, "percentage": 29.35, "elapsed_time": "2:51:34", "remaining_time": "6:53:03"}
|
85 |
+
{"current_steps": 810, "total_steps": 2726, "loss": 0.4662, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.994522266714594e-05, "epoch": 0.59, "percentage": 29.71, "elapsed_time": "2:54:51", "remaining_time": "6:53:36"}
|
86 |
+
{"current_steps": 820, "total_steps": 2726, "loss": 0.4837, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.9713272174847246e-05, "epoch": 0.6, "percentage": 30.08, "elapsed_time": "2:57:25", "remaining_time": "6:52:24"}
|
87 |
+
{"current_steps": 830, "total_steps": 2726, "loss": 0.5014, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.947936755681229e-05, "epoch": 0.61, "percentage": 30.45, "elapsed_time": "2:59:33", "remaining_time": "6:50:10"}
|
88 |
+
{"current_steps": 840, "total_steps": 2726, "loss": 0.4764, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.92435398788046e-05, "epoch": 0.62, "percentage": 30.81, "elapsed_time": "3:01:44", "remaining_time": "6:48:02"}
|
89 |
+
{"current_steps": 850, "total_steps": 2726, "loss": 0.4587, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.9005820461996604e-05, "epoch": 0.62, "percentage": 31.18, "elapsed_time": "3:03:52", "remaining_time": "6:45:49"}
|
90 |
+
{"current_steps": 860, "total_steps": 2726, "loss": 0.484, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.876624087880979e-05, "epoch": 0.63, "percentage": 31.55, "elapsed_time": "3:06:00", "remaining_time": "6:43:35"}
|
91 |
+
{"current_steps": 870, "total_steps": 2726, "loss": 0.4285, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.85248329487214e-05, "epoch": 0.64, "percentage": 31.91, "elapsed_time": "3:08:03", "remaining_time": "6:41:10"}
|
92 |
+
{"current_steps": 880, "total_steps": 2726, "loss": 0.4742, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.828162873403843e-05, "epoch": 0.65, "percentage": 32.28, "elapsed_time": "3:10:09", "remaining_time": "6:38:53"}
|
93 |
+
{"current_steps": 890, "total_steps": 2726, "loss": 0.4533, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.803666053563926e-05, "epoch": 0.65, "percentage": 32.65, "elapsed_time": "3:12:20", "remaining_time": "6:36:48"}
|
94 |
+
{"current_steps": 900, "total_steps": 2726, "loss": 0.4395, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.778996088868365e-05, "epoch": 0.66, "percentage": 33.02, "elapsed_time": "3:14:34", "remaining_time": "6:34:47"}
|
95 |
+
{"current_steps": 910, "total_steps": 2726, "loss": 0.4519, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.754156255829167e-05, "epoch": 0.67, "percentage": 33.38, "elapsed_time": "3:16:42", "remaining_time": "6:32:33"}
|
96 |
+
{"current_steps": 920, "total_steps": 2726, "loss": 0.4684, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.7291498535191996e-05, "epoch": 0.67, "percentage": 33.75, "elapsed_time": "3:18:41", "remaining_time": "6:30:02"}
|
97 |
+
{"current_steps": 930, "total_steps": 2726, "loss": 0.4259, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.703980203134029e-05, "epoch": 0.68, "percentage": 34.12, "elapsed_time": "3:20:24", "remaining_time": "6:27:00"}
|
98 |
+
{"current_steps": 940, "total_steps": 2726, "loss": 0.4576, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.678650647550822e-05, "epoch": 0.69, "percentage": 34.48, "elapsed_time": "3:22:27", "remaining_time": "6:24:40"}
|
99 |
+
{"current_steps": 950, "total_steps": 2726, "loss": 0.446, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.6531645508843636e-05, "epoch": 0.7, "percentage": 34.85, "elapsed_time": "3:24:21", "remaining_time": "6:22:01"}
|
100 |
+
{"current_steps": 960, "total_steps": 2726, "loss": 0.4439, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.6275252980402544e-05, "epoch": 0.7, "percentage": 35.22, "elapsed_time": "3:26:18", "remaining_time": "6:19:31"}
|
101 |
+
{"current_steps": 970, "total_steps": 2726, "loss": 0.476, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.601736294265354e-05, "epoch": 0.71, "percentage": 35.58, "elapsed_time": "3:28:32", "remaining_time": "6:17:31"}
|
102 |
+
{"current_steps": 980, "total_steps": 2726, "loss": 0.4153, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5758009646955115e-05, "epoch": 0.72, "percentage": 35.95, "elapsed_time": "3:30:27", "remaining_time": "6:14:57"}
|
103 |
+
{"current_steps": 990, "total_steps": 2726, "loss": 0.4444, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5497227539006614e-05, "epoch": 0.73, "percentage": 36.32, "elapsed_time": "3:32:34", "remaining_time": "6:12:46"}
|
104 |
+
{"current_steps": 1000, "total_steps": 2726, "loss": 0.4395, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.523505125427341e-05, "epoch": 0.73, "percentage": 36.68, "elapsed_time": "3:34:52", "remaining_time": "6:10:52"}
|
105 |
+
{"current_steps": 1000, "total_steps": 2726, "loss": null, "eval_loss": 0.44357746839523315, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.73, "percentage": 36.68, "elapsed_time": "3:34:52", "remaining_time": "6:10:52"}
|
106 |
+
{"current_steps": 1010, "total_steps": 2726, "loss": 0.4387, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.497151561338678e-05, "epoch": 0.74, "percentage": 37.05, "elapsed_time": "3:38:14", "remaining_time": "6:10:46"}
|
107 |
+
{"current_steps": 1020, "total_steps": 2726, "loss": 0.4559, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.470665561751928e-05, "epoch": 0.75, "percentage": 37.42, "elapsed_time": "3:40:04", "remaining_time": "6:08:04"}
|
108 |
+
{"current_steps": 1030, "total_steps": 2726, "loss": 0.4349, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.444050644373611e-05, "epoch": 0.76, "percentage": 37.78, "elapsed_time": "3:42:11", "remaining_time": "6:05:50"}
|
109 |
+
{"current_steps": 1040, "total_steps": 2726, "loss": 0.4661, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.417310344032309e-05, "epoch": 0.76, "percentage": 38.15, "elapsed_time": "3:44:11", "remaining_time": "6:03:26"}
|
110 |
+
{"current_steps": 1050, "total_steps": 2726, "loss": 0.4945, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.390448212209191e-05, "epoch": 0.77, "percentage": 38.52, "elapsed_time": "3:46:22", "remaining_time": "6:01:20"}
|
111 |
+
{"current_steps": 1060, "total_steps": 2726, "loss": 0.4399, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.3634678165663325e-05, "epoch": 0.78, "percentage": 38.88, "elapsed_time": "3:48:36", "remaining_time": "5:59:18"}
|
112 |
+
{"current_steps": 1070, "total_steps": 2726, "loss": 0.4399, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.336372740472877e-05, "epoch": 0.78, "percentage": 39.25, "elapsed_time": "3:50:31", "remaining_time": "5:56:47"}
|
113 |
+
{"current_steps": 1080, "total_steps": 2726, "loss": 0.4251, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.309166582529114e-05, "epoch": 0.79, "percentage": 39.62, "elapsed_time": "3:52:21", "remaining_time": "5:54:08"}
|
114 |
+
{"current_steps": 1090, "total_steps": 2726, "loss": 0.4385, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.281852956088537e-05, "epoch": 0.8, "percentage": 39.99, "elapsed_time": "3:54:18", "remaining_time": "5:51:40"}
|
115 |
+
{"current_steps": 1100, "total_steps": 2726, "loss": 0.4566, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.254435488777941e-05, "epoch": 0.81, "percentage": 40.35, "elapsed_time": "3:56:22", "remaining_time": "5:49:24"}
|
116 |
+
{"current_steps": 1110, "total_steps": 2726, "loss": 0.4352, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.226917822015623e-05, "epoch": 0.81, "percentage": 40.72, "elapsed_time": "3:58:33", "remaining_time": "5:47:19"}
|
117 |
+
{"current_steps": 1120, "total_steps": 2726, "loss": 0.4617, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.199303610527749e-05, "epoch": 0.82, "percentage": 41.09, "elapsed_time": "4:00:57", "remaining_time": "5:45:30"}
|
118 |
+
{"current_steps": 1130, "total_steps": 2726, "loss": 0.476, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.1715965218629595e-05, "epoch": 0.83, "percentage": 41.45, "elapsed_time": "4:02:46", "remaining_time": "5:42:54"}
|
119 |
+
{"current_steps": 1140, "total_steps": 2726, "loss": 0.4322, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.143800235905268e-05, "epoch": 0.84, "percentage": 41.82, "elapsed_time": "4:04:46", "remaining_time": "5:40:32"}
|
120 |
+
{"current_steps": 1150, "total_steps": 2726, "loss": 0.4736, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.115918444385315e-05, "epoch": 0.84, "percentage": 42.19, "elapsed_time": "4:06:57", "remaining_time": "5:38:26"}
|
121 |
+
{"current_steps": 1160, "total_steps": 2726, "loss": 0.4322, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.0879548503900665e-05, "epoch": 0.85, "percentage": 42.55, "elapsed_time": "4:09:21", "remaining_time": "5:36:37"}
|
122 |
+
{"current_steps": 1170, "total_steps": 2726, "loss": 0.4152, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.0599131678709836e-05, "epoch": 0.86, "percentage": 42.92, "elapsed_time": "4:11:20", "remaining_time": "5:34:16"}
|
123 |
+
{"current_steps": 1180, "total_steps": 2726, "loss": 0.4187, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.031797121150764e-05, "epoch": 0.87, "percentage": 43.29, "elapsed_time": "4:13:18", "remaining_time": "5:31:52"}
|
124 |
+
{"current_steps": 1190, "total_steps": 2726, "loss": 0.4331, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.0036104444286954e-05, "epoch": 0.87, "percentage": 43.65, "elapsed_time": "4:15:22", "remaining_time": "5:29:37"}
|
125 |
+
{"current_steps": 1200, "total_steps": 2726, "loss": 0.45, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9753568812847065e-05, "epoch": 0.88, "percentage": 44.02, "elapsed_time": "4:17:56", "remaining_time": "5:28:00"}
|
126 |
+
{"current_steps": 1200, "total_steps": 2726, "loss": null, "eval_loss": 0.43782830238342285, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.88, "percentage": 44.02, "elapsed_time": "4:17:56", "remaining_time": "5:28:00"}
|
127 |
+
{"current_steps": 1210, "total_steps": 2726, "loss": 0.4457, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9470401841821686e-05, "epoch": 0.89, "percentage": 44.39, "elapsed_time": "4:21:17", "remaining_time": "5:27:22"}
|
128 |
+
{"current_steps": 1220, "total_steps": 2726, "loss": 0.4667, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9186641139695108e-05, "epoch": 0.89, "percentage": 44.75, "elapsed_time": "4:23:21", "remaining_time": "5:25:05"}
|
129 |
+
{"current_steps": 1230, "total_steps": 2726, "loss": 0.4516, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8902324393807333e-05, "epoch": 0.9, "percentage": 45.12, "elapsed_time": "4:25:38", "remaining_time": "5:23:05"}
|
130 |
+
{"current_steps": 1240, "total_steps": 2726, "loss": 0.4695, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.861748936534867e-05, "epoch": 0.91, "percentage": 45.49, "elapsed_time": "4:27:43", "remaining_time": "5:20:50"}
|
131 |
+
{"current_steps": 1250, "total_steps": 2726, "loss": 0.45, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8332173884344477e-05, "epoch": 0.92, "percentage": 45.85, "elapsed_time": "4:30:07", "remaining_time": "5:18:58"}
|
132 |
+
{"current_steps": 1260, "total_steps": 2726, "loss": 0.4246, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8046415844630857e-05, "epoch": 0.92, "percentage": 46.22, "elapsed_time": "4:32:04", "remaining_time": "5:16:33"}
|
133 |
+
{"current_steps": 1270, "total_steps": 2726, "loss": 0.4449, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7760253198821822e-05, "epoch": 0.93, "percentage": 46.59, "elapsed_time": "4:34:02", "remaining_time": "5:14:10"}
|
134 |
+
{"current_steps": 1280, "total_steps": 2726, "loss": 0.4217, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7473723953268687e-05, "epoch": 0.94, "percentage": 46.96, "elapsed_time": "4:36:21", "remaining_time": "5:12:11"}
|
135 |
+
{"current_steps": 1290, "total_steps": 2726, "loss": 0.4495, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7186866163012232e-05, "epoch": 0.95, "percentage": 47.32, "elapsed_time": "4:38:18", "remaining_time": "5:09:48"}
|
136 |
+
{"current_steps": 1300, "total_steps": 2726, "loss": 0.4523, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6899717926728535e-05, "epoch": 0.95, "percentage": 47.69, "elapsed_time": "4:40:31", "remaining_time": "5:07:43"}
|
137 |
+
{"current_steps": 1310, "total_steps": 2726, "loss": 0.4523, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6612317381668915e-05, "epoch": 0.96, "percentage": 48.06, "elapsed_time": "4:42:52", "remaining_time": "5:05:45"}
|
138 |
+
{"current_steps": 1320, "total_steps": 2726, "loss": 0.45, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.632470269859478e-05, "epoch": 0.97, "percentage": 48.42, "elapsed_time": "4:44:43", "remaining_time": "5:03:16"}
|
139 |
+
{"current_steps": 1330, "total_steps": 2726, "loss": 0.4371, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.603691207670803e-05, "epoch": 0.98, "percentage": 48.79, "elapsed_time": "4:46:50", "remaining_time": "5:01:04"}
|
140 |
+
{"current_steps": 1340, "total_steps": 2726, "loss": 0.4221, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5748983738577653e-05, "epoch": 0.98, "percentage": 49.16, "elapsed_time": "4:49:12", "remaining_time": "4:59:08"}
|
141 |
+
{"current_steps": 1350, "total_steps": 2726, "loss": 0.4565, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5460955925063268e-05, "epoch": 0.99, "percentage": 49.52, "elapsed_time": "4:51:37", "remaining_time": "4:57:14"}
|
142 |
+
{"current_steps": 1360, "total_steps": 2726, "loss": 0.3892, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5172866890236203e-05, "epoch": 1.0, "percentage": 49.89, "elapsed_time": "4:53:48", "remaining_time": "4:55:05"}
|
143 |
+
{"current_steps": 1370, "total_steps": 2726, "loss": 0.3973, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.48847548962988e-05, "epoch": 1.0, "percentage": 50.26, "elapsed_time": "4:56:07", "remaining_time": "4:53:06"}
|
144 |
+
{"current_steps": 1380, "total_steps": 2726, "loss": 0.4151, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4596658208502713e-05, "epoch": 1.01, "percentage": 50.62, "elapsed_time": "4:58:09", "remaining_time": "4:50:48"}
|
145 |
+
{"current_steps": 1390, "total_steps": 2726, "loss": 0.3839, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4308615090066735e-05, "epoch": 1.02, "percentage": 50.99, "elapsed_time": "5:00:25", "remaining_time": "4:48:44"}
|
146 |
+
{"current_steps": 1400, "total_steps": 2726, "loss": 0.4062, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4020663797094864e-05, "epoch": 1.03, "percentage": 51.36, "elapsed_time": "5:02:30", "remaining_time": "4:46:31"}
|
147 |
+
{"current_steps": 1400, "total_steps": 2726, "loss": null, "eval_loss": 0.43284282088279724, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.03, "percentage": 51.36, "elapsed_time": "5:02:30", "remaining_time": "4:46:31"}
|
148 |
+
{"current_steps": 1410, "total_steps": 2726, "loss": 0.4003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.373284257349544e-05, "epoch": 1.03, "percentage": 51.72, "elapsed_time": "5:05:58", "remaining_time": "4:45:34"}
|
149 |
+
{"current_steps": 1420, "total_steps": 2726, "loss": 0.4447, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3445189645901806e-05, "epoch": 1.04, "percentage": 52.09, "elapsed_time": "5:08:26", "remaining_time": "4:43:40"}
|
150 |
+
{"current_steps": 1430, "total_steps": 2726, "loss": 0.4565, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3157743218595247e-05, "epoch": 1.05, "percentage": 52.46, "elapsed_time": "5:10:20", "remaining_time": "4:41:15"}
|
151 |
+
{"current_steps": 1440, "total_steps": 2726, "loss": 0.4265, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.287054146843097e-05, "epoch": 1.06, "percentage": 52.82, "elapsed_time": "5:12:13", "remaining_time": "4:38:50"}
|
152 |
+
{"current_steps": 1450, "total_steps": 2726, "loss": 0.4056, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2583622539767668e-05, "epoch": 1.06, "percentage": 53.19, "elapsed_time": "5:14:21", "remaining_time": "4:36:38"}
|
153 |
+
{"current_steps": 1460, "total_steps": 2726, "loss": 0.4074, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2297024539401463e-05, "epoch": 1.07, "percentage": 53.56, "elapsed_time": "5:16:26", "remaining_time": "4:34:23"}
|
154 |
+
{"current_steps": 1470, "total_steps": 2726, "loss": 0.4281, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2010785531504716e-05, "epoch": 1.08, "percentage": 53.93, "elapsed_time": "5:18:46", "remaining_time": "4:32:22"}
|
155 |
+
{"current_steps": 1480, "total_steps": 2726, "loss": 0.4663, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.172494353257066e-05, "epoch": 1.09, "percentage": 54.29, "elapsed_time": "5:21:04", "remaining_time": "4:30:18"}
|
156 |
+
{"current_steps": 1490, "total_steps": 2726, "loss": 0.4281, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.1439536506364274e-05, "epoch": 1.09, "percentage": 54.66, "elapsed_time": "5:23:36", "remaining_time": "4:28:26"}
|
157 |
+
{"current_steps": 1500, "total_steps": 2726, "loss": 0.4111, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.1154602358880122e-05, "epoch": 1.1, "percentage": 55.03, "elapsed_time": "5:25:52", "remaining_time": "4:26:20"}
|
158 |
+
{"current_steps": 1510, "total_steps": 2726, "loss": 0.4187, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0870178933307948e-05, "epoch": 1.11, "percentage": 55.39, "elapsed_time": "5:27:49", "remaining_time": "4:23:59"}
|
159 |
+
{"current_steps": 1520, "total_steps": 2726, "loss": 0.3964, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0586304005006585e-05, "epoch": 1.11, "percentage": 55.76, "elapsed_time": "5:30:05", "remaining_time": "4:21:54"}
|
160 |
+
{"current_steps": 1530, "total_steps": 2726, "loss": 0.4331, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.030301527648684e-05, "epoch": 1.12, "percentage": 56.13, "elapsed_time": "5:32:15", "remaining_time": "4:19:43"}
|
161 |
+
{"current_steps": 1540, "total_steps": 2726, "loss": 0.4432, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0020350372404102e-05, "epoch": 1.13, "percentage": 56.49, "elapsed_time": "5:34:15", "remaining_time": "4:17:25"}
|
162 |
+
{"current_steps": 1550, "total_steps": 2726, "loss": 0.4056, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9738346834561254e-05, "epoch": 1.14, "percentage": 56.86, "elapsed_time": "5:36:18", "remaining_time": "4:15:09"}
|
163 |
+
{"current_steps": 1560, "total_steps": 2726, "loss": 0.4354, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.945704211692262e-05, "epoch": 1.14, "percentage": 57.23, "elapsed_time": "5:38:26", "remaining_time": "4:12:57"}
|
164 |
+
{"current_steps": 1570, "total_steps": 2726, "loss": 0.4309, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9176473580639538e-05, "epoch": 1.15, "percentage": 57.59, "elapsed_time": "5:40:42", "remaining_time": "4:10:52"}
|
165 |
+
{"current_steps": 1580, "total_steps": 2726, "loss": 0.4058, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8896678489088304e-05, "epoch": 1.16, "percentage": 57.96, "elapsed_time": "5:42:44", "remaining_time": "4:08:35"}
|
166 |
+
{"current_steps": 1590, "total_steps": 2726, "loss": 0.4319, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8617694002921064e-05, "epoch": 1.17, "percentage": 58.33, "elapsed_time": "5:44:54", "remaining_time": "4:06:25"}
|
167 |
+
{"current_steps": 1600, "total_steps": 2726, "loss": 0.4267, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8339557175130383e-05, "epoch": 1.17, "percentage": 58.69, "elapsed_time": "5:46:47", "remaining_time": "4:04:03"}
|
168 |
+
{"current_steps": 1600, "total_steps": 2726, "loss": null, "eval_loss": 0.42894992232322693, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.17, "percentage": 58.69, "elapsed_time": "5:46:47", "remaining_time": "4:04:03"}
|
169 |
+
{"current_steps": 1610, "total_steps": 2726, "loss": 0.3921, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8062304946128073e-05, "epoch": 1.18, "percentage": 59.06, "elapsed_time": "5:50:11", "remaining_time": "4:02:44"}
|
170 |
+
{"current_steps": 1620, "total_steps": 2726, "loss": 0.4206, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7785974138839018e-05, "epoch": 1.19, "percentage": 59.43, "elapsed_time": "5:52:10", "remaining_time": "4:00:26"}
|
171 |
+
{"current_steps": 1630, "total_steps": 2726, "loss": 0.4356, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7510601453810594e-05, "epoch": 1.2, "percentage": 59.79, "elapsed_time": "5:54:17", "remaining_time": "3:58:13"}
|
172 |
+
{"current_steps": 1640, "total_steps": 2726, "loss": 0.4167, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.723622346433828e-05, "epoch": 1.2, "percentage": 60.16, "elapsed_time": "5:56:29", "remaining_time": "3:56:03"}
|
173 |
+
{"current_steps": 1650, "total_steps": 2726, "loss": 0.4233, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6962876611608262e-05, "epoch": 1.21, "percentage": 60.53, "elapsed_time": "5:58:26", "remaining_time": "3:53:45"}
|
174 |
+
{"current_steps": 1660, "total_steps": 2726, "loss": 0.4176, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6690597199857523e-05, "epoch": 1.22, "percentage": 60.9, "elapsed_time": "6:00:33", "remaining_time": "3:51:32"}
|
175 |
+
{"current_steps": 1670, "total_steps": 2726, "loss": 0.4241, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6419421391552142e-05, "epoch": 1.22, "percentage": 61.26, "elapsed_time": "6:02:41", "remaining_time": "3:49:20"}
|
176 |
+
{"current_steps": 1680, "total_steps": 2726, "loss": 0.4524, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6149385202584423e-05, "epoch": 1.23, "percentage": 61.63, "elapsed_time": "6:04:45", "remaining_time": "3:47:06"}
|
177 |
+
{"current_steps": 1690, "total_steps": 2726, "loss": 0.4647, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5880524497489474e-05, "epoch": 1.24, "percentage": 62.0, "elapsed_time": "6:07:03", "remaining_time": "3:45:01"}
|
178 |
+
{"current_steps": 1700, "total_steps": 2726, "loss": 0.4036, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5612874984681923e-05, "epoch": 1.25, "percentage": 62.36, "elapsed_time": "6:09:03", "remaining_time": "3:42:44"}
|
179 |
+
{"current_steps": 1710, "total_steps": 2726, "loss": 0.4148, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.534647221171334e-05, "epoch": 1.25, "percentage": 62.73, "elapsed_time": "6:11:22", "remaining_time": "3:40:38"}
|
180 |
+
{"current_steps": 1720, "total_steps": 2726, "loss": 0.408, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5081351560551021e-05, "epoch": 1.26, "percentage": 63.1, "elapsed_time": "6:13:19", "remaining_time": "3:38:21"}
|
181 |
+
{"current_steps": 1730, "total_steps": 2726, "loss": 0.457, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4817548242878759e-05, "epoch": 1.27, "percentage": 63.46, "elapsed_time": "6:15:23", "remaining_time": "3:36:07"}
|
182 |
+
{"current_steps": 1740, "total_steps": 2726, "loss": 0.4193, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.45550972954203e-05, "epoch": 1.28, "percentage": 63.83, "elapsed_time": "6:17:21", "remaining_time": "3:33:50"}
|
183 |
+
{"current_steps": 1750, "total_steps": 2726, "loss": 0.4149, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4294033575285914e-05, "epoch": 1.28, "percentage": 64.2, "elapsed_time": "6:19:35", "remaining_time": "3:31:42"}
|
184 |
+
{"current_steps": 1760, "total_steps": 2726, "loss": 0.4032, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4034391755342972e-05, "epoch": 1.29, "percentage": 64.56, "elapsed_time": "6:21:52", "remaining_time": "3:29:35"}
|
185 |
+
{"current_steps": 1770, "total_steps": 2726, "loss": 0.4078, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3776206319610823e-05, "epoch": 1.3, "percentage": 64.93, "elapsed_time": "6:23:56", "remaining_time": "3:27:22"}
|
186 |
+
{"current_steps": 1780, "total_steps": 2726, "loss": 0.4123, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3519511558680892e-05, "epoch": 1.31, "percentage": 65.3, "elapsed_time": "6:26:23", "remaining_time": "3:25:21"}
|
187 |
+
{"current_steps": 1790, "total_steps": 2726, "loss": 0.4089, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3264341565162422e-05, "epoch": 1.31, "percentage": 65.66, "elapsed_time": "6:28:17", "remaining_time": "3:23:02"}
|
188 |
+
{"current_steps": 1800, "total_steps": 2726, "loss": 0.383, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3010730229154445e-05, "epoch": 1.32, "percentage": 66.03, "elapsed_time": "6:30:17", "remaining_time": "3:20:47"}
|
189 |
+
{"current_steps": 1800, "total_steps": 2726, "loss": null, "eval_loss": 0.4250344932079315, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.32, "percentage": 66.03, "elapsed_time": "6:30:17", "remaining_time": "3:20:47"}
|
190 |
+
{"current_steps": 1810, "total_steps": 2726, "loss": 0.3936, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2758711233744783e-05, "epoch": 1.33, "percentage": 66.4, "elapsed_time": "6:33:42", "remaining_time": "3:19:14"}
|
191 |
+
{"current_steps": 1820, "total_steps": 2726, "loss": 0.4127, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2508318050536421e-05, "epoch": 1.33, "percentage": 66.76, "elapsed_time": "6:35:33", "remaining_time": "3:16:54"}
|
192 |
+
{"current_steps": 1830, "total_steps": 2726, "loss": 0.4015, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2259583935202062e-05, "epoch": 1.34, "percentage": 67.13, "elapsed_time": "6:37:28", "remaining_time": "3:14:36"}
|
193 |
+
{"current_steps": 1840, "total_steps": 2726, "loss": 0.4203, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2012541923067244e-05, "epoch": 1.35, "percentage": 67.5, "elapsed_time": "6:39:29", "remaining_time": "3:12:21"}
|
194 |
+
{"current_steps": 1850, "total_steps": 2726, "loss": 0.4367, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.176722482472286e-05, "epoch": 1.36, "percentage": 67.87, "elapsed_time": "6:41:25", "remaining_time": "3:10:04"}
|
195 |
+
{"current_steps": 1860, "total_steps": 2726, "loss": 0.4233, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1523665221667398e-05, "epoch": 1.36, "percentage": 68.23, "elapsed_time": "6:43:12", "remaining_time": "3:07:44"}
|
196 |
+
{"current_steps": 1870, "total_steps": 2726, "loss": 0.4405, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1281895461979732e-05, "epoch": 1.37, "percentage": 68.6, "elapsed_time": "6:45:16", "remaining_time": "3:05:31"}
|
197 |
+
{"current_steps": 1880, "total_steps": 2726, "loss": 0.4379, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.104194765602281e-05, "epoch": 1.38, "percentage": 68.97, "elapsed_time": "6:47:24", "remaining_time": "3:03:20"}
|
198 |
+
{"current_steps": 1890, "total_steps": 2726, "loss": 0.4146, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0803853672178946e-05, "epoch": 1.39, "percentage": 69.33, "elapsed_time": "6:49:44", "remaining_time": "3:01:14"}
|
199 |
+
{"current_steps": 1900, "total_steps": 2726, "loss": 0.4438, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0567645132617316e-05, "epoch": 1.39, "percentage": 69.7, "elapsed_time": "6:51:53", "remaining_time": "2:59:03"}
|
200 |
+
{"current_steps": 1910, "total_steps": 2726, "loss": 0.3915, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0333353409094015e-05, "epoch": 1.4, "percentage": 70.07, "elapsed_time": "6:54:02", "remaining_time": "2:56:53"}
|
201 |
+
{"current_steps": 1920, "total_steps": 2726, "loss": 0.4063, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0101009618785528e-05, "epoch": 1.41, "percentage": 70.43, "elapsed_time": "6:56:21", "remaining_time": "2:54:47"}
|
202 |
+
{"current_steps": 1930, "total_steps": 2726, "loss": 0.3974, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.870644620155877e-06, "epoch": 1.42, "percentage": 70.8, "elapsed_time": "6:58:32", "remaining_time": "2:52:37"}
|
203 |
+
{"current_steps": 1940, "total_steps": 2726, "loss": 0.4015, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.642289008858244e-06, "epoch": 1.42, "percentage": 71.17, "elapsed_time": "7:00:49", "remaining_time": "2:50:30"}
|
204 |
+
{"current_steps": 1950, "total_steps": 2726, "loss": 0.4264, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.41597311367142e-06, "epoch": 1.43, "percentage": 71.53, "elapsed_time": "7:02:59", "remaining_time": "2:48:19"}
|
205 |
+
{"current_steps": 1960, "total_steps": 2726, "loss": 0.4334, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.191726992471725e-06, "epoch": 1.44, "percentage": 71.9, "elapsed_time": "7:05:22", "remaining_time": "2:46:14"}
|
206 |
+
{"current_steps": 1970, "total_steps": 2726, "loss": 0.4197, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.969580428240903e-06, "epoch": 1.44, "percentage": 72.27, "elapsed_time": "7:07:11", "remaining_time": "2:43:56"}
|
207 |
+
{"current_steps": 1980, "total_steps": 2726, "loss": 0.422, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.74956292511056e-06, "epoch": 1.45, "percentage": 72.63, "elapsed_time": "7:09:23", "remaining_time": "2:41:46"}
|
208 |
+
{"current_steps": 1990, "total_steps": 2726, "loss": 0.4077, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.531703704443575e-06, "epoch": 1.46, "percentage": 73.0, "elapsed_time": "7:11:33", "remaining_time": "2:39:36"}
|
209 |
+
{"current_steps": 2000, "total_steps": 2726, "loss": 0.4334, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.316031700953086e-06, "epoch": 1.47, "percentage": 73.37, "elapsed_time": "7:13:58", "remaining_time": "2:37:31"}
|
210 |
+
{"current_steps": 2000, "total_steps": 2726, "loss": null, "eval_loss": 0.4206145107746124, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.47, "percentage": 73.37, "elapsed_time": "7:13:58", "remaining_time": "2:37:31"}
|
211 |
+
{"current_steps": 2010, "total_steps": 2726, "loss": 0.4171, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.102575558859612e-06, "epoch": 1.47, "percentage": 73.73, "elapsed_time": "7:17:28", "remaining_time": "2:35:50"}
|
212 |
+
{"current_steps": 2020, "total_steps": 2726, "loss": 0.3957, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.891363628086671e-06, "epoch": 1.48, "percentage": 74.1, "elapsed_time": "7:19:27", "remaining_time": "2:33:35"}
|
213 |
+
{"current_steps": 2030, "total_steps": 2726, "loss": 0.4174, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.682423960495517e-06, "epoch": 1.49, "percentage": 74.47, "elapsed_time": "7:21:25", "remaining_time": "2:31:20"}
|
214 |
+
{"current_steps": 2040, "total_steps": 2726, "loss": 0.4187, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.475784306159478e-06, "epoch": 1.5, "percentage": 74.83, "elapsed_time": "7:23:33", "remaining_time": "2:29:09"}
|
215 |
+
{"current_steps": 2050, "total_steps": 2726, "loss": 0.3775, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.271472109678379e-06, "epoch": 1.5, "percentage": 75.2, "elapsed_time": "7:25:41", "remaining_time": "2:26:58"}
|
216 |
+
{"current_steps": 2060, "total_steps": 2726, "loss": 0.4019, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.0695145065334585e-06, "epoch": 1.51, "percentage": 75.57, "elapsed_time": "7:27:36", "remaining_time": "2:24:42"}
|
217 |
+
{"current_steps": 2070, "total_steps": 2726, "loss": 0.4143, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.869938319483471e-06, "epoch": 1.52, "percentage": 75.94, "elapsed_time": "7:29:45", "remaining_time": "2:22:31"}
|
218 |
+
{"current_steps": 2080, "total_steps": 2726, "loss": 0.3853, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.67277005500222e-06, "epoch": 1.53, "percentage": 76.3, "elapsed_time": "7:31:46", "remaining_time": "2:20:18"}
|
219 |
+
{"current_steps": 2090, "total_steps": 2726, "loss": 0.4403, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.478035899758139e-06, "epoch": 1.53, "percentage": 76.67, "elapsed_time": "7:33:54", "remaining_time": "2:18:07"}
|
220 |
+
{"current_steps": 2100, "total_steps": 2726, "loss": 0.3888, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.285761717136335e-06, "epoch": 1.54, "percentage": 77.04, "elapsed_time": "7:36:12", "remaining_time": "2:15:59"}
|
221 |
+
{"current_steps": 2110, "total_steps": 2726, "loss": 0.4123, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.095973043803577e-06, "epoch": 1.55, "percentage": 77.4, "elapsed_time": "7:38:32", "remaining_time": "2:13:52"}
|
222 |
+
{"current_steps": 2120, "total_steps": 2726, "loss": 0.4035, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.908695086316701e-06, "epoch": 1.55, "percentage": 77.77, "elapsed_time": "7:40:48", "remaining_time": "2:11:43"}
|
223 |
+
{"current_steps": 2130, "total_steps": 2726, "loss": 0.4219, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.723952717774763e-06, "epoch": 1.56, "percentage": 78.14, "elapsed_time": "7:42:48", "remaining_time": "2:09:30"}
|
224 |
+
{"current_steps": 2140, "total_steps": 2726, "loss": 0.4209, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.54177047451562e-06, "epoch": 1.57, "percentage": 78.5, "elapsed_time": "7:44:53", "remaining_time": "2:07:18"}
|
225 |
+
{"current_steps": 2150, "total_steps": 2726, "loss": 0.4286, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.362172552857128e-06, "epoch": 1.58, "percentage": 78.87, "elapsed_time": "7:47:02", "remaining_time": "2:05:07"}
|
226 |
+
{"current_steps": 2160, "total_steps": 2726, "loss": 0.4134, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.18518280588354e-06, "epoch": 1.58, "percentage": 79.24, "elapsed_time": "7:49:04", "remaining_time": "2:02:54"}
|
227 |
+
{"current_steps": 2170, "total_steps": 2726, "loss": 0.4005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.010824740277501e-06, "epoch": 1.59, "percentage": 79.6, "elapsed_time": "7:51:12", "remaining_time": "2:00:44"}
|
228 |
+
{"current_steps": 2180, "total_steps": 2726, "loss": 0.3973, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.83912151319802e-06, "epoch": 1.6, "percentage": 79.97, "elapsed_time": "7:53:12", "remaining_time": "1:58:31"}
|
229 |
+
{"current_steps": 2190, "total_steps": 2726, "loss": 0.3959, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.6700959292048875e-06, "epoch": 1.61, "percentage": 80.34, "elapsed_time": "7:55:29", "remaining_time": "1:56:22"}
|
230 |
+
{"current_steps": 2200, "total_steps": 2726, "loss": 0.4017, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.503770437229918e-06, "epoch": 1.61, "percentage": 80.7, "elapsed_time": "7:57:38", "remaining_time": "1:54:12"}
|
231 |
+
{"current_steps": 2200, "total_steps": 2726, "loss": null, "eval_loss": 0.41970890760421753, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.61, "percentage": 80.7, "elapsed_time": "7:57:38", "remaining_time": "1:54:12"}
|
232 |
+
{"current_steps": 2210, "total_steps": 2726, "loss": 0.4013, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.340167127595407e-06, "epoch": 1.62, "percentage": 81.07, "elapsed_time": "8:00:51", "remaining_time": "1:52:16"}
|
233 |
+
{"current_steps": 2220, "total_steps": 2726, "loss": 0.4069, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.179307729080256e-06, "epoch": 1.63, "percentage": 81.44, "elapsed_time": "8:03:00", "remaining_time": "1:50:05"}
|
234 |
+
{"current_steps": 2230, "total_steps": 2726, "loss": 0.3857, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.021213606034064e-06, "epoch": 1.64, "percentage": 81.8, "elapsed_time": "8:05:05", "remaining_time": "1:47:53"}
|
235 |
+
{"current_steps": 2240, "total_steps": 2726, "loss": 0.4262, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.8659057555396645e-06, "epoch": 1.64, "percentage": 82.17, "elapsed_time": "8:07:03", "remaining_time": "1:45:40"}
|
236 |
+
{"current_steps": 2250, "total_steps": 2726, "loss": 0.3953, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.713404804624418e-06, "epoch": 1.65, "percentage": 82.54, "elapsed_time": "8:09:07", "remaining_time": "1:43:28"}
|
237 |
+
{"current_steps": 2260, "total_steps": 2726, "loss": 0.4231, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5637310075206544e-06, "epoch": 1.66, "percentage": 82.91, "elapsed_time": "8:11:23", "remaining_time": "1:41:19"}
|
238 |
+
{"current_steps": 2270, "total_steps": 2726, "loss": 0.407, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.416904242975635e-06, "epoch": 1.66, "percentage": 83.27, "elapsed_time": "8:13:23", "remaining_time": "1:39:06"}
|
239 |
+
{"current_steps": 2280, "total_steps": 2726, "loss": 0.4254, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.2729440116113843e-06, "epoch": 1.67, "percentage": 83.64, "elapsed_time": "8:15:40", "remaining_time": "1:36:57"}
|
240 |
+
{"current_steps": 2290, "total_steps": 2726, "loss": 0.4054, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.131869433334725e-06, "epoch": 1.68, "percentage": 84.01, "elapsed_time": "8:17:43", "remaining_time": "1:34:45"}
|
241 |
+
{"current_steps": 2300, "total_steps": 2726, "loss": 0.3801, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9936992447979068e-06, "epoch": 1.69, "percentage": 84.37, "elapsed_time": "8:20:05", "remaining_time": "1:32:37"}
|
242 |
+
{"current_steps": 2310, "total_steps": 2726, "loss": 0.4335, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8584517969101054e-06, "epoch": 1.69, "percentage": 84.74, "elapsed_time": "8:21:46", "remaining_time": "1:30:21"}
|
243 |
+
{"current_steps": 2320, "total_steps": 2726, "loss": 0.412, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7261450524001807e-06, "epoch": 1.7, "percentage": 85.11, "elapsed_time": "8:23:37", "remaining_time": "1:28:08"}
|
244 |
+
{"current_steps": 2330, "total_steps": 2726, "loss": 0.4456, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.596796583430969e-06, "epoch": 1.71, "percentage": 85.47, "elapsed_time": "8:25:39", "remaining_time": "1:25:56"}
|
245 |
+
{"current_steps": 2340, "total_steps": 2726, "loss": 0.3972, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.470423569265462e-06, "epoch": 1.72, "percentage": 85.84, "elapsed_time": "8:27:30", "remaining_time": "1:23:43"}
|
246 |
+
{"current_steps": 2350, "total_steps": 2726, "loss": 0.3935, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.34704279398516e-06, "epoch": 1.72, "percentage": 86.21, "elapsed_time": "8:29:12", "remaining_time": "1:21:28"}
|
247 |
+
{"current_steps": 2360, "total_steps": 2726, "loss": 0.3974, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2266706442609226e-06, "epoch": 1.73, "percentage": 86.57, "elapsed_time": "8:31:13", "remaining_time": "1:19:17"}
|
248 |
+
{"current_steps": 2370, "total_steps": 2726, "loss": 0.4157, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.109323107176578e-06, "epoch": 1.74, "percentage": 86.94, "elapsed_time": "8:33:31", "remaining_time": "1:17:08"}
|
249 |
+
{"current_steps": 2380, "total_steps": 2726, "loss": 0.4379, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9950157681056318e-06, "epoch": 1.75, "percentage": 87.31, "elapsed_time": "8:35:40", "remaining_time": "1:14:58"}
|
250 |
+
{"current_steps": 2390, "total_steps": 2726, "loss": 0.4035, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8837638086413063e-06, "epoch": 1.75, "percentage": 87.67, "elapsed_time": "8:37:35", "remaining_time": "1:12:46"}
|
251 |
+
{"current_steps": 2400, "total_steps": 2726, "loss": 0.4455, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7755820045802145e-06, "epoch": 1.76, "percentage": 88.04, "elapsed_time": "8:39:45", "remaining_time": "1:10:35"}
|
252 |
+
{"current_steps": 2400, "total_steps": 2726, "loss": null, "eval_loss": 0.41885045170783997, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.76, "percentage": 88.04, "elapsed_time": "8:39:45", "remaining_time": "1:10:35"}
|
253 |
+
{"current_steps": 2410, "total_steps": 2726, "loss": 0.4532, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6704847239599364e-06, "epoch": 1.77, "percentage": 88.41, "elapsed_time": "8:43:09", "remaining_time": "1:08:35"}
|
254 |
+
{"current_steps": 2420, "total_steps": 2726, "loss": 0.4213, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5684859251507394e-06, "epoch": 1.77, "percentage": 88.77, "elapsed_time": "8:45:22", "remaining_time": "1:06:25"}
|
255 |
+
{"current_steps": 2430, "total_steps": 2726, "loss": 0.3873, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4695991550017164e-06, "epoch": 1.78, "percentage": 89.14, "elapsed_time": "8:47:29", "remaining_time": "1:04:15"}
|
256 |
+
{"current_steps": 2440, "total_steps": 2726, "loss": 0.4163, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.373837547041576e-06, "epoch": 1.79, "percentage": 89.51, "elapsed_time": "8:49:41", "remaining_time": "1:02:05"}
|
257 |
+
{"current_steps": 2450, "total_steps": 2726, "loss": 0.3946, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2812138197343392e-06, "epoch": 1.8, "percentage": 89.88, "elapsed_time": "8:51:48", "remaining_time": "0:59:54"}
|
258 |
+
{"current_steps": 2460, "total_steps": 2726, "loss": 0.41, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1917402747901152e-06, "epoch": 1.8, "percentage": 90.24, "elapsed_time": "8:53:44", "remaining_time": "0:57:42"}
|
259 |
+
{"current_steps": 2470, "total_steps": 2726, "loss": 0.4126, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.105428795531327e-06, "epoch": 1.81, "percentage": 90.61, "elapsed_time": "8:55:59", "remaining_time": "0:55:33"}
|
260 |
+
{"current_steps": 2480, "total_steps": 2726, "loss": 0.4505, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0222908453143804e-06, "epoch": 1.82, "percentage": 90.98, "elapsed_time": "8:58:09", "remaining_time": "0:53:22"}
|
261 |
+
{"current_steps": 2490, "total_steps": 2726, "loss": 0.4303, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.423374660072065e-07, "epoch": 1.83, "percentage": 91.34, "elapsed_time": "9:00:00", "remaining_time": "0:51:10"}
|
262 |
+
{"current_steps": 2500, "total_steps": 2726, "loss": 0.4179, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.655792765227405e-07, "epoch": 1.83, "percentage": 91.71, "elapsed_time": "9:01:58", "remaining_time": "0:48:59"}
|
263 |
+
{"current_steps": 2510, "total_steps": 2726, "loss": 0.4376, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.920264714085828e-07, "epoch": 1.84, "percentage": 92.08, "elapsed_time": "9:04:05", "remaining_time": "0:46:49"}
|
264 |
+
{"current_steps": 2520, "total_steps": 2726, "loss": 0.4069, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.216888194930272e-07, "epoch": 1.85, "percentage": 92.44, "elapsed_time": "9:06:08", "remaining_time": "0:44:38"}
|
265 |
+
{"current_steps": 2530, "total_steps": 2726, "loss": 0.3887, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.545756625876031e-07, "epoch": 1.86, "percentage": 92.81, "elapsed_time": "9:08:12", "remaining_time": "0:42:28"}
|
266 |
+
{"current_steps": 2540, "total_steps": 2726, "loss": 0.3972, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.906959142463947e-07, "epoch": 1.86, "percentage": 93.18, "elapsed_time": "9:10:08", "remaining_time": "0:40:17"}
|
267 |
+
{"current_steps": 2550, "total_steps": 2726, "loss": 0.4078, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.300580585821696e-07, "epoch": 1.87, "percentage": 93.54, "elapsed_time": "9:12:17", "remaining_time": "0:38:07"}
|
268 |
+
{"current_steps": 2560, "total_steps": 2726, "loss": 0.4467, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7267014913956463e-07, "epoch": 1.88, "percentage": 93.91, "elapsed_time": "9:14:11", "remaining_time": "0:35:56"}
|
269 |
+
{"current_steps": 2570, "total_steps": 2726, "loss": 0.4567, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.1853980782549097e-07, "epoch": 1.88, "percentage": 94.28, "elapsed_time": "9:16:09", "remaining_time": "0:33:45"}
|
270 |
+
{"current_steps": 2580, "total_steps": 2726, "loss": 0.4494, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.6767422389682173e-07, "epoch": 1.89, "percentage": 94.64, "elapsed_time": "9:18:36", "remaining_time": "0:31:36"}
|
271 |
+
{"current_steps": 2590, "total_steps": 2726, "loss": 0.4344, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.2008015300555306e-07, "epoch": 1.9, "percentage": 95.01, "elapsed_time": "9:20:48", "remaining_time": "0:29:26"}
|
272 |
+
{"current_steps": 2600, "total_steps": 2726, "loss": 0.4101, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.757639163015774e-07, "epoch": 1.91, "percentage": 95.38, "elapsed_time": "9:22:52", "remaining_time": "0:27:16"}
|
273 |
+
{"current_steps": 2600, "total_steps": 2726, "loss": null, "eval_loss": 0.41886425018310547, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.91, "percentage": 95.38, "elapsed_time": "9:22:52", "remaining_time": "0:27:16"}
|
274 |
+
{"current_steps": 2610, "total_steps": 2726, "loss": 0.4058, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.347313995931466e-07, "epoch": 1.91, "percentage": 95.74, "elapsed_time": "9:26:02", "remaining_time": "0:25:09"}
|
275 |
+
{"current_steps": 2620, "total_steps": 2726, "loss": 0.414, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9698805256513908e-07, "epoch": 1.92, "percentage": 96.11, "elapsed_time": "9:28:14", "remaining_time": "0:22:59"}
|
276 |
+
{"current_steps": 2630, "total_steps": 2726, "loss": 0.4254, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6253888805527474e-07, "epoch": 1.93, "percentage": 96.48, "elapsed_time": "9:30:26", "remaining_time": "0:20:49"}
|
277 |
+
{"current_steps": 2640, "total_steps": 2726, "loss": 0.4017, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3138848138835313e-07, "epoch": 1.94, "percentage": 96.85, "elapsed_time": "9:32:34", "remaining_time": "0:18:39"}
|
278 |
+
{"current_steps": 2650, "total_steps": 2726, "loss": 0.4258, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0354096976856186e-07, "epoch": 1.94, "percentage": 97.21, "elapsed_time": "9:34:48", "remaining_time": "0:16:29"}
|
279 |
+
{"current_steps": 2660, "total_steps": 2726, "loss": 0.4098, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.900005173002712e-08, "epoch": 1.95, "percentage": 97.58, "elapsed_time": "9:37:06", "remaining_time": "0:14:19"}
|
280 |
+
{"current_steps": 2670, "total_steps": 2726, "loss": 0.42, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.776898664557051e-08, "epoch": 1.96, "percentage": 97.95, "elapsed_time": "9:39:14", "remaining_time": "0:12:08"}
|
281 |
+
{"current_steps": 2680, "total_steps": 2726, "loss": 0.3886, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.985059429383875e-08, "epoch": 1.97, "percentage": 98.31, "elapsed_time": "9:41:31", "remaining_time": "0:09:58"}
|
282 |
+
{"current_steps": 2690, "total_steps": 2726, "loss": 0.4276, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5247254484794813e-08, "epoch": 1.97, "percentage": 98.68, "elapsed_time": "9:43:48", "remaining_time": "0:07:48"}
|
283 |
+
{"current_steps": 2700, "total_steps": 2726, "loss": 0.4006, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3960906743634706e-08, "epoch": 1.98, "percentage": 99.05, "elapsed_time": "9:45:40", "remaining_time": "0:05:38"}
|
284 |
+
{"current_steps": 2710, "total_steps": 2726, "loss": 0.4243, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.993050053204607e-09, "epoch": 1.99, "percentage": 99.41, "elapsed_time": "9:47:47", "remaining_time": "0:03:28"}
|
285 |
+
{"current_steps": 2720, "total_steps": 2726, "loss": 0.4439, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3447426549129117e-09, "epoch": 1.99, "percentage": 99.78, "elapsed_time": "9:50:02", "remaining_time": "0:01:18"}
|
286 |
+
{"current_steps": 2726, "total_steps": 2726, "loss": null, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.0, "percentage": 100.0, "elapsed_time": "9:51:16", "remaining_time": "0:00:00"}
|
287 |
+
{"current_steps": 111, "total_steps": 111, "loss": null, "eval_loss": 0.41885045170783997, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.0, "percentage": 100.0, "elapsed_time": "9:52:25", "remaining_time": "0:00:00"}
|
{Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/trainer_state.json
RENAMED
@@ -1,1207 +1,1761 @@
|
|
1 |
{
|
2 |
-
"best_metric":
|
3 |
-
"best_model_checkpoint":
|
4 |
-
"epoch":
|
5 |
-
"global_step":
|
6 |
"is_hyper_param_search": false,
|
7 |
"is_local_process_zero": true,
|
8 |
"is_world_process_zero": true,
|
9 |
"log_history": [
|
10 |
{
|
11 |
"epoch": 0.01,
|
12 |
-
"learning_rate": 4.
|
13 |
-
"loss":
|
14 |
"step": 10
|
15 |
},
|
16 |
{
|
17 |
-
"epoch": 0.
|
18 |
-
"learning_rate": 4.
|
19 |
-
"loss":
|
20 |
"step": 20
|
21 |
},
|
22 |
{
|
23 |
-
"epoch": 0.
|
24 |
-
"learning_rate": 4.
|
25 |
-
"loss":
|
26 |
"step": 30
|
27 |
},
|
28 |
{
|
29 |
-
"epoch": 0.
|
30 |
-
"learning_rate": 4.
|
31 |
-
"loss": 0.
|
32 |
"step": 40
|
33 |
},
|
34 |
{
|
35 |
-
"epoch": 0.
|
36 |
-
"learning_rate": 4.
|
37 |
-
"loss": 0.
|
38 |
"step": 50
|
39 |
},
|
40 |
{
|
41 |
-
"epoch": 0.
|
42 |
-
"learning_rate": 4.
|
43 |
-
"loss": 0.
|
44 |
"step": 60
|
45 |
},
|
46 |
{
|
47 |
-
"epoch": 0.
|
48 |
-
"learning_rate": 4.
|
49 |
-
"loss": 0.
|
50 |
"step": 70
|
51 |
},
|
52 |
{
|
53 |
-
"epoch": 0.
|
54 |
-
"learning_rate": 4.
|
55 |
-
"loss": 0.
|
56 |
"step": 80
|
57 |
},
|
58 |
{
|
59 |
-
"epoch": 0.
|
60 |
-
"learning_rate": 4.
|
61 |
-
"loss": 0.
|
62 |
"step": 90
|
63 |
},
|
64 |
{
|
65 |
-
"epoch": 0.
|
66 |
-
"learning_rate": 4.
|
67 |
-
"loss": 0.
|
68 |
"step": 100
|
69 |
},
|
70 |
{
|
71 |
-
"epoch": 0.
|
72 |
-
"learning_rate": 4.
|
73 |
-
"loss": 0.
|
74 |
"step": 110
|
75 |
},
|
76 |
{
|
77 |
-
"epoch": 0.
|
78 |
-
"learning_rate": 4.
|
79 |
-
"loss": 0.
|
80 |
"step": 120
|
81 |
},
|
82 |
{
|
83 |
-
"epoch": 0.
|
84 |
-
"learning_rate": 4.
|
85 |
-
"loss": 0.
|
86 |
"step": 130
|
87 |
},
|
88 |
{
|
89 |
-
"epoch": 0.
|
90 |
-
"learning_rate": 4.
|
91 |
-
"loss": 0.
|
92 |
"step": 140
|
93 |
},
|
94 |
{
|
95 |
-
"epoch": 0.
|
96 |
-
"learning_rate": 4.
|
97 |
-
"loss": 0.
|
98 |
"step": 150
|
99 |
},
|
100 |
{
|
101 |
-
"epoch": 0.
|
102 |
-
"learning_rate": 4.
|
103 |
-
"loss": 0.
|
104 |
"step": 160
|
105 |
},
|
106 |
{
|
107 |
-
"epoch": 0.
|
108 |
-
"learning_rate": 4.
|
109 |
-
"loss": 0.
|
110 |
"step": 170
|
111 |
},
|
112 |
{
|
113 |
-
"epoch": 0.
|
114 |
-
"learning_rate": 4.
|
115 |
-
"loss": 0.
|
116 |
"step": 180
|
117 |
},
|
118 |
{
|
119 |
-
"epoch": 0.
|
120 |
-
"learning_rate": 4.
|
121 |
-
"loss": 0.
|
122 |
"step": 190
|
123 |
},
|
124 |
{
|
125 |
-
"epoch": 0.
|
126 |
-
"learning_rate": 4.
|
127 |
-
"loss": 0.
|
128 |
"step": 200
|
129 |
},
|
130 |
{
|
131 |
-
"epoch": 0.
|
132 |
-
"
|
133 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
"step": 210
|
135 |
},
|
136 |
{
|
137 |
-
"epoch": 0.
|
138 |
-
"learning_rate": 4.
|
139 |
-
"loss": 0.
|
140 |
"step": 220
|
141 |
},
|
142 |
{
|
143 |
-
"epoch": 0.
|
144 |
-
"learning_rate": 4.
|
145 |
-
"loss": 0.
|
146 |
"step": 230
|
147 |
},
|
148 |
{
|
149 |
-
"epoch": 0.
|
150 |
-
"learning_rate": 4.
|
151 |
-
"loss": 0.
|
152 |
"step": 240
|
153 |
},
|
154 |
{
|
155 |
-
"epoch": 0.
|
156 |
-
"learning_rate": 4.
|
157 |
-
"loss": 0.
|
158 |
"step": 250
|
159 |
},
|
160 |
{
|
161 |
-
"epoch": 0.
|
162 |
-
"learning_rate": 4.
|
163 |
-
"loss": 0.
|
164 |
"step": 260
|
165 |
},
|
166 |
{
|
167 |
-
"epoch": 0.
|
168 |
-
"learning_rate": 4.
|
169 |
-
"loss": 0.
|
170 |
"step": 270
|
171 |
},
|
172 |
{
|
173 |
-
"epoch": 0.
|
174 |
-
"learning_rate": 4.
|
175 |
-
"loss": 0.
|
176 |
"step": 280
|
177 |
},
|
178 |
{
|
179 |
-
"epoch": 0.
|
180 |
-
"learning_rate": 4.
|
181 |
-
"loss": 0.
|
182 |
"step": 290
|
183 |
},
|
184 |
{
|
185 |
-
"epoch": 0.
|
186 |
-
"learning_rate": 4.
|
187 |
-
"loss": 0.
|
188 |
"step": 300
|
189 |
},
|
190 |
{
|
191 |
-
"epoch": 0.
|
192 |
-
"learning_rate": 4.
|
193 |
-
"loss": 0.
|
194 |
"step": 310
|
195 |
},
|
196 |
{
|
197 |
-
"epoch": 0.
|
198 |
-
"learning_rate": 4.
|
199 |
-
"loss": 0.
|
200 |
"step": 320
|
201 |
},
|
202 |
{
|
203 |
-
"epoch": 0.
|
204 |
-
"learning_rate": 4.
|
205 |
-
"loss": 0.
|
206 |
"step": 330
|
207 |
},
|
208 |
{
|
209 |
-
"epoch": 0.
|
210 |
-
"learning_rate": 4.
|
211 |
-
"loss": 0.
|
212 |
"step": 340
|
213 |
},
|
214 |
{
|
215 |
-
"epoch": 0.
|
216 |
-
"learning_rate": 4.
|
217 |
-
"loss": 0.
|
218 |
"step": 350
|
219 |
},
|
220 |
{
|
221 |
-
"epoch": 0.
|
222 |
-
"learning_rate": 4.
|
223 |
-
"loss": 0.
|
224 |
"step": 360
|
225 |
},
|
226 |
{
|
227 |
-
"epoch": 0.
|
228 |
-
"learning_rate": 4.
|
229 |
-
"loss": 0.
|
230 |
"step": 370
|
231 |
},
|
232 |
{
|
233 |
-
"epoch": 0.
|
234 |
-
"learning_rate": 4.
|
235 |
-
"loss": 0.
|
236 |
"step": 380
|
237 |
},
|
238 |
{
|
239 |
-
"epoch": 0.
|
240 |
-
"learning_rate": 4.
|
241 |
-
"loss": 0.
|
242 |
"step": 390
|
243 |
},
|
244 |
{
|
245 |
-
"epoch": 0.
|
246 |
-
"learning_rate": 4.
|
247 |
-
"loss": 0.
|
248 |
"step": 400
|
249 |
},
|
250 |
{
|
251 |
-
"epoch": 0.
|
252 |
-
"
|
253 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
"step": 410
|
255 |
},
|
256 |
{
|
257 |
-
"epoch": 0.
|
258 |
-
"learning_rate": 4.
|
259 |
-
"loss": 0.
|
260 |
"step": 420
|
261 |
},
|
262 |
{
|
263 |
-
"epoch": 0.
|
264 |
-
"learning_rate": 4.
|
265 |
-
"loss": 0.
|
266 |
"step": 430
|
267 |
},
|
268 |
{
|
269 |
-
"epoch": 0.
|
270 |
-
"learning_rate": 4.
|
271 |
-
"loss": 0.
|
272 |
"step": 440
|
273 |
},
|
274 |
{
|
275 |
-
"epoch": 0.
|
276 |
-
"learning_rate": 4.
|
277 |
-
"loss": 0.
|
278 |
"step": 450
|
279 |
},
|
280 |
{
|
281 |
-
"epoch": 0.
|
282 |
-
"learning_rate": 4.
|
283 |
-
"loss": 0.
|
284 |
"step": 460
|
285 |
},
|
286 |
{
|
287 |
-
"epoch": 0.
|
288 |
-
"learning_rate": 4.
|
289 |
-
"loss": 0.
|
290 |
"step": 470
|
291 |
},
|
292 |
{
|
293 |
-
"epoch": 0.
|
294 |
-
"learning_rate": 4.
|
295 |
-
"loss": 0.
|
296 |
"step": 480
|
297 |
},
|
298 |
{
|
299 |
-
"epoch": 0.
|
300 |
-
"learning_rate": 4.
|
301 |
-
"loss": 0.
|
302 |
"step": 490
|
303 |
},
|
304 |
{
|
305 |
-
"epoch": 0.
|
306 |
-
"learning_rate": 4.
|
307 |
-
"loss": 0.
|
308 |
"step": 500
|
309 |
},
|
310 |
{
|
311 |
-
"epoch": 0.
|
312 |
-
"learning_rate": 4.
|
313 |
-
"loss": 0.
|
314 |
"step": 510
|
315 |
},
|
316 |
{
|
317 |
-
"epoch": 0.
|
318 |
-
"learning_rate": 4.
|
319 |
-
"loss": 0.
|
320 |
"step": 520
|
321 |
},
|
322 |
{
|
323 |
-
"epoch": 0.
|
324 |
-
"learning_rate": 4.
|
325 |
-
"loss": 0.
|
326 |
"step": 530
|
327 |
},
|
328 |
{
|
329 |
-
"epoch": 0.
|
330 |
-
"learning_rate": 4.
|
331 |
-
"loss": 0.
|
332 |
"step": 540
|
333 |
},
|
334 |
{
|
335 |
-
"epoch": 0.
|
336 |
-
"learning_rate": 4.
|
337 |
-
"loss": 0.
|
338 |
"step": 550
|
339 |
},
|
340 |
{
|
341 |
-
"epoch": 0.
|
342 |
-
"learning_rate": 4.
|
343 |
-
"loss": 0.
|
344 |
"step": 560
|
345 |
},
|
346 |
{
|
347 |
-
"epoch": 0.
|
348 |
-
"learning_rate": 4.
|
349 |
-
"loss": 0.
|
350 |
"step": 570
|
351 |
},
|
352 |
{
|
353 |
-
"epoch": 0.
|
354 |
-
"learning_rate": 4.
|
355 |
-
"loss": 0.
|
356 |
"step": 580
|
357 |
},
|
358 |
{
|
359 |
-
"epoch": 0.
|
360 |
-
"learning_rate":
|
361 |
-
"loss": 0.
|
362 |
"step": 590
|
363 |
},
|
364 |
{
|
365 |
-
"epoch": 0.
|
366 |
-
"learning_rate":
|
367 |
-
"loss": 0.
|
368 |
"step": 600
|
369 |
},
|
370 |
{
|
371 |
-
"epoch": 0.
|
372 |
-
"
|
373 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
"step": 610
|
375 |
},
|
376 |
{
|
377 |
-
"epoch": 0.
|
378 |
-
"learning_rate":
|
379 |
-
"loss": 0.
|
380 |
"step": 620
|
381 |
},
|
382 |
{
|
383 |
-
"epoch": 0.
|
384 |
-
"learning_rate":
|
385 |
-
"loss": 0.
|
386 |
"step": 630
|
387 |
},
|
388 |
{
|
389 |
-
"epoch": 0.
|
390 |
-
"learning_rate":
|
391 |
-
"loss": 0.
|
392 |
"step": 640
|
393 |
},
|
394 |
{
|
395 |
-
"epoch": 0.
|
396 |
-
"learning_rate":
|
397 |
-
"loss": 0.
|
398 |
"step": 650
|
399 |
},
|
400 |
{
|
401 |
-
"epoch": 0.
|
402 |
-
"learning_rate":
|
403 |
-
"loss": 0.
|
404 |
"step": 660
|
405 |
},
|
406 |
{
|
407 |
-
"epoch": 0.
|
408 |
-
"learning_rate":
|
409 |
-
"loss": 0.
|
410 |
"step": 670
|
411 |
},
|
412 |
{
|
413 |
-
"epoch": 0.
|
414 |
-
"learning_rate":
|
415 |
-
"loss": 0.
|
416 |
"step": 680
|
417 |
},
|
418 |
{
|
419 |
-
"epoch": 0.
|
420 |
-
"learning_rate":
|
421 |
-
"loss": 0.
|
422 |
"step": 690
|
423 |
},
|
424 |
{
|
425 |
-
"epoch": 0.
|
426 |
-
"learning_rate":
|
427 |
-
"loss": 0.
|
428 |
"step": 700
|
429 |
},
|
430 |
{
|
431 |
-
"epoch": 0.
|
432 |
-
"learning_rate":
|
433 |
-
"loss": 0.
|
434 |
"step": 710
|
435 |
},
|
436 |
{
|
437 |
-
"epoch": 0.
|
438 |
-
"learning_rate":
|
439 |
-
"loss": 0.
|
440 |
"step": 720
|
441 |
},
|
442 |
{
|
443 |
-
"epoch": 0.
|
444 |
-
"learning_rate":
|
445 |
-
"loss": 0.
|
446 |
"step": 730
|
447 |
},
|
448 |
{
|
449 |
-
"epoch": 0.
|
450 |
-
"learning_rate":
|
451 |
-
"loss": 0.
|
452 |
"step": 740
|
453 |
},
|
454 |
{
|
455 |
-
"epoch": 0.
|
456 |
-
"learning_rate":
|
457 |
-
"loss": 0.
|
458 |
"step": 750
|
459 |
},
|
460 |
{
|
461 |
-
"epoch": 0.
|
462 |
-
"learning_rate":
|
463 |
-
"loss": 0.
|
464 |
"step": 760
|
465 |
},
|
466 |
{
|
467 |
-
"epoch": 0.
|
468 |
-
"learning_rate":
|
469 |
-
"loss": 0.
|
470 |
"step": 770
|
471 |
},
|
472 |
{
|
473 |
-
"epoch": 0.
|
474 |
-
"learning_rate":
|
475 |
-
"loss": 0.
|
476 |
"step": 780
|
477 |
},
|
478 |
{
|
479 |
-
"epoch": 0.
|
480 |
-
"learning_rate":
|
481 |
-
"loss": 0.
|
482 |
"step": 790
|
483 |
},
|
484 |
{
|
485 |
-
"epoch": 0.
|
486 |
-
"learning_rate":
|
487 |
-
"loss": 0.
|
488 |
"step": 800
|
489 |
},
|
490 |
{
|
491 |
-
"epoch": 0.
|
492 |
-
"
|
493 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
494 |
"step": 810
|
495 |
},
|
496 |
{
|
497 |
-
"epoch": 0.
|
498 |
-
"learning_rate": 3.
|
499 |
-
"loss": 0.
|
500 |
"step": 820
|
501 |
},
|
502 |
{
|
503 |
-
"epoch": 0.
|
504 |
-
"learning_rate": 3.
|
505 |
-
"loss": 0.
|
506 |
"step": 830
|
507 |
},
|
508 |
{
|
509 |
-
"epoch": 0.
|
510 |
-
"learning_rate": 3.
|
511 |
-
"loss": 0.
|
512 |
"step": 840
|
513 |
},
|
514 |
{
|
515 |
-
"epoch": 0.
|
516 |
-
"learning_rate": 3.
|
517 |
-
"loss": 0.
|
518 |
"step": 850
|
519 |
},
|
520 |
{
|
521 |
-
"epoch": 0.
|
522 |
-
"learning_rate": 3.
|
523 |
-
"loss": 0.
|
524 |
"step": 860
|
525 |
},
|
526 |
{
|
527 |
-
"epoch": 0.
|
528 |
-
"learning_rate":
|
529 |
-
"loss": 0.
|
530 |
"step": 870
|
531 |
},
|
532 |
{
|
533 |
-
"epoch": 0.
|
534 |
-
"learning_rate":
|
535 |
-
"loss": 0.
|
536 |
"step": 880
|
537 |
},
|
538 |
{
|
539 |
-
"epoch": 0.
|
540 |
-
"learning_rate":
|
541 |
-
"loss": 0.
|
542 |
"step": 890
|
543 |
},
|
544 |
{
|
545 |
-
"epoch": 0.
|
546 |
-
"learning_rate":
|
547 |
-
"loss": 0.
|
548 |
"step": 900
|
549 |
},
|
550 |
{
|
551 |
-
"epoch": 0.
|
552 |
-
"learning_rate":
|
553 |
-
"loss": 0.
|
554 |
"step": 910
|
555 |
},
|
556 |
{
|
557 |
-
"epoch": 0.
|
558 |
-
"learning_rate":
|
559 |
-
"loss": 0.
|
560 |
"step": 920
|
561 |
},
|
562 |
{
|
563 |
-
"epoch": 0.
|
564 |
-
"learning_rate":
|
565 |
-
"loss": 0.
|
566 |
"step": 930
|
567 |
},
|
568 |
{
|
569 |
-
"epoch": 0.
|
570 |
-
"learning_rate":
|
571 |
-
"loss": 0.
|
572 |
"step": 940
|
573 |
},
|
574 |
{
|
575 |
-
"epoch": 0.
|
576 |
-
"learning_rate":
|
577 |
-
"loss": 0.
|
578 |
"step": 950
|
579 |
},
|
580 |
{
|
581 |
-
"epoch": 0.
|
582 |
-
"learning_rate":
|
583 |
-
"loss": 0.
|
584 |
"step": 960
|
585 |
},
|
586 |
{
|
587 |
-
"epoch": 0.
|
588 |
-
"learning_rate":
|
589 |
-
"loss": 0.
|
590 |
"step": 970
|
591 |
},
|
592 |
{
|
593 |
-
"epoch": 0.
|
594 |
-
"learning_rate":
|
595 |
-
"loss": 0.
|
596 |
"step": 980
|
597 |
},
|
598 |
{
|
599 |
-
"epoch":
|
600 |
-
"learning_rate":
|
601 |
-
"loss": 0.
|
602 |
"step": 990
|
603 |
},
|
604 |
{
|
605 |
-
"epoch":
|
606 |
-
"learning_rate":
|
607 |
-
"loss": 0.
|
608 |
"step": 1000
|
609 |
},
|
610 |
{
|
611 |
-
"epoch":
|
612 |
-
"
|
613 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
614 |
"step": 1010
|
615 |
},
|
616 |
{
|
617 |
-
"epoch":
|
618 |
-
"learning_rate":
|
619 |
-
"loss": 0.
|
620 |
"step": 1020
|
621 |
},
|
622 |
{
|
623 |
-
"epoch":
|
624 |
-
"learning_rate":
|
625 |
-
"loss": 0.
|
626 |
"step": 1030
|
627 |
},
|
628 |
{
|
629 |
-
"epoch":
|
630 |
-
"learning_rate":
|
631 |
-
"loss": 0.
|
632 |
"step": 1040
|
633 |
},
|
634 |
{
|
635 |
-
"epoch":
|
636 |
-
"learning_rate":
|
637 |
-
"loss": 0.
|
638 |
"step": 1050
|
639 |
},
|
640 |
{
|
641 |
-
"epoch":
|
642 |
-
"learning_rate":
|
643 |
-
"loss": 0.
|
644 |
"step": 1060
|
645 |
},
|
646 |
{
|
647 |
-
"epoch":
|
648 |
-
"learning_rate":
|
649 |
-
"loss": 0.
|
650 |
"step": 1070
|
651 |
},
|
652 |
{
|
653 |
-
"epoch":
|
654 |
-
"learning_rate":
|
655 |
-
"loss": 0.
|
656 |
"step": 1080
|
657 |
},
|
658 |
{
|
659 |
-
"epoch":
|
660 |
-
"learning_rate":
|
661 |
-
"loss": 0.
|
662 |
"step": 1090
|
663 |
},
|
664 |
{
|
665 |
-
"epoch":
|
666 |
-
"learning_rate":
|
667 |
-
"loss": 0.
|
668 |
"step": 1100
|
669 |
},
|
670 |
{
|
671 |
-
"epoch":
|
672 |
-
"learning_rate":
|
673 |
-
"loss": 0.
|
674 |
"step": 1110
|
675 |
},
|
676 |
{
|
677 |
-
"epoch":
|
678 |
-
"learning_rate":
|
679 |
-
"loss": 0.
|
680 |
"step": 1120
|
681 |
},
|
682 |
{
|
683 |
-
"epoch":
|
684 |
-
"learning_rate":
|
685 |
-
"loss": 0.
|
686 |
"step": 1130
|
687 |
},
|
688 |
{
|
689 |
-
"epoch":
|
690 |
-
"learning_rate":
|
691 |
-
"loss": 0.
|
692 |
"step": 1140
|
693 |
},
|
694 |
{
|
695 |
-
"epoch":
|
696 |
-
"learning_rate":
|
697 |
-
"loss": 0.
|
698 |
"step": 1150
|
699 |
},
|
700 |
{
|
701 |
-
"epoch":
|
702 |
-
"learning_rate":
|
703 |
-
"loss": 0.
|
704 |
"step": 1160
|
705 |
},
|
706 |
{
|
707 |
-
"epoch":
|
708 |
-
"learning_rate":
|
709 |
-
"loss": 0.
|
710 |
"step": 1170
|
711 |
},
|
712 |
{
|
713 |
-
"epoch":
|
714 |
-
"learning_rate":
|
715 |
-
"loss": 0.
|
716 |
"step": 1180
|
717 |
},
|
718 |
{
|
719 |
-
"epoch":
|
720 |
-
"learning_rate":
|
721 |
-
"loss": 0.
|
722 |
"step": 1190
|
723 |
},
|
724 |
{
|
725 |
-
"epoch":
|
726 |
-
"learning_rate":
|
727 |
-
"loss": 0.
|
728 |
"step": 1200
|
729 |
},
|
730 |
{
|
731 |
-
"epoch":
|
732 |
-
"
|
733 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
734 |
"step": 1210
|
735 |
},
|
736 |
{
|
737 |
-
"epoch":
|
738 |
-
"learning_rate":
|
739 |
-
"loss": 0.
|
740 |
"step": 1220
|
741 |
},
|
742 |
{
|
743 |
-
"epoch":
|
744 |
-
"learning_rate":
|
745 |
-
"loss": 0.
|
746 |
"step": 1230
|
747 |
},
|
748 |
{
|
749 |
-
"epoch":
|
750 |
-
"learning_rate":
|
751 |
-
"loss": 0.
|
752 |
"step": 1240
|
753 |
},
|
754 |
{
|
755 |
-
"epoch":
|
756 |
-
"learning_rate":
|
757 |
-
"loss": 0.
|
758 |
"step": 1250
|
759 |
},
|
760 |
{
|
761 |
-
"epoch":
|
762 |
-
"learning_rate":
|
763 |
-
"loss": 0.
|
764 |
"step": 1260
|
765 |
},
|
766 |
{
|
767 |
-
"epoch":
|
768 |
-
"learning_rate":
|
769 |
-
"loss": 0.
|
770 |
"step": 1270
|
771 |
},
|
772 |
{
|
773 |
-
"epoch":
|
774 |
-
"learning_rate":
|
775 |
-
"loss": 0.
|
776 |
"step": 1280
|
777 |
},
|
778 |
{
|
779 |
-
"epoch":
|
780 |
-
"learning_rate":
|
781 |
-
"loss": 0.
|
782 |
"step": 1290
|
783 |
},
|
784 |
{
|
785 |
-
"epoch":
|
786 |
-
"learning_rate":
|
787 |
-
"loss": 0.
|
788 |
"step": 1300
|
789 |
},
|
790 |
{
|
791 |
-
"epoch":
|
792 |
-
"learning_rate":
|
793 |
-
"loss": 0.
|
794 |
"step": 1310
|
795 |
},
|
796 |
{
|
797 |
-
"epoch":
|
798 |
-
"learning_rate":
|
799 |
-
"loss": 0.
|
800 |
"step": 1320
|
801 |
},
|
802 |
{
|
803 |
-
"epoch":
|
804 |
-
"learning_rate":
|
805 |
-
"loss": 0.
|
806 |
"step": 1330
|
807 |
},
|
808 |
{
|
809 |
-
"epoch":
|
810 |
-
"learning_rate":
|
811 |
-
"loss": 0.
|
812 |
"step": 1340
|
813 |
},
|
814 |
{
|
815 |
-
"epoch":
|
816 |
-
"learning_rate":
|
817 |
-
"loss": 0.
|
818 |
"step": 1350
|
819 |
},
|
820 |
{
|
821 |
-
"epoch": 1.
|
822 |
-
"learning_rate":
|
823 |
-
"loss": 0.
|
824 |
"step": 1360
|
825 |
},
|
826 |
{
|
827 |
-
"epoch": 1.
|
828 |
-
"learning_rate":
|
829 |
-
"loss": 0.
|
830 |
"step": 1370
|
831 |
},
|
832 |
{
|
833 |
-
"epoch": 1.
|
834 |
-
"learning_rate":
|
835 |
-
"loss": 0.
|
836 |
"step": 1380
|
837 |
},
|
838 |
{
|
839 |
-
"epoch": 1.
|
840 |
-
"learning_rate":
|
841 |
-
"loss": 0.
|
842 |
"step": 1390
|
843 |
},
|
844 |
{
|
845 |
-
"epoch": 1.
|
846 |
-
"learning_rate":
|
847 |
-
"loss": 0.
|
848 |
"step": 1400
|
849 |
},
|
850 |
{
|
851 |
-
"epoch": 1.
|
852 |
-
"
|
853 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
854 |
"step": 1410
|
855 |
},
|
856 |
{
|
857 |
-
"epoch": 1.
|
858 |
-
"learning_rate":
|
859 |
-
"loss": 0.
|
860 |
"step": 1420
|
861 |
},
|
862 |
{
|
863 |
-
"epoch": 1.
|
864 |
-
"learning_rate":
|
865 |
-
"loss": 0.
|
866 |
"step": 1430
|
867 |
},
|
868 |
{
|
869 |
-
"epoch": 1.
|
870 |
-
"learning_rate":
|
871 |
-
"loss": 0.
|
872 |
"step": 1440
|
873 |
},
|
874 |
{
|
875 |
-
"epoch": 1.
|
876 |
-
"learning_rate":
|
877 |
-
"loss": 0.
|
878 |
"step": 1450
|
879 |
},
|
880 |
{
|
881 |
-
"epoch": 1.
|
882 |
-
"learning_rate":
|
883 |
-
"loss": 0.
|
884 |
"step": 1460
|
885 |
},
|
886 |
{
|
887 |
-
"epoch": 1.
|
888 |
-
"learning_rate":
|
889 |
-
"loss": 0.
|
890 |
"step": 1470
|
891 |
},
|
892 |
{
|
893 |
-
"epoch": 1.
|
894 |
-
"learning_rate":
|
895 |
-
"loss": 0.
|
896 |
"step": 1480
|
897 |
},
|
898 |
{
|
899 |
-
"epoch": 1.
|
900 |
-
"learning_rate":
|
901 |
-
"loss": 0.
|
902 |
"step": 1490
|
903 |
},
|
904 |
{
|
905 |
-
"epoch": 1.
|
906 |
-
"learning_rate":
|
907 |
-
"loss": 0.
|
908 |
"step": 1500
|
909 |
},
|
910 |
{
|
911 |
-
"epoch": 1.
|
912 |
-
"learning_rate":
|
913 |
-
"loss": 0.
|
914 |
"step": 1510
|
915 |
},
|
916 |
{
|
917 |
-
"epoch": 1.
|
918 |
-
"learning_rate":
|
919 |
-
"loss": 0.
|
920 |
"step": 1520
|
921 |
},
|
922 |
{
|
923 |
-
"epoch": 1.
|
924 |
-
"learning_rate":
|
925 |
-
"loss": 0.
|
926 |
"step": 1530
|
927 |
},
|
928 |
{
|
929 |
-
"epoch": 1.
|
930 |
-
"learning_rate":
|
931 |
-
"loss": 0.
|
932 |
"step": 1540
|
933 |
},
|
934 |
{
|
935 |
-
"epoch": 1.
|
936 |
-
"learning_rate":
|
937 |
-
"loss": 0.
|
938 |
"step": 1550
|
939 |
},
|
940 |
{
|
941 |
-
"epoch": 1.
|
942 |
-
"learning_rate":
|
943 |
-
"loss": 0.
|
944 |
"step": 1560
|
945 |
},
|
946 |
{
|
947 |
-
"epoch": 1.
|
948 |
-
"learning_rate":
|
949 |
-
"loss": 0.
|
950 |
"step": 1570
|
951 |
},
|
952 |
{
|
953 |
-
"epoch": 1.
|
954 |
-
"learning_rate":
|
955 |
-
"loss": 0.
|
956 |
"step": 1580
|
957 |
},
|
958 |
{
|
959 |
-
"epoch": 1.
|
960 |
-
"learning_rate":
|
961 |
-
"loss": 0.
|
962 |
"step": 1590
|
963 |
},
|
964 |
{
|
965 |
-
"epoch": 1.
|
966 |
-
"learning_rate":
|
967 |
-
"loss": 0.
|
968 |
"step": 1600
|
969 |
},
|
970 |
{
|
971 |
-
"epoch": 1.
|
972 |
-
"
|
973 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
974 |
"step": 1610
|
975 |
},
|
976 |
{
|
977 |
-
"epoch": 1.
|
978 |
-
"learning_rate":
|
979 |
-
"loss": 0.
|
980 |
"step": 1620
|
981 |
},
|
982 |
{
|
983 |
-
"epoch": 1.
|
984 |
-
"learning_rate":
|
985 |
-
"loss": 0.
|
986 |
"step": 1630
|
987 |
},
|
988 |
{
|
989 |
-
"epoch": 1.
|
990 |
-
"learning_rate":
|
991 |
-
"loss": 0.
|
992 |
"step": 1640
|
993 |
},
|
994 |
{
|
995 |
-
"epoch": 1.
|
996 |
-
"learning_rate":
|
997 |
-
"loss": 0.
|
998 |
"step": 1650
|
999 |
},
|
1000 |
{
|
1001 |
-
"epoch": 1.
|
1002 |
-
"learning_rate":
|
1003 |
-
"loss": 0.
|
1004 |
"step": 1660
|
1005 |
},
|
1006 |
{
|
1007 |
-
"epoch": 1.
|
1008 |
-
"learning_rate":
|
1009 |
-
"loss": 0.
|
1010 |
"step": 1670
|
1011 |
},
|
1012 |
{
|
1013 |
-
"epoch": 1.
|
1014 |
-
"learning_rate":
|
1015 |
-
"loss": 0.
|
1016 |
"step": 1680
|
1017 |
},
|
1018 |
{
|
1019 |
-
"epoch": 1.
|
1020 |
-
"learning_rate":
|
1021 |
-
"loss": 0.
|
1022 |
"step": 1690
|
1023 |
},
|
1024 |
{
|
1025 |
-
"epoch": 1.
|
1026 |
-
"learning_rate":
|
1027 |
-
"loss": 0.
|
1028 |
"step": 1700
|
1029 |
},
|
1030 |
{
|
1031 |
-
"epoch": 1.
|
1032 |
-
"learning_rate":
|
1033 |
-
"loss": 0.
|
1034 |
"step": 1710
|
1035 |
},
|
1036 |
{
|
1037 |
-
"epoch": 1.
|
1038 |
-
"learning_rate":
|
1039 |
-
"loss": 0.
|
1040 |
"step": 1720
|
1041 |
},
|
1042 |
{
|
1043 |
-
"epoch": 1.
|
1044 |
-
"learning_rate": 1.
|
1045 |
-
"loss": 0.
|
1046 |
"step": 1730
|
1047 |
},
|
1048 |
{
|
1049 |
-
"epoch": 1.
|
1050 |
-
"learning_rate": 1.
|
1051 |
-
"loss": 0.
|
1052 |
"step": 1740
|
1053 |
},
|
1054 |
{
|
1055 |
-
"epoch": 1.
|
1056 |
-
"learning_rate": 1.
|
1057 |
-
"loss": 0.
|
1058 |
"step": 1750
|
1059 |
},
|
1060 |
{
|
1061 |
-
"epoch": 1.
|
1062 |
-
"learning_rate": 1.
|
1063 |
-
"loss": 0.
|
1064 |
"step": 1760
|
1065 |
},
|
1066 |
{
|
1067 |
-
"epoch": 1.
|
1068 |
-
"learning_rate": 1.
|
1069 |
-
"loss": 0.
|
1070 |
"step": 1770
|
1071 |
},
|
1072 |
{
|
1073 |
-
"epoch": 1.
|
1074 |
-
"learning_rate": 1.
|
1075 |
-
"loss": 0.
|
1076 |
"step": 1780
|
1077 |
},
|
1078 |
{
|
1079 |
-
"epoch": 1.
|
1080 |
-
"learning_rate": 1.
|
1081 |
-
"loss": 0.
|
1082 |
"step": 1790
|
1083 |
},
|
1084 |
{
|
1085 |
-
"epoch": 1.
|
1086 |
-
"learning_rate":
|
1087 |
-
"loss": 0.
|
1088 |
"step": 1800
|
1089 |
},
|
1090 |
{
|
1091 |
-
"epoch": 1.
|
1092 |
-
"
|
1093 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1094 |
"step": 1810
|
1095 |
},
|
1096 |
{
|
1097 |
-
"epoch": 1.
|
1098 |
-
"learning_rate":
|
1099 |
-
"loss": 0.
|
1100 |
"step": 1820
|
1101 |
},
|
1102 |
{
|
1103 |
-
"epoch": 1.
|
1104 |
-
"learning_rate":
|
1105 |
-
"loss": 0.
|
1106 |
"step": 1830
|
1107 |
},
|
1108 |
{
|
1109 |
-
"epoch": 1.
|
1110 |
-
"learning_rate":
|
1111 |
-
"loss": 0.
|
1112 |
"step": 1840
|
1113 |
},
|
1114 |
{
|
1115 |
-
"epoch": 1.
|
1116 |
-
"learning_rate":
|
1117 |
-
"loss": 0.
|
1118 |
"step": 1850
|
1119 |
},
|
1120 |
{
|
1121 |
-
"epoch": 1.
|
1122 |
-
"learning_rate":
|
1123 |
-
"loss": 0.
|
1124 |
"step": 1860
|
1125 |
},
|
1126 |
{
|
1127 |
-
"epoch": 1.
|
1128 |
-
"learning_rate":
|
1129 |
-
"loss": 0.
|
1130 |
"step": 1870
|
1131 |
},
|
1132 |
{
|
1133 |
-
"epoch": 1.
|
1134 |
-
"learning_rate":
|
1135 |
-
"loss": 0.
|
1136 |
"step": 1880
|
1137 |
},
|
1138 |
{
|
1139 |
-
"epoch": 1.
|
1140 |
-
"learning_rate":
|
1141 |
-
"loss": 0.
|
1142 |
"step": 1890
|
1143 |
},
|
1144 |
{
|
1145 |
-
"epoch": 1.
|
1146 |
-
"learning_rate": 1.
|
1147 |
-
"loss": 0.
|
1148 |
"step": 1900
|
1149 |
},
|
1150 |
{
|
1151 |
-
"epoch": 1.
|
1152 |
-
"learning_rate": 1.
|
1153 |
-
"loss": 0.
|
1154 |
"step": 1910
|
1155 |
},
|
1156 |
{
|
1157 |
-
"epoch": 1.
|
1158 |
-
"learning_rate": 1.
|
1159 |
-
"loss": 0.
|
1160 |
"step": 1920
|
1161 |
},
|
1162 |
{
|
1163 |
-
"epoch": 1.
|
1164 |
-
"learning_rate":
|
1165 |
-
"loss": 0.
|
1166 |
"step": 1930
|
1167 |
},
|
1168 |
{
|
1169 |
-
"epoch": 1.
|
1170 |
-
"learning_rate":
|
1171 |
-
"loss": 0.
|
1172 |
"step": 1940
|
1173 |
},
|
1174 |
{
|
1175 |
-
"epoch": 1.
|
1176 |
-
"learning_rate":
|
1177 |
-
"loss": 0.
|
1178 |
"step": 1950
|
1179 |
},
|
1180 |
{
|
1181 |
-
"epoch": 1.
|
1182 |
-
"learning_rate": 9.
|
1183 |
-
"loss": 0.
|
1184 |
"step": 1960
|
1185 |
},
|
1186 |
{
|
1187 |
-
"epoch":
|
1188 |
-
"learning_rate":
|
1189 |
-
"loss": 0.
|
1190 |
"step": 1970
|
1191 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1192 |
{
|
1193 |
"epoch": 2.0,
|
1194 |
-
"step":
|
1195 |
-
"total_flos":
|
1196 |
-
"train_loss": 0.
|
1197 |
-
"train_runtime":
|
1198 |
-
"train_samples_per_second":
|
1199 |
-
"train_steps_per_second": 0.
|
1200 |
}
|
1201 |
],
|
1202 |
-
"max_steps":
|
1203 |
"num_train_epochs": 2,
|
1204 |
-
"total_flos":
|
1205 |
"trial_name": null,
|
1206 |
"trial_params": null
|
1207 |
}
|
|
|
1 |
{
|
2 |
+
"best_metric": 0.41885045170783997,
|
3 |
+
"best_model_checkpoint": "output/Baichuan-13B-Chat_lora_wqs_nlp/checkpoint-2400",
|
4 |
+
"epoch": 1.9992665933259994,
|
5 |
+
"global_step": 2726,
|
6 |
"is_hyper_param_search": false,
|
7 |
"is_local_process_zero": true,
|
8 |
"is_world_process_zero": true,
|
9 |
"log_history": [
|
10 |
{
|
11 |
"epoch": 0.01,
|
12 |
+
"learning_rate": 4.999865525734509e-05,
|
13 |
+
"loss": 1.5452,
|
14 |
"step": 10
|
15 |
},
|
16 |
{
|
17 |
+
"epoch": 0.01,
|
18 |
+
"learning_rate": 4.9994621174046976e-05,
|
19 |
+
"loss": 1.3291,
|
20 |
"step": 20
|
21 |
},
|
22 |
{
|
23 |
+
"epoch": 0.02,
|
24 |
+
"learning_rate": 4.9986985231938546e-05,
|
25 |
+
"loss": 1.1048,
|
26 |
"step": 30
|
27 |
},
|
28 |
{
|
29 |
+
"epoch": 0.03,
|
30 |
+
"learning_rate": 4.99760306731191e-05,
|
31 |
+
"loss": 0.9155,
|
32 |
"step": 40
|
33 |
},
|
34 |
{
|
35 |
+
"epoch": 0.04,
|
36 |
+
"learning_rate": 4.9961758952505326e-05,
|
37 |
+
"loss": 0.8856,
|
38 |
"step": 50
|
39 |
},
|
40 |
{
|
41 |
+
"epoch": 0.04,
|
42 |
+
"learning_rate": 4.9944171965578836e-05,
|
43 |
+
"loss": 0.8052,
|
44 |
"step": 60
|
45 |
},
|
46 |
{
|
47 |
+
"epoch": 0.05,
|
48 |
+
"learning_rate": 4.992327204813435e-05,
|
49 |
+
"loss": 0.7332,
|
50 |
"step": 70
|
51 |
},
|
52 |
{
|
53 |
+
"epoch": 0.06,
|
54 |
+
"learning_rate": 4.989906197596955e-05,
|
55 |
+
"loss": 0.6982,
|
56 |
"step": 80
|
57 |
},
|
58 |
{
|
59 |
+
"epoch": 0.07,
|
60 |
+
"learning_rate": 4.987154496451635e-05,
|
61 |
+
"loss": 0.6811,
|
62 |
"step": 90
|
63 |
},
|
64 |
{
|
65 |
+
"epoch": 0.07,
|
66 |
+
"learning_rate": 4.984072466841389e-05,
|
67 |
+
"loss": 0.6323,
|
68 |
"step": 100
|
69 |
},
|
70 |
{
|
71 |
+
"epoch": 0.08,
|
72 |
+
"learning_rate": 4.981016546765289e-05,
|
73 |
+
"loss": 0.6234,
|
74 |
"step": 110
|
75 |
},
|
76 |
{
|
77 |
+
"epoch": 0.09,
|
78 |
+
"learning_rate": 4.977308057009269e-05,
|
79 |
+
"loss": 0.6125,
|
80 |
"step": 120
|
81 |
},
|
82 |
{
|
83 |
+
"epoch": 0.1,
|
84 |
+
"learning_rate": 4.97327054653146e-05,
|
85 |
+
"loss": 0.5977,
|
86 |
"step": 130
|
87 |
},
|
88 |
{
|
89 |
+
"epoch": 0.1,
|
90 |
+
"learning_rate": 4.968904551569013e-05,
|
91 |
+
"loss": 0.6179,
|
92 |
"step": 140
|
93 |
},
|
94 |
{
|
95 |
+
"epoch": 0.11,
|
96 |
+
"learning_rate": 4.9642106519863544e-05,
|
97 |
+
"loss": 0.5879,
|
98 |
"step": 150
|
99 |
},
|
100 |
{
|
101 |
+
"epoch": 0.12,
|
102 |
+
"learning_rate": 4.959189471198171e-05,
|
103 |
+
"loss": 0.5472,
|
104 |
"step": 160
|
105 |
},
|
106 |
{
|
107 |
+
"epoch": 0.12,
|
108 |
+
"learning_rate": 4.953841676086613e-05,
|
109 |
+
"loss": 0.602,
|
110 |
"step": 170
|
111 |
},
|
112 |
{
|
113 |
+
"epoch": 0.13,
|
114 |
+
"learning_rate": 4.9481679769127275e-05,
|
115 |
+
"loss": 0.5773,
|
116 |
"step": 180
|
117 |
},
|
118 |
{
|
119 |
+
"epoch": 0.14,
|
120 |
+
"learning_rate": 4.9421691272221167e-05,
|
121 |
+
"loss": 0.5615,
|
122 |
"step": 190
|
123 |
},
|
124 |
{
|
125 |
+
"epoch": 0.15,
|
126 |
+
"learning_rate": 4.935845923744865e-05,
|
127 |
+
"loss": 0.5704,
|
128 |
"step": 200
|
129 |
},
|
130 |
{
|
131 |
+
"epoch": 0.15,
|
132 |
+
"eval_loss": 0.5564362406730652,
|
133 |
+
"eval_runtime": 72.9469,
|
134 |
+
"eval_samples_per_second": 15.107,
|
135 |
+
"eval_steps_per_second": 1.522,
|
136 |
+
"step": 200
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.15,
|
140 |
+
"learning_rate": 4.9291992062897183e-05,
|
141 |
+
"loss": 0.5803,
|
142 |
"step": 210
|
143 |
},
|
144 |
{
|
145 |
+
"epoch": 0.16,
|
146 |
+
"learning_rate": 4.922229857632545e-05,
|
147 |
+
"loss": 0.5655,
|
148 |
"step": 220
|
149 |
},
|
150 |
{
|
151 |
+
"epoch": 0.17,
|
152 |
+
"learning_rate": 4.9149388033990966e-05,
|
153 |
+
"loss": 0.5769,
|
154 |
"step": 230
|
155 |
},
|
156 |
{
|
157 |
+
"epoch": 0.18,
|
158 |
+
"learning_rate": 4.9073270119420635e-05,
|
159 |
+
"loss": 0.5862,
|
160 |
"step": 240
|
161 |
},
|
162 |
{
|
163 |
+
"epoch": 0.18,
|
164 |
+
"learning_rate": 4.899395494212471e-05,
|
165 |
+
"loss": 0.5506,
|
166 |
"step": 250
|
167 |
},
|
168 |
{
|
169 |
+
"epoch": 0.19,
|
170 |
+
"learning_rate": 4.891145303625408e-05,
|
171 |
+
"loss": 0.5183,
|
172 |
"step": 260
|
173 |
},
|
174 |
{
|
175 |
+
"epoch": 0.2,
|
176 |
+
"learning_rate": 4.882577535920121e-05,
|
177 |
+
"loss": 0.575,
|
178 |
"step": 270
|
179 |
},
|
180 |
{
|
181 |
+
"epoch": 0.21,
|
182 |
+
"learning_rate": 4.8736933290144815e-05,
|
183 |
+
"loss": 0.5359,
|
184 |
"step": 280
|
185 |
},
|
186 |
{
|
187 |
+
"epoch": 0.21,
|
188 |
+
"learning_rate": 4.8644938628538606e-05,
|
189 |
+
"loss": 0.5302,
|
190 |
"step": 290
|
191 |
},
|
192 |
{
|
193 |
+
"epoch": 0.22,
|
194 |
+
"learning_rate": 4.8549803592544076e-05,
|
195 |
+
"loss": 0.5399,
|
196 |
"step": 300
|
197 |
},
|
198 |
{
|
199 |
+
"epoch": 0.23,
|
200 |
+
"learning_rate": 4.845154081740783e-05,
|
201 |
+
"loss": 0.5379,
|
202 |
"step": 310
|
203 |
},
|
204 |
{
|
205 |
+
"epoch": 0.23,
|
206 |
+
"learning_rate": 4.835016335378343e-05,
|
207 |
+
"loss": 0.5299,
|
208 |
"step": 320
|
209 |
},
|
210 |
{
|
211 |
+
"epoch": 0.24,
|
212 |
+
"learning_rate": 4.8245684665998073e-05,
|
213 |
+
"loss": 0.535,
|
214 |
"step": 330
|
215 |
},
|
216 |
{
|
217 |
+
"epoch": 0.25,
|
218 |
+
"learning_rate": 4.813811863026436e-05,
|
219 |
+
"loss": 0.5145,
|
220 |
"step": 340
|
221 |
},
|
222 |
{
|
223 |
+
"epoch": 0.26,
|
224 |
+
"learning_rate": 4.802747953283732e-05,
|
225 |
+
"loss": 0.5126,
|
226 |
"step": 350
|
227 |
},
|
228 |
{
|
229 |
+
"epoch": 0.26,
|
230 |
+
"learning_rate": 4.791378206811704e-05,
|
231 |
+
"loss": 0.5012,
|
232 |
"step": 360
|
233 |
},
|
234 |
{
|
235 |
+
"epoch": 0.27,
|
236 |
+
"learning_rate": 4.7797041336696995e-05,
|
237 |
+
"loss": 0.5373,
|
238 |
"step": 370
|
239 |
},
|
240 |
{
|
241 |
+
"epoch": 0.28,
|
242 |
+
"learning_rate": 4.767727284335852e-05,
|
243 |
+
"loss": 0.4778,
|
244 |
"step": 380
|
245 |
},
|
246 |
{
|
247 |
+
"epoch": 0.29,
|
248 |
+
"learning_rate": 4.755449249501155e-05,
|
249 |
+
"loss": 0.4894,
|
250 |
"step": 390
|
251 |
},
|
252 |
{
|
253 |
+
"epoch": 0.29,
|
254 |
+
"learning_rate": 4.7428716598581934e-05,
|
255 |
+
"loss": 0.4986,
|
256 |
"step": 400
|
257 |
},
|
258 |
{
|
259 |
+
"epoch": 0.29,
|
260 |
+
"eval_loss": 0.4967592656612396,
|
261 |
+
"eval_runtime": 70.0948,
|
262 |
+
"eval_samples_per_second": 15.722,
|
263 |
+
"eval_steps_per_second": 1.584,
|
264 |
+
"step": 400
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 0.3,
|
268 |
+
"learning_rate": 4.729996185884571e-05,
|
269 |
+
"loss": 0.4928,
|
270 |
"step": 410
|
271 |
},
|
272 |
{
|
273 |
+
"epoch": 0.31,
|
274 |
+
"learning_rate": 4.716824537621042e-05,
|
275 |
+
"loss": 0.4807,
|
276 |
"step": 420
|
277 |
},
|
278 |
{
|
279 |
+
"epoch": 0.32,
|
280 |
+
"learning_rate": 4.703358464444397e-05,
|
281 |
+
"loss": 0.4734,
|
282 |
"step": 430
|
283 |
},
|
284 |
{
|
285 |
+
"epoch": 0.32,
|
286 |
+
"learning_rate": 4.689599754835122e-05,
|
287 |
+
"loss": 0.4603,
|
288 |
"step": 440
|
289 |
},
|
290 |
{
|
291 |
+
"epoch": 0.33,
|
292 |
+
"learning_rate": 4.6755502361398616e-05,
|
293 |
+
"loss": 0.4661,
|
294 |
"step": 450
|
295 |
},
|
296 |
{
|
297 |
+
"epoch": 0.34,
|
298 |
+
"learning_rate": 4.6612117743287234e-05,
|
299 |
+
"loss": 0.5072,
|
300 |
"step": 460
|
301 |
},
|
302 |
{
|
303 |
+
"epoch": 0.34,
|
304 |
+
"learning_rate": 4.646586273747452e-05,
|
305 |
+
"loss": 0.5056,
|
306 |
"step": 470
|
307 |
},
|
308 |
{
|
309 |
+
"epoch": 0.35,
|
310 |
+
"learning_rate": 4.631675676864503e-05,
|
311 |
+
"loss": 0.4391,
|
312 |
"step": 480
|
313 |
},
|
314 |
{
|
315 |
+
"epoch": 0.36,
|
316 |
+
"learning_rate": 4.6164819640130595e-05,
|
317 |
+
"loss": 0.483,
|
318 |
"step": 490
|
319 |
},
|
320 |
{
|
321 |
+
"epoch": 0.37,
|
322 |
+
"learning_rate": 4.601007153128014e-05,
|
323 |
+
"loss": 0.4774,
|
324 |
"step": 500
|
325 |
},
|
326 |
{
|
327 |
+
"epoch": 0.37,
|
328 |
+
"learning_rate": 4.5852532994779606e-05,
|
329 |
+
"loss": 0.4848,
|
330 |
"step": 510
|
331 |
},
|
332 |
{
|
333 |
+
"epoch": 0.38,
|
334 |
+
"learning_rate": 4.5692224953922266e-05,
|
335 |
+
"loss": 0.5099,
|
336 |
"step": 520
|
337 |
},
|
338 |
{
|
339 |
+
"epoch": 0.39,
|
340 |
+
"learning_rate": 4.5529168699829805e-05,
|
341 |
+
"loss": 0.4851,
|
342 |
"step": 530
|
343 |
},
|
344 |
{
|
345 |
+
"epoch": 0.4,
|
346 |
+
"learning_rate": 4.536338588862459e-05,
|
347 |
+
"loss": 0.498,
|
348 |
"step": 540
|
349 |
},
|
350 |
{
|
351 |
+
"epoch": 0.4,
|
352 |
+
"learning_rate": 4.519489853855341e-05,
|
353 |
+
"loss": 0.5398,
|
354 |
"step": 550
|
355 |
},
|
356 |
{
|
357 |
+
"epoch": 0.41,
|
358 |
+
"learning_rate": 4.50237290270632e-05,
|
359 |
+
"loss": 0.4566,
|
360 |
"step": 560
|
361 |
},
|
362 |
{
|
363 |
+
"epoch": 0.42,
|
364 |
+
"learning_rate": 4.484990008782893e-05,
|
365 |
+
"loss": 0.4942,
|
366 |
"step": 570
|
367 |
},
|
368 |
{
|
369 |
+
"epoch": 0.43,
|
370 |
+
"learning_rate": 4.467343480773433e-05,
|
371 |
+
"loss": 0.4625,
|
372 |
"step": 580
|
373 |
},
|
374 |
{
|
375 |
+
"epoch": 0.43,
|
376 |
+
"learning_rate": 4.44943566238056e-05,
|
377 |
+
"loss": 0.4703,
|
378 |
"step": 590
|
379 |
},
|
380 |
{
|
381 |
+
"epoch": 0.44,
|
382 |
+
"learning_rate": 4.431268932009865e-05,
|
383 |
+
"loss": 0.464,
|
384 |
"step": 600
|
385 |
},
|
386 |
{
|
387 |
+
"epoch": 0.44,
|
388 |
+
"eval_loss": 0.46821752190589905,
|
389 |
+
"eval_runtime": 69.9505,
|
390 |
+
"eval_samples_per_second": 15.754,
|
391 |
+
"eval_steps_per_second": 1.587,
|
392 |
+
"step": 600
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 0.45,
|
396 |
+
"learning_rate": 4.412845702454024e-05,
|
397 |
+
"loss": 0.4739,
|
398 |
"step": 610
|
399 |
},
|
400 |
{
|
401 |
+
"epoch": 0.45,
|
402 |
+
"learning_rate": 4.394168420572349e-05,
|
403 |
+
"loss": 0.4529,
|
404 |
"step": 620
|
405 |
},
|
406 |
{
|
407 |
+
"epoch": 0.46,
|
408 |
+
"learning_rate": 4.3752395669658086e-05,
|
409 |
+
"loss": 0.4433,
|
410 |
"step": 630
|
411 |
},
|
412 |
{
|
413 |
+
"epoch": 0.47,
|
414 |
+
"learning_rate": 4.356061655647571e-05,
|
415 |
+
"loss": 0.459,
|
416 |
"step": 640
|
417 |
},
|
418 |
{
|
419 |
+
"epoch": 0.48,
|
420 |
+
"learning_rate": 4.336637233709107e-05,
|
421 |
+
"loss": 0.4877,
|
422 |
"step": 650
|
423 |
},
|
424 |
{
|
425 |
+
"epoch": 0.48,
|
426 |
+
"learning_rate": 4.316968880981903e-05,
|
427 |
+
"loss": 0.4676,
|
428 |
"step": 660
|
429 |
},
|
430 |
{
|
431 |
+
"epoch": 0.49,
|
432 |
+
"learning_rate": 4.2970592096948236e-05,
|
433 |
+
"loss": 0.4782,
|
434 |
"step": 670
|
435 |
},
|
436 |
{
|
437 |
+
"epoch": 0.5,
|
438 |
+
"learning_rate": 4.276910864127168e-05,
|
439 |
+
"loss": 0.4778,
|
440 |
"step": 680
|
441 |
},
|
442 |
{
|
443 |
+
"epoch": 0.51,
|
444 |
+
"learning_rate": 4.25652652025748e-05,
|
445 |
+
"loss": 0.454,
|
446 |
"step": 690
|
447 |
},
|
448 |
{
|
449 |
+
"epoch": 0.51,
|
450 |
+
"learning_rate": 4.235908885408133e-05,
|
451 |
+
"loss": 0.4399,
|
452 |
"step": 700
|
453 |
},
|
454 |
{
|
455 |
+
"epoch": 0.52,
|
456 |
+
"learning_rate": 4.215060697885767e-05,
|
457 |
+
"loss": 0.5106,
|
458 |
"step": 710
|
459 |
},
|
460 |
{
|
461 |
+
"epoch": 0.53,
|
462 |
+
"learning_rate": 4.1939847266176e-05,
|
463 |
+
"loss": 0.4683,
|
464 |
"step": 720
|
465 |
},
|
466 |
{
|
467 |
+
"epoch": 0.54,
|
468 |
+
"learning_rate": 4.172683770783677e-05,
|
469 |
+
"loss": 0.4896,
|
470 |
"step": 730
|
471 |
},
|
472 |
{
|
473 |
+
"epoch": 0.54,
|
474 |
+
"learning_rate": 4.1511606594451016e-05,
|
475 |
+
"loss": 0.4633,
|
476 |
"step": 740
|
477 |
},
|
478 |
{
|
479 |
+
"epoch": 0.55,
|
480 |
+
"learning_rate": 4.1294182511682946e-05,
|
481 |
+
"loss": 0.4486,
|
482 |
"step": 750
|
483 |
},
|
484 |
{
|
485 |
+
"epoch": 0.56,
|
486 |
+
"learning_rate": 4.1074594336453384e-05,
|
487 |
+
"loss": 0.4706,
|
488 |
"step": 760
|
489 |
},
|
490 |
{
|
491 |
+
"epoch": 0.56,
|
492 |
+
"learning_rate": 4.085287123310455e-05,
|
493 |
+
"loss": 0.4797,
|
494 |
"step": 770
|
495 |
},
|
496 |
{
|
497 |
+
"epoch": 0.57,
|
498 |
+
"learning_rate": 4.062904264952657e-05,
|
499 |
+
"loss": 0.4251,
|
500 |
"step": 780
|
501 |
},
|
502 |
{
|
503 |
+
"epoch": 0.58,
|
504 |
+
"learning_rate": 4.0403138313246435e-05,
|
505 |
+
"loss": 0.4687,
|
506 |
"step": 790
|
507 |
},
|
508 |
{
|
509 |
+
"epoch": 0.59,
|
510 |
+
"learning_rate": 4.017518822747976e-05,
|
511 |
+
"loss": 0.48,
|
512 |
"step": 800
|
513 |
},
|
514 |
{
|
515 |
+
"epoch": 0.59,
|
516 |
+
"eval_loss": 0.4554018974304199,
|
517 |
+
"eval_runtime": 70.2392,
|
518 |
+
"eval_samples_per_second": 15.689,
|
519 |
+
"eval_steps_per_second": 1.58,
|
520 |
+
"step": 800
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.59,
|
524 |
+
"learning_rate": 3.994522266714594e-05,
|
525 |
+
"loss": 0.4662,
|
526 |
"step": 810
|
527 |
},
|
528 |
{
|
529 |
+
"epoch": 0.6,
|
530 |
+
"learning_rate": 3.9713272174847246e-05,
|
531 |
+
"loss": 0.4837,
|
532 |
"step": 820
|
533 |
},
|
534 |
{
|
535 |
+
"epoch": 0.61,
|
536 |
+
"learning_rate": 3.947936755681229e-05,
|
537 |
+
"loss": 0.5014,
|
538 |
"step": 830
|
539 |
},
|
540 |
{
|
541 |
+
"epoch": 0.62,
|
542 |
+
"learning_rate": 3.92435398788046e-05,
|
543 |
+
"loss": 0.4764,
|
544 |
"step": 840
|
545 |
},
|
546 |
{
|
547 |
+
"epoch": 0.62,
|
548 |
+
"learning_rate": 3.9005820461996604e-05,
|
549 |
+
"loss": 0.4587,
|
550 |
"step": 850
|
551 |
},
|
552 |
{
|
553 |
+
"epoch": 0.63,
|
554 |
+
"learning_rate": 3.876624087880979e-05,
|
555 |
+
"loss": 0.484,
|
556 |
"step": 860
|
557 |
},
|
558 |
{
|
559 |
+
"epoch": 0.64,
|
560 |
+
"learning_rate": 3.85248329487214e-05,
|
561 |
+
"loss": 0.4285,
|
562 |
"step": 870
|
563 |
},
|
564 |
{
|
565 |
+
"epoch": 0.65,
|
566 |
+
"learning_rate": 3.828162873403843e-05,
|
567 |
+
"loss": 0.4742,
|
568 |
"step": 880
|
569 |
},
|
570 |
{
|
571 |
+
"epoch": 0.65,
|
572 |
+
"learning_rate": 3.803666053563926e-05,
|
573 |
+
"loss": 0.4533,
|
574 |
"step": 890
|
575 |
},
|
576 |
{
|
577 |
+
"epoch": 0.66,
|
578 |
+
"learning_rate": 3.778996088868365e-05,
|
579 |
+
"loss": 0.4395,
|
580 |
"step": 900
|
581 |
},
|
582 |
{
|
583 |
+
"epoch": 0.67,
|
584 |
+
"learning_rate": 3.754156255829167e-05,
|
585 |
+
"loss": 0.4519,
|
586 |
"step": 910
|
587 |
},
|
588 |
{
|
589 |
+
"epoch": 0.67,
|
590 |
+
"learning_rate": 3.7291498535191996e-05,
|
591 |
+
"loss": 0.4684,
|
592 |
"step": 920
|
593 |
},
|
594 |
{
|
595 |
+
"epoch": 0.68,
|
596 |
+
"learning_rate": 3.703980203134029e-05,
|
597 |
+
"loss": 0.4259,
|
598 |
"step": 930
|
599 |
},
|
600 |
{
|
601 |
+
"epoch": 0.69,
|
602 |
+
"learning_rate": 3.678650647550822e-05,
|
603 |
+
"loss": 0.4576,
|
604 |
"step": 940
|
605 |
},
|
606 |
{
|
607 |
+
"epoch": 0.7,
|
608 |
+
"learning_rate": 3.6531645508843636e-05,
|
609 |
+
"loss": 0.446,
|
610 |
"step": 950
|
611 |
},
|
612 |
{
|
613 |
+
"epoch": 0.7,
|
614 |
+
"learning_rate": 3.6275252980402544e-05,
|
615 |
+
"loss": 0.4439,
|
616 |
"step": 960
|
617 |
},
|
618 |
{
|
619 |
+
"epoch": 0.71,
|
620 |
+
"learning_rate": 3.601736294265354e-05,
|
621 |
+
"loss": 0.476,
|
622 |
"step": 970
|
623 |
},
|
624 |
{
|
625 |
+
"epoch": 0.72,
|
626 |
+
"learning_rate": 3.5758009646955115e-05,
|
627 |
+
"loss": 0.4153,
|
628 |
"step": 980
|
629 |
},
|
630 |
{
|
631 |
+
"epoch": 0.73,
|
632 |
+
"learning_rate": 3.5497227539006614e-05,
|
633 |
+
"loss": 0.4444,
|
634 |
"step": 990
|
635 |
},
|
636 |
{
|
637 |
+
"epoch": 0.73,
|
638 |
+
"learning_rate": 3.523505125427341e-05,
|
639 |
+
"loss": 0.4395,
|
640 |
"step": 1000
|
641 |
},
|
642 |
{
|
643 |
+
"epoch": 0.73,
|
644 |
+
"eval_loss": 0.44357746839523315,
|
645 |
+
"eval_runtime": 70.1513,
|
646 |
+
"eval_samples_per_second": 15.709,
|
647 |
+
"eval_steps_per_second": 1.582,
|
648 |
+
"step": 1000
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 0.74,
|
652 |
+
"learning_rate": 3.497151561338678e-05,
|
653 |
+
"loss": 0.4387,
|
654 |
"step": 1010
|
655 |
},
|
656 |
{
|
657 |
+
"epoch": 0.75,
|
658 |
+
"learning_rate": 3.470665561751928e-05,
|
659 |
+
"loss": 0.4559,
|
660 |
"step": 1020
|
661 |
},
|
662 |
{
|
663 |
+
"epoch": 0.76,
|
664 |
+
"learning_rate": 3.444050644373611e-05,
|
665 |
+
"loss": 0.4349,
|
666 |
"step": 1030
|
667 |
},
|
668 |
{
|
669 |
+
"epoch": 0.76,
|
670 |
+
"learning_rate": 3.417310344032309e-05,
|
671 |
+
"loss": 0.4661,
|
672 |
"step": 1040
|
673 |
},
|
674 |
{
|
675 |
+
"epoch": 0.77,
|
676 |
+
"learning_rate": 3.390448212209191e-05,
|
677 |
+
"loss": 0.4945,
|
678 |
"step": 1050
|
679 |
},
|
680 |
{
|
681 |
+
"epoch": 0.78,
|
682 |
+
"learning_rate": 3.3634678165663325e-05,
|
683 |
+
"loss": 0.4399,
|
684 |
"step": 1060
|
685 |
},
|
686 |
{
|
687 |
+
"epoch": 0.78,
|
688 |
+
"learning_rate": 3.336372740472877e-05,
|
689 |
+
"loss": 0.4399,
|
690 |
"step": 1070
|
691 |
},
|
692 |
{
|
693 |
+
"epoch": 0.79,
|
694 |
+
"learning_rate": 3.309166582529114e-05,
|
695 |
+
"loss": 0.4251,
|
696 |
"step": 1080
|
697 |
},
|
698 |
{
|
699 |
+
"epoch": 0.8,
|
700 |
+
"learning_rate": 3.281852956088537e-05,
|
701 |
+
"loss": 0.4385,
|
702 |
"step": 1090
|
703 |
},
|
704 |
{
|
705 |
+
"epoch": 0.81,
|
706 |
+
"learning_rate": 3.254435488777941e-05,
|
707 |
+
"loss": 0.4566,
|
708 |
"step": 1100
|
709 |
},
|
710 |
{
|
711 |
+
"epoch": 0.81,
|
712 |
+
"learning_rate": 3.226917822015623e-05,
|
713 |
+
"loss": 0.4352,
|
714 |
"step": 1110
|
715 |
},
|
716 |
{
|
717 |
+
"epoch": 0.82,
|
718 |
+
"learning_rate": 3.199303610527749e-05,
|
719 |
+
"loss": 0.4617,
|
720 |
"step": 1120
|
721 |
},
|
722 |
{
|
723 |
+
"epoch": 0.83,
|
724 |
+
"learning_rate": 3.1715965218629595e-05,
|
725 |
+
"loss": 0.476,
|
726 |
"step": 1130
|
727 |
},
|
728 |
{
|
729 |
+
"epoch": 0.84,
|
730 |
+
"learning_rate": 3.143800235905268e-05,
|
731 |
+
"loss": 0.4322,
|
732 |
"step": 1140
|
733 |
},
|
734 |
{
|
735 |
+
"epoch": 0.84,
|
736 |
+
"learning_rate": 3.115918444385315e-05,
|
737 |
+
"loss": 0.4736,
|
738 |
"step": 1150
|
739 |
},
|
740 |
{
|
741 |
+
"epoch": 0.85,
|
742 |
+
"learning_rate": 3.0879548503900665e-05,
|
743 |
+
"loss": 0.4322,
|
744 |
"step": 1160
|
745 |
},
|
746 |
{
|
747 |
+
"epoch": 0.86,
|
748 |
+
"learning_rate": 3.0599131678709836e-05,
|
749 |
+
"loss": 0.4152,
|
750 |
"step": 1170
|
751 |
},
|
752 |
{
|
753 |
+
"epoch": 0.87,
|
754 |
+
"learning_rate": 3.031797121150764e-05,
|
755 |
+
"loss": 0.4187,
|
756 |
"step": 1180
|
757 |
},
|
758 |
{
|
759 |
+
"epoch": 0.87,
|
760 |
+
"learning_rate": 3.0036104444286954e-05,
|
761 |
+
"loss": 0.4331,
|
762 |
"step": 1190
|
763 |
},
|
764 |
{
|
765 |
+
"epoch": 0.88,
|
766 |
+
"learning_rate": 2.9753568812847065e-05,
|
767 |
+
"loss": 0.45,
|
768 |
"step": 1200
|
769 |
},
|
770 |
{
|
771 |
+
"epoch": 0.88,
|
772 |
+
"eval_loss": 0.43782830238342285,
|
773 |
+
"eval_runtime": 70.0939,
|
774 |
+
"eval_samples_per_second": 15.722,
|
775 |
+
"eval_steps_per_second": 1.584,
|
776 |
+
"step": 1200
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 0.89,
|
780 |
+
"learning_rate": 2.9470401841821686e-05,
|
781 |
+
"loss": 0.4457,
|
782 |
"step": 1210
|
783 |
},
|
784 |
{
|
785 |
+
"epoch": 0.89,
|
786 |
+
"learning_rate": 2.9186641139695108e-05,
|
787 |
+
"loss": 0.4667,
|
788 |
"step": 1220
|
789 |
},
|
790 |
{
|
791 |
+
"epoch": 0.9,
|
792 |
+
"learning_rate": 2.8902324393807333e-05,
|
793 |
+
"loss": 0.4516,
|
794 |
"step": 1230
|
795 |
},
|
796 |
{
|
797 |
+
"epoch": 0.91,
|
798 |
+
"learning_rate": 2.861748936534867e-05,
|
799 |
+
"loss": 0.4695,
|
800 |
"step": 1240
|
801 |
},
|
802 |
{
|
803 |
+
"epoch": 0.92,
|
804 |
+
"learning_rate": 2.8332173884344477e-05,
|
805 |
+
"loss": 0.45,
|
806 |
"step": 1250
|
807 |
},
|
808 |
{
|
809 |
+
"epoch": 0.92,
|
810 |
+
"learning_rate": 2.8046415844630857e-05,
|
811 |
+
"loss": 0.4246,
|
812 |
"step": 1260
|
813 |
},
|
814 |
{
|
815 |
+
"epoch": 0.93,
|
816 |
+
"learning_rate": 2.7760253198821822e-05,
|
817 |
+
"loss": 0.4449,
|
818 |
"step": 1270
|
819 |
},
|
820 |
{
|
821 |
+
"epoch": 0.94,
|
822 |
+
"learning_rate": 2.7473723953268687e-05,
|
823 |
+
"loss": 0.4217,
|
824 |
"step": 1280
|
825 |
},
|
826 |
{
|
827 |
+
"epoch": 0.95,
|
828 |
+
"learning_rate": 2.7186866163012232e-05,
|
829 |
+
"loss": 0.4495,
|
830 |
"step": 1290
|
831 |
},
|
832 |
{
|
833 |
+
"epoch": 0.95,
|
834 |
+
"learning_rate": 2.6899717926728535e-05,
|
835 |
+
"loss": 0.4523,
|
836 |
"step": 1300
|
837 |
},
|
838 |
{
|
839 |
+
"epoch": 0.96,
|
840 |
+
"learning_rate": 2.6612317381668915e-05,
|
841 |
+
"loss": 0.4523,
|
842 |
"step": 1310
|
843 |
},
|
844 |
{
|
845 |
+
"epoch": 0.97,
|
846 |
+
"learning_rate": 2.632470269859478e-05,
|
847 |
+
"loss": 0.45,
|
848 |
"step": 1320
|
849 |
},
|
850 |
{
|
851 |
+
"epoch": 0.98,
|
852 |
+
"learning_rate": 2.603691207670803e-05,
|
853 |
+
"loss": 0.4371,
|
854 |
"step": 1330
|
855 |
},
|
856 |
{
|
857 |
+
"epoch": 0.98,
|
858 |
+
"learning_rate": 2.5748983738577653e-05,
|
859 |
+
"loss": 0.4221,
|
860 |
"step": 1340
|
861 |
},
|
862 |
{
|
863 |
+
"epoch": 0.99,
|
864 |
+
"learning_rate": 2.5460955925063268e-05,
|
865 |
+
"loss": 0.4565,
|
866 |
"step": 1350
|
867 |
},
|
868 |
{
|
869 |
+
"epoch": 1.0,
|
870 |
+
"learning_rate": 2.5172866890236203e-05,
|
871 |
+
"loss": 0.3892,
|
872 |
"step": 1360
|
873 |
},
|
874 |
{
|
875 |
+
"epoch": 1.0,
|
876 |
+
"learning_rate": 2.48847548962988e-05,
|
877 |
+
"loss": 0.3973,
|
878 |
"step": 1370
|
879 |
},
|
880 |
{
|
881 |
+
"epoch": 1.01,
|
882 |
+
"learning_rate": 2.4596658208502713e-05,
|
883 |
+
"loss": 0.4151,
|
884 |
"step": 1380
|
885 |
},
|
886 |
{
|
887 |
+
"epoch": 1.02,
|
888 |
+
"learning_rate": 2.4308615090066735e-05,
|
889 |
+
"loss": 0.3839,
|
890 |
"step": 1390
|
891 |
},
|
892 |
{
|
893 |
+
"epoch": 1.03,
|
894 |
+
"learning_rate": 2.4020663797094864e-05,
|
895 |
+
"loss": 0.4062,
|
896 |
"step": 1400
|
897 |
},
|
898 |
{
|
899 |
+
"epoch": 1.03,
|
900 |
+
"eval_loss": 0.43284282088279724,
|
901 |
+
"eval_runtime": 70.1658,
|
902 |
+
"eval_samples_per_second": 15.706,
|
903 |
+
"eval_steps_per_second": 1.582,
|
904 |
+
"step": 1400
|
905 |
+
},
|
906 |
+
{
|
907 |
+
"epoch": 1.03,
|
908 |
+
"learning_rate": 2.373284257349544e-05,
|
909 |
+
"loss": 0.4003,
|
910 |
"step": 1410
|
911 |
},
|
912 |
{
|
913 |
+
"epoch": 1.04,
|
914 |
+
"learning_rate": 2.3445189645901806e-05,
|
915 |
+
"loss": 0.4447,
|
916 |
"step": 1420
|
917 |
},
|
918 |
{
|
919 |
+
"epoch": 1.05,
|
920 |
+
"learning_rate": 2.3157743218595247e-05,
|
921 |
+
"loss": 0.4565,
|
922 |
"step": 1430
|
923 |
},
|
924 |
{
|
925 |
+
"epoch": 1.06,
|
926 |
+
"learning_rate": 2.287054146843097e-05,
|
927 |
+
"loss": 0.4265,
|
928 |
"step": 1440
|
929 |
},
|
930 |
{
|
931 |
+
"epoch": 1.06,
|
932 |
+
"learning_rate": 2.2583622539767668e-05,
|
933 |
+
"loss": 0.4056,
|
934 |
"step": 1450
|
935 |
},
|
936 |
{
|
937 |
+
"epoch": 1.07,
|
938 |
+
"learning_rate": 2.2297024539401463e-05,
|
939 |
+
"loss": 0.4074,
|
940 |
"step": 1460
|
941 |
},
|
942 |
{
|
943 |
+
"epoch": 1.08,
|
944 |
+
"learning_rate": 2.2010785531504716e-05,
|
945 |
+
"loss": 0.4281,
|
946 |
"step": 1470
|
947 |
},
|
948 |
{
|
949 |
+
"epoch": 1.09,
|
950 |
+
"learning_rate": 2.172494353257066e-05,
|
951 |
+
"loss": 0.4663,
|
952 |
"step": 1480
|
953 |
},
|
954 |
{
|
955 |
+
"epoch": 1.09,
|
956 |
+
"learning_rate": 2.1439536506364274e-05,
|
957 |
+
"loss": 0.4281,
|
958 |
"step": 1490
|
959 |
},
|
960 |
{
|
961 |
+
"epoch": 1.1,
|
962 |
+
"learning_rate": 2.1154602358880122e-05,
|
963 |
+
"loss": 0.4111,
|
964 |
"step": 1500
|
965 |
},
|
966 |
{
|
967 |
+
"epoch": 1.11,
|
968 |
+
"learning_rate": 2.0870178933307948e-05,
|
969 |
+
"loss": 0.4187,
|
970 |
"step": 1510
|
971 |
},
|
972 |
{
|
973 |
+
"epoch": 1.11,
|
974 |
+
"learning_rate": 2.0586304005006585e-05,
|
975 |
+
"loss": 0.3964,
|
976 |
"step": 1520
|
977 |
},
|
978 |
{
|
979 |
+
"epoch": 1.12,
|
980 |
+
"learning_rate": 2.030301527648684e-05,
|
981 |
+
"loss": 0.4331,
|
982 |
"step": 1530
|
983 |
},
|
984 |
{
|
985 |
+
"epoch": 1.13,
|
986 |
+
"learning_rate": 2.0020350372404102e-05,
|
987 |
+
"loss": 0.4432,
|
988 |
"step": 1540
|
989 |
},
|
990 |
{
|
991 |
+
"epoch": 1.14,
|
992 |
+
"learning_rate": 1.9738346834561254e-05,
|
993 |
+
"loss": 0.4056,
|
994 |
"step": 1550
|
995 |
},
|
996 |
{
|
997 |
+
"epoch": 1.14,
|
998 |
+
"learning_rate": 1.945704211692262e-05,
|
999 |
+
"loss": 0.4354,
|
1000 |
"step": 1560
|
1001 |
},
|
1002 |
{
|
1003 |
+
"epoch": 1.15,
|
1004 |
+
"learning_rate": 1.9176473580639538e-05,
|
1005 |
+
"loss": 0.4309,
|
1006 |
"step": 1570
|
1007 |
},
|
1008 |
{
|
1009 |
+
"epoch": 1.16,
|
1010 |
+
"learning_rate": 1.8896678489088304e-05,
|
1011 |
+
"loss": 0.4058,
|
1012 |
"step": 1580
|
1013 |
},
|
1014 |
{
|
1015 |
+
"epoch": 1.17,
|
1016 |
+
"learning_rate": 1.8617694002921064e-05,
|
1017 |
+
"loss": 0.4319,
|
1018 |
"step": 1590
|
1019 |
},
|
1020 |
{
|
1021 |
+
"epoch": 1.17,
|
1022 |
+
"learning_rate": 1.8339557175130383e-05,
|
1023 |
+
"loss": 0.4267,
|
1024 |
"step": 1600
|
1025 |
},
|
1026 |
{
|
1027 |
+
"epoch": 1.17,
|
1028 |
+
"eval_loss": 0.42894992232322693,
|
1029 |
+
"eval_runtime": 70.251,
|
1030 |
+
"eval_samples_per_second": 15.687,
|
1031 |
+
"eval_steps_per_second": 1.58,
|
1032 |
+
"step": 1600
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"epoch": 1.18,
|
1036 |
+
"learning_rate": 1.8062304946128073e-05,
|
1037 |
+
"loss": 0.3921,
|
1038 |
"step": 1610
|
1039 |
},
|
1040 |
{
|
1041 |
+
"epoch": 1.19,
|
1042 |
+
"learning_rate": 1.7785974138839018e-05,
|
1043 |
+
"loss": 0.4206,
|
1044 |
"step": 1620
|
1045 |
},
|
1046 |
{
|
1047 |
+
"epoch": 1.2,
|
1048 |
+
"learning_rate": 1.7510601453810594e-05,
|
1049 |
+
"loss": 0.4356,
|
1050 |
"step": 1630
|
1051 |
},
|
1052 |
{
|
1053 |
+
"epoch": 1.2,
|
1054 |
+
"learning_rate": 1.723622346433828e-05,
|
1055 |
+
"loss": 0.4167,
|
1056 |
"step": 1640
|
1057 |
},
|
1058 |
{
|
1059 |
+
"epoch": 1.21,
|
1060 |
+
"learning_rate": 1.6962876611608262e-05,
|
1061 |
+
"loss": 0.4233,
|
1062 |
"step": 1650
|
1063 |
},
|
1064 |
{
|
1065 |
+
"epoch": 1.22,
|
1066 |
+
"learning_rate": 1.6690597199857523e-05,
|
1067 |
+
"loss": 0.4176,
|
1068 |
"step": 1660
|
1069 |
},
|
1070 |
{
|
1071 |
+
"epoch": 1.22,
|
1072 |
+
"learning_rate": 1.6419421391552142e-05,
|
1073 |
+
"loss": 0.4241,
|
1074 |
"step": 1670
|
1075 |
},
|
1076 |
{
|
1077 |
+
"epoch": 1.23,
|
1078 |
+
"learning_rate": 1.6149385202584423e-05,
|
1079 |
+
"loss": 0.4524,
|
1080 |
"step": 1680
|
1081 |
},
|
1082 |
{
|
1083 |
+
"epoch": 1.24,
|
1084 |
+
"learning_rate": 1.5880524497489474e-05,
|
1085 |
+
"loss": 0.4647,
|
1086 |
"step": 1690
|
1087 |
},
|
1088 |
{
|
1089 |
+
"epoch": 1.25,
|
1090 |
+
"learning_rate": 1.5612874984681923e-05,
|
1091 |
+
"loss": 0.4036,
|
1092 |
"step": 1700
|
1093 |
},
|
1094 |
{
|
1095 |
+
"epoch": 1.25,
|
1096 |
+
"learning_rate": 1.534647221171334e-05,
|
1097 |
+
"loss": 0.4148,
|
1098 |
"step": 1710
|
1099 |
},
|
1100 |
{
|
1101 |
+
"epoch": 1.26,
|
1102 |
+
"learning_rate": 1.5081351560551021e-05,
|
1103 |
+
"loss": 0.408,
|
1104 |
"step": 1720
|
1105 |
},
|
1106 |
{
|
1107 |
+
"epoch": 1.27,
|
1108 |
+
"learning_rate": 1.4817548242878759e-05,
|
1109 |
+
"loss": 0.457,
|
1110 |
"step": 1730
|
1111 |
},
|
1112 |
{
|
1113 |
+
"epoch": 1.28,
|
1114 |
+
"learning_rate": 1.45550972954203e-05,
|
1115 |
+
"loss": 0.4193,
|
1116 |
"step": 1740
|
1117 |
},
|
1118 |
{
|
1119 |
+
"epoch": 1.28,
|
1120 |
+
"learning_rate": 1.4294033575285914e-05,
|
1121 |
+
"loss": 0.4149,
|
1122 |
"step": 1750
|
1123 |
},
|
1124 |
{
|
1125 |
+
"epoch": 1.29,
|
1126 |
+
"learning_rate": 1.4034391755342972e-05,
|
1127 |
+
"loss": 0.4032,
|
1128 |
"step": 1760
|
1129 |
},
|
1130 |
{
|
1131 |
+
"epoch": 1.3,
|
1132 |
+
"learning_rate": 1.3776206319610823e-05,
|
1133 |
+
"loss": 0.4078,
|
1134 |
"step": 1770
|
1135 |
},
|
1136 |
{
|
1137 |
+
"epoch": 1.31,
|
1138 |
+
"learning_rate": 1.3519511558680892e-05,
|
1139 |
+
"loss": 0.4123,
|
1140 |
"step": 1780
|
1141 |
},
|
1142 |
{
|
1143 |
+
"epoch": 1.31,
|
1144 |
+
"learning_rate": 1.3264341565162422e-05,
|
1145 |
+
"loss": 0.4089,
|
1146 |
"step": 1790
|
1147 |
},
|
1148 |
{
|
1149 |
+
"epoch": 1.32,
|
1150 |
+
"learning_rate": 1.3010730229154445e-05,
|
1151 |
+
"loss": 0.383,
|
1152 |
"step": 1800
|
1153 |
},
|
1154 |
{
|
1155 |
+
"epoch": 1.32,
|
1156 |
+
"eval_loss": 0.4250344932079315,
|
1157 |
+
"eval_runtime": 70.4814,
|
1158 |
+
"eval_samples_per_second": 15.635,
|
1159 |
+
"eval_steps_per_second": 1.575,
|
1160 |
+
"step": 1800
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 1.33,
|
1164 |
+
"learning_rate": 1.2758711233744783e-05,
|
1165 |
+
"loss": 0.3936,
|
1166 |
"step": 1810
|
1167 |
},
|
1168 |
{
|
1169 |
+
"epoch": 1.33,
|
1170 |
+
"learning_rate": 1.2508318050536421e-05,
|
1171 |
+
"loss": 0.4127,
|
1172 |
"step": 1820
|
1173 |
},
|
1174 |
{
|
1175 |
+
"epoch": 1.34,
|
1176 |
+
"learning_rate": 1.2259583935202062e-05,
|
1177 |
+
"loss": 0.4015,
|
1178 |
"step": 1830
|
1179 |
},
|
1180 |
{
|
1181 |
+
"epoch": 1.35,
|
1182 |
+
"learning_rate": 1.2012541923067244e-05,
|
1183 |
+
"loss": 0.4203,
|
1184 |
"step": 1840
|
1185 |
},
|
1186 |
{
|
1187 |
+
"epoch": 1.36,
|
1188 |
+
"learning_rate": 1.176722482472286e-05,
|
1189 |
+
"loss": 0.4367,
|
1190 |
"step": 1850
|
1191 |
},
|
1192 |
{
|
1193 |
+
"epoch": 1.36,
|
1194 |
+
"learning_rate": 1.1523665221667398e-05,
|
1195 |
+
"loss": 0.4233,
|
1196 |
"step": 1860
|
1197 |
},
|
1198 |
{
|
1199 |
+
"epoch": 1.37,
|
1200 |
+
"learning_rate": 1.1281895461979732e-05,
|
1201 |
+
"loss": 0.4405,
|
1202 |
"step": 1870
|
1203 |
},
|
1204 |
{
|
1205 |
+
"epoch": 1.38,
|
1206 |
+
"learning_rate": 1.104194765602281e-05,
|
1207 |
+
"loss": 0.4379,
|
1208 |
"step": 1880
|
1209 |
},
|
1210 |
{
|
1211 |
+
"epoch": 1.39,
|
1212 |
+
"learning_rate": 1.0803853672178946e-05,
|
1213 |
+
"loss": 0.4146,
|
1214 |
"step": 1890
|
1215 |
},
|
1216 |
{
|
1217 |
+
"epoch": 1.39,
|
1218 |
+
"learning_rate": 1.0567645132617316e-05,
|
1219 |
+
"loss": 0.4438,
|
1220 |
"step": 1900
|
1221 |
},
|
1222 |
{
|
1223 |
+
"epoch": 1.4,
|
1224 |
+
"learning_rate": 1.0333353409094015e-05,
|
1225 |
+
"loss": 0.3915,
|
1226 |
"step": 1910
|
1227 |
},
|
1228 |
{
|
1229 |
+
"epoch": 1.41,
|
1230 |
+
"learning_rate": 1.0101009618785528e-05,
|
1231 |
+
"loss": 0.4063,
|
1232 |
"step": 1920
|
1233 |
},
|
1234 |
{
|
1235 |
+
"epoch": 1.42,
|
1236 |
+
"learning_rate": 9.870644620155877e-06,
|
1237 |
+
"loss": 0.3974,
|
1238 |
"step": 1930
|
1239 |
},
|
1240 |
{
|
1241 |
+
"epoch": 1.42,
|
1242 |
+
"learning_rate": 9.642289008858244e-06,
|
1243 |
+
"loss": 0.4015,
|
1244 |
"step": 1940
|
1245 |
},
|
1246 |
{
|
1247 |
+
"epoch": 1.43,
|
1248 |
+
"learning_rate": 9.41597311367142e-06,
|
1249 |
+
"loss": 0.4264,
|
1250 |
"step": 1950
|
1251 |
},
|
1252 |
{
|
1253 |
+
"epoch": 1.44,
|
1254 |
+
"learning_rate": 9.191726992471725e-06,
|
1255 |
+
"loss": 0.4334,
|
1256 |
"step": 1960
|
1257 |
},
|
1258 |
{
|
1259 |
+
"epoch": 1.44,
|
1260 |
+
"learning_rate": 8.969580428240903e-06,
|
1261 |
+
"loss": 0.4197,
|
1262 |
"step": 1970
|
1263 |
},
|
1264 |
+
{
|
1265 |
+
"epoch": 1.45,
|
1266 |
+
"learning_rate": 8.74956292511056e-06,
|
1267 |
+
"loss": 0.422,
|
1268 |
+
"step": 1980
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"epoch": 1.46,
|
1272 |
+
"learning_rate": 8.531703704443575e-06,
|
1273 |
+
"loss": 0.4077,
|
1274 |
+
"step": 1990
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 1.47,
|
1278 |
+
"learning_rate": 8.316031700953086e-06,
|
1279 |
+
"loss": 0.4334,
|
1280 |
+
"step": 2000
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 1.47,
|
1284 |
+
"eval_loss": 0.4206145107746124,
|
1285 |
+
"eval_runtime": 70.0533,
|
1286 |
+
"eval_samples_per_second": 15.731,
|
1287 |
+
"eval_steps_per_second": 1.585,
|
1288 |
+
"step": 2000
|
1289 |
+
},
|
1290 |
+
{
|
1291 |
+
"epoch": 1.47,
|
1292 |
+
"learning_rate": 8.102575558859612e-06,
|
1293 |
+
"loss": 0.4171,
|
1294 |
+
"step": 2010
|
1295 |
+
},
|
1296 |
+
{
|
1297 |
+
"epoch": 1.48,
|
1298 |
+
"learning_rate": 7.891363628086671e-06,
|
1299 |
+
"loss": 0.3957,
|
1300 |
+
"step": 2020
|
1301 |
+
},
|
1302 |
+
{
|
1303 |
+
"epoch": 1.49,
|
1304 |
+
"learning_rate": 7.682423960495517e-06,
|
1305 |
+
"loss": 0.4174,
|
1306 |
+
"step": 2030
|
1307 |
+
},
|
1308 |
+
{
|
1309 |
+
"epoch": 1.5,
|
1310 |
+
"learning_rate": 7.475784306159478e-06,
|
1311 |
+
"loss": 0.4187,
|
1312 |
+
"step": 2040
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"epoch": 1.5,
|
1316 |
+
"learning_rate": 7.271472109678379e-06,
|
1317 |
+
"loss": 0.3775,
|
1318 |
+
"step": 2050
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 1.51,
|
1322 |
+
"learning_rate": 7.0695145065334585e-06,
|
1323 |
+
"loss": 0.4019,
|
1324 |
+
"step": 2060
|
1325 |
+
},
|
1326 |
+
{
|
1327 |
+
"epoch": 1.52,
|
1328 |
+
"learning_rate": 6.869938319483471e-06,
|
1329 |
+
"loss": 0.4143,
|
1330 |
+
"step": 2070
|
1331 |
+
},
|
1332 |
+
{
|
1333 |
+
"epoch": 1.53,
|
1334 |
+
"learning_rate": 6.67277005500222e-06,
|
1335 |
+
"loss": 0.3853,
|
1336 |
+
"step": 2080
|
1337 |
+
},
|
1338 |
+
{
|
1339 |
+
"epoch": 1.53,
|
1340 |
+
"learning_rate": 6.478035899758139e-06,
|
1341 |
+
"loss": 0.4403,
|
1342 |
+
"step": 2090
|
1343 |
+
},
|
1344 |
+
{
|
1345 |
+
"epoch": 1.54,
|
1346 |
+
"learning_rate": 6.285761717136335e-06,
|
1347 |
+
"loss": 0.3888,
|
1348 |
+
"step": 2100
|
1349 |
+
},
|
1350 |
+
{
|
1351 |
+
"epoch": 1.55,
|
1352 |
+
"learning_rate": 6.095973043803577e-06,
|
1353 |
+
"loss": 0.4123,
|
1354 |
+
"step": 2110
|
1355 |
+
},
|
1356 |
+
{
|
1357 |
+
"epoch": 1.55,
|
1358 |
+
"learning_rate": 5.908695086316701e-06,
|
1359 |
+
"loss": 0.4035,
|
1360 |
+
"step": 2120
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 1.56,
|
1364 |
+
"learning_rate": 5.723952717774763e-06,
|
1365 |
+
"loss": 0.4219,
|
1366 |
+
"step": 2130
|
1367 |
+
},
|
1368 |
+
{
|
1369 |
+
"epoch": 1.57,
|
1370 |
+
"learning_rate": 5.54177047451562e-06,
|
1371 |
+
"loss": 0.4209,
|
1372 |
+
"step": 2140
|
1373 |
+
},
|
1374 |
+
{
|
1375 |
+
"epoch": 1.58,
|
1376 |
+
"learning_rate": 5.362172552857128e-06,
|
1377 |
+
"loss": 0.4286,
|
1378 |
+
"step": 2150
|
1379 |
+
},
|
1380 |
+
{
|
1381 |
+
"epoch": 1.58,
|
1382 |
+
"learning_rate": 5.18518280588354e-06,
|
1383 |
+
"loss": 0.4134,
|
1384 |
+
"step": 2160
|
1385 |
+
},
|
1386 |
+
{
|
1387 |
+
"epoch": 1.59,
|
1388 |
+
"learning_rate": 5.010824740277501e-06,
|
1389 |
+
"loss": 0.4005,
|
1390 |
+
"step": 2170
|
1391 |
+
},
|
1392 |
+
{
|
1393 |
+
"epoch": 1.6,
|
1394 |
+
"learning_rate": 4.83912151319802e-06,
|
1395 |
+
"loss": 0.3973,
|
1396 |
+
"step": 2180
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"epoch": 1.61,
|
1400 |
+
"learning_rate": 4.6700959292048875e-06,
|
1401 |
+
"loss": 0.3959,
|
1402 |
+
"step": 2190
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 1.61,
|
1406 |
+
"learning_rate": 4.503770437229918e-06,
|
1407 |
+
"loss": 0.4017,
|
1408 |
+
"step": 2200
|
1409 |
+
},
|
1410 |
+
{
|
1411 |
+
"epoch": 1.61,
|
1412 |
+
"eval_loss": 0.41970890760421753,
|
1413 |
+
"eval_runtime": 69.9019,
|
1414 |
+
"eval_samples_per_second": 15.765,
|
1415 |
+
"eval_steps_per_second": 1.588,
|
1416 |
+
"step": 2200
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 1.62,
|
1420 |
+
"learning_rate": 4.340167127595407e-06,
|
1421 |
+
"loss": 0.4013,
|
1422 |
+
"step": 2210
|
1423 |
+
},
|
1424 |
+
{
|
1425 |
+
"epoch": 1.63,
|
1426 |
+
"learning_rate": 4.179307729080256e-06,
|
1427 |
+
"loss": 0.4069,
|
1428 |
+
"step": 2220
|
1429 |
+
},
|
1430 |
+
{
|
1431 |
+
"epoch": 1.64,
|
1432 |
+
"learning_rate": 4.021213606034064e-06,
|
1433 |
+
"loss": 0.3857,
|
1434 |
+
"step": 2230
|
1435 |
+
},
|
1436 |
+
{
|
1437 |
+
"epoch": 1.64,
|
1438 |
+
"learning_rate": 3.8659057555396645e-06,
|
1439 |
+
"loss": 0.4262,
|
1440 |
+
"step": 2240
|
1441 |
+
},
|
1442 |
+
{
|
1443 |
+
"epoch": 1.65,
|
1444 |
+
"learning_rate": 3.713404804624418e-06,
|
1445 |
+
"loss": 0.3953,
|
1446 |
+
"step": 2250
|
1447 |
+
},
|
1448 |
+
{
|
1449 |
+
"epoch": 1.66,
|
1450 |
+
"learning_rate": 3.5637310075206544e-06,
|
1451 |
+
"loss": 0.4231,
|
1452 |
+
"step": 2260
|
1453 |
+
},
|
1454 |
+
{
|
1455 |
+
"epoch": 1.66,
|
1456 |
+
"learning_rate": 3.416904242975635e-06,
|
1457 |
+
"loss": 0.407,
|
1458 |
+
"step": 2270
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 1.67,
|
1462 |
+
"learning_rate": 3.2729440116113843e-06,
|
1463 |
+
"loss": 0.4254,
|
1464 |
+
"step": 2280
|
1465 |
+
},
|
1466 |
+
{
|
1467 |
+
"epoch": 1.68,
|
1468 |
+
"learning_rate": 3.131869433334725e-06,
|
1469 |
+
"loss": 0.4054,
|
1470 |
+
"step": 2290
|
1471 |
+
},
|
1472 |
+
{
|
1473 |
+
"epoch": 1.69,
|
1474 |
+
"learning_rate": 2.9936992447979068e-06,
|
1475 |
+
"loss": 0.3801,
|
1476 |
+
"step": 2300
|
1477 |
+
},
|
1478 |
+
{
|
1479 |
+
"epoch": 1.69,
|
1480 |
+
"learning_rate": 2.8584517969101054e-06,
|
1481 |
+
"loss": 0.4335,
|
1482 |
+
"step": 2310
|
1483 |
+
},
|
1484 |
+
{
|
1485 |
+
"epoch": 1.7,
|
1486 |
+
"learning_rate": 2.7261450524001807e-06,
|
1487 |
+
"loss": 0.412,
|
1488 |
+
"step": 2320
|
1489 |
+
},
|
1490 |
+
{
|
1491 |
+
"epoch": 1.71,
|
1492 |
+
"learning_rate": 2.596796583430969e-06,
|
1493 |
+
"loss": 0.4456,
|
1494 |
+
"step": 2330
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"epoch": 1.72,
|
1498 |
+
"learning_rate": 2.470423569265462e-06,
|
1499 |
+
"loss": 0.3972,
|
1500 |
+
"step": 2340
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 1.72,
|
1504 |
+
"learning_rate": 2.34704279398516e-06,
|
1505 |
+
"loss": 0.3935,
|
1506 |
+
"step": 2350
|
1507 |
+
},
|
1508 |
+
{
|
1509 |
+
"epoch": 1.73,
|
1510 |
+
"learning_rate": 2.2266706442609226e-06,
|
1511 |
+
"loss": 0.3974,
|
1512 |
+
"step": 2360
|
1513 |
+
},
|
1514 |
+
{
|
1515 |
+
"epoch": 1.74,
|
1516 |
+
"learning_rate": 2.109323107176578e-06,
|
1517 |
+
"loss": 0.4157,
|
1518 |
+
"step": 2370
|
1519 |
+
},
|
1520 |
+
{
|
1521 |
+
"epoch": 1.75,
|
1522 |
+
"learning_rate": 1.9950157681056318e-06,
|
1523 |
+
"loss": 0.4379,
|
1524 |
+
"step": 2380
|
1525 |
+
},
|
1526 |
+
{
|
1527 |
+
"epoch": 1.75,
|
1528 |
+
"learning_rate": 1.8837638086413063e-06,
|
1529 |
+
"loss": 0.4035,
|
1530 |
+
"step": 2390
|
1531 |
+
},
|
1532 |
+
{
|
1533 |
+
"epoch": 1.76,
|
1534 |
+
"learning_rate": 1.7755820045802145e-06,
|
1535 |
+
"loss": 0.4455,
|
1536 |
+
"step": 2400
|
1537 |
+
},
|
1538 |
+
{
|
1539 |
+
"epoch": 1.76,
|
1540 |
+
"eval_loss": 0.41885045170783997,
|
1541 |
+
"eval_runtime": 70.0957,
|
1542 |
+
"eval_samples_per_second": 15.721,
|
1543 |
+
"eval_steps_per_second": 1.584,
|
1544 |
+
"step": 2400
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 1.77,
|
1548 |
+
"learning_rate": 1.6704847239599364e-06,
|
1549 |
+
"loss": 0.4532,
|
1550 |
+
"step": 2410
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 1.77,
|
1554 |
+
"learning_rate": 1.5684859251507394e-06,
|
1555 |
+
"loss": 0.4213,
|
1556 |
+
"step": 2420
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 1.78,
|
1560 |
+
"learning_rate": 1.4695991550017164e-06,
|
1561 |
+
"loss": 0.3873,
|
1562 |
+
"step": 2430
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 1.79,
|
1566 |
+
"learning_rate": 1.373837547041576e-06,
|
1567 |
+
"loss": 0.4163,
|
1568 |
+
"step": 2440
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 1.8,
|
1572 |
+
"learning_rate": 1.2812138197343392e-06,
|
1573 |
+
"loss": 0.3946,
|
1574 |
+
"step": 2450
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 1.8,
|
1578 |
+
"learning_rate": 1.1917402747901152e-06,
|
1579 |
+
"loss": 0.41,
|
1580 |
+
"step": 2460
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 1.81,
|
1584 |
+
"learning_rate": 1.105428795531327e-06,
|
1585 |
+
"loss": 0.4126,
|
1586 |
+
"step": 2470
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 1.82,
|
1590 |
+
"learning_rate": 1.0222908453143804e-06,
|
1591 |
+
"loss": 0.4505,
|
1592 |
+
"step": 2480
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 1.83,
|
1596 |
+
"learning_rate": 9.423374660072065e-07,
|
1597 |
+
"loss": 0.4303,
|
1598 |
+
"step": 2490
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 1.83,
|
1602 |
+
"learning_rate": 8.655792765227405e-07,
|
1603 |
+
"loss": 0.4179,
|
1604 |
+
"step": 2500
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 1.84,
|
1608 |
+
"learning_rate": 7.920264714085828e-07,
|
1609 |
+
"loss": 0.4376,
|
1610 |
+
"step": 2510
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 1.85,
|
1614 |
+
"learning_rate": 7.216888194930272e-07,
|
1615 |
+
"loss": 0.4069,
|
1616 |
+
"step": 2520
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 1.86,
|
1620 |
+
"learning_rate": 6.545756625876031e-07,
|
1621 |
+
"loss": 0.3887,
|
1622 |
+
"step": 2530
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 1.86,
|
1626 |
+
"learning_rate": 5.906959142463947e-07,
|
1627 |
+
"loss": 0.3972,
|
1628 |
+
"step": 2540
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 1.87,
|
1632 |
+
"learning_rate": 5.300580585821696e-07,
|
1633 |
+
"loss": 0.4078,
|
1634 |
+
"step": 2550
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 1.88,
|
1638 |
+
"learning_rate": 4.7267014913956463e-07,
|
1639 |
+
"loss": 0.4467,
|
1640 |
+
"step": 2560
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 1.88,
|
1644 |
+
"learning_rate": 4.1853980782549097e-07,
|
1645 |
+
"loss": 0.4567,
|
1646 |
+
"step": 2570
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 1.89,
|
1650 |
+
"learning_rate": 3.6767422389682173e-07,
|
1651 |
+
"loss": 0.4494,
|
1652 |
+
"step": 2580
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 1.9,
|
1656 |
+
"learning_rate": 3.2008015300555306e-07,
|
1657 |
+
"loss": 0.4344,
|
1658 |
+
"step": 2590
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 1.91,
|
1662 |
+
"learning_rate": 2.757639163015774e-07,
|
1663 |
+
"loss": 0.4101,
|
1664 |
+
"step": 2600
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 1.91,
|
1668 |
+
"eval_loss": 0.41886425018310547,
|
1669 |
+
"eval_runtime": 70.2179,
|
1670 |
+
"eval_samples_per_second": 15.694,
|
1671 |
+
"eval_steps_per_second": 1.581,
|
1672 |
+
"step": 2600
|
1673 |
+
},
|
1674 |
+
{
|
1675 |
+
"epoch": 1.91,
|
1676 |
+
"learning_rate": 2.347313995931466e-07,
|
1677 |
+
"loss": 0.4058,
|
1678 |
+
"step": 2610
|
1679 |
+
},
|
1680 |
+
{
|
1681 |
+
"epoch": 1.92,
|
1682 |
+
"learning_rate": 1.9698805256513908e-07,
|
1683 |
+
"loss": 0.414,
|
1684 |
+
"step": 2620
|
1685 |
+
},
|
1686 |
+
{
|
1687 |
+
"epoch": 1.93,
|
1688 |
+
"learning_rate": 1.6253888805527474e-07,
|
1689 |
+
"loss": 0.4254,
|
1690 |
+
"step": 2630
|
1691 |
+
},
|
1692 |
+
{
|
1693 |
+
"epoch": 1.94,
|
1694 |
+
"learning_rate": 1.3138848138835313e-07,
|
1695 |
+
"loss": 0.4017,
|
1696 |
+
"step": 2640
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 1.94,
|
1700 |
+
"learning_rate": 1.0354096976856186e-07,
|
1701 |
+
"loss": 0.4258,
|
1702 |
+
"step": 2650
|
1703 |
+
},
|
1704 |
+
{
|
1705 |
+
"epoch": 1.95,
|
1706 |
+
"learning_rate": 7.900005173002712e-08,
|
1707 |
+
"loss": 0.4098,
|
1708 |
+
"step": 2660
|
1709 |
+
},
|
1710 |
+
{
|
1711 |
+
"epoch": 1.96,
|
1712 |
+
"learning_rate": 5.776898664557051e-08,
|
1713 |
+
"loss": 0.42,
|
1714 |
+
"step": 2670
|
1715 |
+
},
|
1716 |
+
{
|
1717 |
+
"epoch": 1.97,
|
1718 |
+
"learning_rate": 3.985059429383875e-08,
|
1719 |
+
"loss": 0.3886,
|
1720 |
+
"step": 2680
|
1721 |
+
},
|
1722 |
+
{
|
1723 |
+
"epoch": 1.97,
|
1724 |
+
"learning_rate": 2.5247254484794813e-08,
|
1725 |
+
"loss": 0.4276,
|
1726 |
+
"step": 2690
|
1727 |
+
},
|
1728 |
+
{
|
1729 |
+
"epoch": 1.98,
|
1730 |
+
"learning_rate": 1.3960906743634706e-08,
|
1731 |
+
"loss": 0.4006,
|
1732 |
+
"step": 2700
|
1733 |
+
},
|
1734 |
+
{
|
1735 |
+
"epoch": 1.99,
|
1736 |
+
"learning_rate": 5.993050053204607e-09,
|
1737 |
+
"loss": 0.4243,
|
1738 |
+
"step": 2710
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 1.99,
|
1742 |
+
"learning_rate": 1.3447426549129117e-09,
|
1743 |
+
"loss": 0.4439,
|
1744 |
+
"step": 2720
|
1745 |
+
},
|
1746 |
{
|
1747 |
"epoch": 2.0,
|
1748 |
+
"step": 2726,
|
1749 |
+
"total_flos": 1.1289170586615415e+19,
|
1750 |
+
"train_loss": 0.46561298847898175,
|
1751 |
+
"train_runtime": 35477.4141,
|
1752 |
+
"train_samples_per_second": 6.149,
|
1753 |
+
"train_steps_per_second": 0.077
|
1754 |
}
|
1755 |
],
|
1756 |
+
"max_steps": 2726,
|
1757 |
"num_train_epochs": 2,
|
1758 |
+
"total_flos": 1.1289170586615415e+19,
|
1759 |
"trial_name": null,
|
1760 |
"trial_params": null
|
1761 |
}
|
{Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/training_args.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0037c3e69fa21891dd65687a3f79ad20a8abc0a75790c554b437378b35c59fe9
|
3 |
+
size 4600
|
Baichuan-13B-Chat-lora-Task/training_eval_loss.png
ADDED
Baichuan-13B-Chat-lora-Task/training_loss.png
ADDED
README.md
CHANGED
@@ -1,3 +1,150 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
tags:
|
6 |
+
- finance
|
7 |
---
|
8 |
+
|
9 |
+
This repository contains the DISC-FinLLM, version of Baichuan-13B-Chat as the base model.
|
10 |
+
|
11 |
+
<div align="center">
|
12 |
+
|
13 |
+
[Demo](https://law.fudan-disc.com) | [技术报告](https://arxiv.org/abs/2309.11325)
|
14 |
+
</div>
|
15 |
+
|
16 |
+
**Please note that due to the ongoing development of the project, the model weights in this repository may differ from those in our currently deployed demo.**
|
17 |
+
|
18 |
+
|
19 |
+
DISC-LawLLM is a large language model specialized in Chinese legal domain, developed and open-sourced by [Data Intelligence and Social Computing Lab of Fudan University (Fudan-DISC)](http://fudan-disc.com), to provide comprehensive intelligent legal services. The advtantages is:
|
20 |
+
* **Legal Texts Generic Processing Capability**
|
21 |
+
* **Legal Thinking and Reasoning**
|
22 |
+
* **Legal knowledge Retrieval Capacity**
|
23 |
+
|
24 |
+
In addition, the contributions include:
|
25 |
+
|
26 |
+
* **High-quality SFT datasets and effective training paradigms**
|
27 |
+
* **Chinese legal LLMs evaluation framework**
|
28 |
+
|
29 |
+
Check our [HOME](https://github.com/FudanDISC/DISC-LawLLM) for more information.
|
30 |
+
|
31 |
+
# DISC-Law-SFT Dataset
|
32 |
+
|
33 |
+
we construct a high-quality supervised fine-tuning dataset, DISC-Law-SFT with two subsets, namely DISC-Law-SFT-Pair and DISC-Law-SFT-Triplet. Our dataset converge a range of legal tasks, including legal information extraction, judgment prediction, document summarization, and legal question answering, ensuring coverage of diverse scenarios.
|
34 |
+
<img src="" alt="" width=""/>
|
35 |
+
|
36 |
+
<table>
|
37 |
+
<tr>
|
38 |
+
<th>Dataset</th>
|
39 |
+
<th>Task/Source</th>
|
40 |
+
<th>Size</th>
|
41 |
+
<th>Scenario</th>
|
42 |
+
</tr>
|
43 |
+
<tr>
|
44 |
+
<td rowspan="10">DISC-LawLLM-SFT-Pair</td>
|
45 |
+
<td>Legal information extraction</td>
|
46 |
+
<td>32K</td>
|
47 |
+
<td rowspan="7">Legal professional assistant</td>
|
48 |
+
</tr>
|
49 |
+
<tr>
|
50 |
+
<td>Legal event detection</td>
|
51 |
+
<td>27K</td>
|
52 |
+
</tr>
|
53 |
+
<tr>
|
54 |
+
<td>Legal case classification</td>
|
55 |
+
<td>20K</td>
|
56 |
+
</tr>
|
57 |
+
<tr>
|
58 |
+
<td>Legal judgement prediction</td>
|
59 |
+
<td>11K</td>
|
60 |
+
</tr>
|
61 |
+
<tr>
|
62 |
+
<td>Legal case matching</td>
|
63 |
+
<td>8K</td>
|
64 |
+
</tr>
|
65 |
+
<tr>
|
66 |
+
<td>Legal text summarization</td>
|
67 |
+
<td>9K</td>
|
68 |
+
</tr>
|
69 |
+
<tr>
|
70 |
+
<td>Judicial public opinion summarization</td>
|
71 |
+
<td>6K</td>
|
72 |
+
</tr>
|
73 |
+
<tr>
|
74 |
+
<td>Legal question answering</td>
|
75 |
+
<td>93K</td>
|
76 |
+
<td>Legal consultation services</td>
|
77 |
+
</tr>
|
78 |
+
<tr>
|
79 |
+
<td>Legal reading comprehension</td>
|
80 |
+
<td>38K</td>
|
81 |
+
<td rowspan="2">Judicial examination assistant</td>
|
82 |
+
</tr>
|
83 |
+
<tr>
|
84 |
+
<td>Judicial examination</td>
|
85 |
+
<td>12K</td>
|
86 |
+
</tr>
|
87 |
+
<tr>
|
88 |
+
<td rowspan="2">DISC-LawLLM-SFT-Triple</td>
|
89 |
+
<td>Legal judgement prediction</td>
|
90 |
+
<td>16K</td>
|
91 |
+
<td>Legal professional assistant</td>
|
92 |
+
</tr>
|
93 |
+
<tr>
|
94 |
+
<td>Legal question answering</td>
|
95 |
+
<td>23K</td>
|
96 |
+
<td>Legal consultation services</td>
|
97 |
+
</tr>
|
98 |
+
<tr>
|
99 |
+
<td rowspan="2">General</td>
|
100 |
+
<td>Alpaca-GPT4</td>
|
101 |
+
<td>48K</td>
|
102 |
+
<td rowspan="2">General scenarios</td>
|
103 |
+
</tr>
|
104 |
+
<tr>
|
105 |
+
<td>Firefly</td>
|
106 |
+
<td>60K</td>
|
107 |
+
</tr>
|
108 |
+
<tr>
|
109 |
+
<td>Total</td>
|
110 |
+
<td colspan="3">403K</td>
|
111 |
+
</tr>
|
112 |
+
</table>
|
113 |
+
|
114 |
+
# Using through hugging face transformers
|
115 |
+
|
116 |
+
```python
|
117 |
+
>>>import torch
|
118 |
+
>>>>>>from transformers import AutoModelForCausalLM, AutoTokenizer
|
119 |
+
>>>from transformers.generation.utils import GenerationConfig
|
120 |
+
>>>tokenizer = AutoTokenizer.from_pretrained("ShengbinYue/DISC-LawLLM", use_fast=False, trust_remote_code=True)
|
121 |
+
>>>model = AutoModelForCausalLM.from_pretrained("ShengbinYue/DISC-LawLLM", device_map="auto", torch_dtype=torch.float16, trust_remote_code=True)
|
122 |
+
>>>model.generation_config = GenerationConfig.from_pretrained("ShengbinYue/DISC-LawLLM")
|
123 |
+
>>>messages = []
|
124 |
+
>>>messages.append({"role": "user", "content": "生产销售假冒伪劣商品罪如何判刑?"})
|
125 |
+
>>>response = model.chat(tokenizer, messages)
|
126 |
+
>>>print(response)
|
127 |
+
```
|
128 |
+
|
129 |
+
# Disclaimer
|
130 |
+
|
131 |
+
DISC-LawLLM comes with issues and limitations that current LLMs have yet to overcome. While it can provide Chinese legal services in many a wide variety of tasks and scenarios, the model should be used for reference purposes only and cannot replace professional lawyers and legal experts. We encourage users of DISC-LawLLM to evaluate the model critically. We do not take responsibility for any issues, risks, or adverse consequences that may arise from the use of DISC-LawLLM.
|
132 |
+
|
133 |
+
# Citation
|
134 |
+
|
135 |
+
If our work is helpful for your, please kindly cite our work as follows:
|
136 |
+
|
137 |
+
```
|
138 |
+
@misc{yue2023disclawllm,
|
139 |
+
title={DISC-LawLLM: Fine-tuning Large Language Models for Intelligent Legal Services},
|
140 |
+
author={Shengbin Yue and Wei Chen and Siyuan Wang and Bingxuan Li and Chenchen Shen and Shujun Liu and Yuxuan Zhou and Yao Xiao and Song Yun and Wei Lin and Xuanjing Huang and Zhongyu Wei},
|
141 |
+
year={2023},
|
142 |
+
eprint={2309.11325},
|
143 |
+
archivePrefix={arXiv},
|
144 |
+
primaryClass={cs.CL}
|
145 |
+
}
|
146 |
+
```
|
147 |
+
|
148 |
+
# License
|
149 |
+
|
150 |
+
The use of the source code in this repository complies with the Apache 2.0 License.
|