Go4miii commited on
Commit
8a8b893
1 Parent(s): 6c8f964

commit from root

Browse files
Files changed (29) hide show
  1. Baichuan-13B-Chat-full/all_results.json +0 -7
  2. Baichuan-13B-Chat-full/config.json +0 -29
  3. Baichuan-13B-Chat-full/configuration_baichuan.py +0 -46
  4. Baichuan-13B-Chat-full/generation_config.json +0 -14
  5. Baichuan-13B-Chat-full/generation_utils.py +0 -82
  6. Baichuan-13B-Chat-full/modeling_baichuan.py +0 -572
  7. Baichuan-13B-Chat-full/pytorch_model-00002-of-00003.bin +0 -3
  8. Baichuan-13B-Chat-full/pytorch_model-00003-of-00003.bin +0 -3
  9. Baichuan-13B-Chat-full/pytorch_model.bin.index.json +0 -290
  10. Baichuan-13B-Chat-full/quantizer.py +0 -123
  11. Baichuan-13B-Chat-full/train_results.json +0 -7
  12. Baichuan-13B-Chat-full/trainer_log.jsonl +0 -198
  13. Baichuan-13B-Chat-full/training_loss.png +0 -0
  14. Baichuan-13B-Chat-lora-Task/README.md +9 -0
  15. Baichuan-13B-Chat-lora-Task/adapter_config.json +20 -0
  16. Baichuan-13B-Chat-full/pytorch_model-00001-of-00003.bin → Baichuan-13B-Chat-lora-Task/adapter_model.bin +2 -2
  17. Baichuan-13B-Chat-lora-Task/all_results.json +11 -0
  18. Baichuan-13B-Chat-lora-Task/eval_results.json +7 -0
  19. {Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/special_tokens_map.json +0 -0
  20. {Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/tokenization_baichuan.py +0 -0
  21. {Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/tokenizer.model +0 -0
  22. {Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/tokenizer_config.json +0 -0
  23. Baichuan-13B-Chat-lora-Task/train_results.json +7 -0
  24. Baichuan-13B-Chat-lora-Task/trainer_log.jsonl +287 -0
  25. {Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/trainer_state.json +1156 -602
  26. {Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/training_args.bin +2 -2
  27. Baichuan-13B-Chat-lora-Task/training_eval_loss.png +0 -0
  28. Baichuan-13B-Chat-lora-Task/training_loss.png +0 -0
  29. README.md +147 -0
Baichuan-13B-Chat-full/all_results.json DELETED
@@ -1,7 +0,0 @@
1
- {
2
- "epoch": 2.0,
3
- "train_loss": 0.5708327819994277,
4
- "train_runtime": 105327.89,
5
- "train_samples_per_second": 4.797,
6
- "train_steps_per_second": 0.019
7
- }
 
 
 
 
 
 
 
 
Baichuan-13B-Chat-full/config.json DELETED
@@ -1,29 +0,0 @@
1
- {
2
- "_from_model_config": true,
3
- "_name_or_path": "baichuan-inc/Baichuan-13B-Chat",
4
- "architectures": [
5
- "BaichuanForCausalLM"
6
- ],
7
- "auto_map": {
8
- "AutoConfig": "configuration_baichuan.BaichuanConfig",
9
- "AutoModel": "modeling_baichuan.BaichuanForCausalLM",
10
- "AutoModelForCausalLM": "baichuan-inc/Baichuan-13B-Chat--modeling_baichuan.BaichuanForCausalLM"
11
- },
12
- "bos_token_id": 1,
13
- "eos_token_id": 2,
14
- "hidden_act": "silu",
15
- "hidden_size": 5120,
16
- "initializer_range": 0.02,
17
- "intermediate_size": 13696,
18
- "model_max_length": 4096,
19
- "model_type": "baichuan",
20
- "num_attention_heads": 40,
21
- "num_hidden_layers": 40,
22
- "pad_token_id": 0,
23
- "rms_norm_eps": 1e-06,
24
- "tie_word_embeddings": false,
25
- "torch_dtype": "float16",
26
- "transformers_version": "4.31.0",
27
- "use_cache": false,
28
- "vocab_size": 64000
29
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Baichuan-13B-Chat-full/configuration_baichuan.py DELETED
@@ -1,46 +0,0 @@
1
- # Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
2
-
3
- from transformers.configuration_utils import PretrainedConfig
4
-
5
- class BaichuanConfig(PretrainedConfig):
6
- model_type = "baichuan"
7
- keys_to_ignore_at_inference = ["past_key_values"]
8
-
9
- def __init__(
10
- self,
11
- vocab_size=64000,
12
- hidden_size=5120,
13
- intermediate_size=13696,
14
- num_hidden_layers=40,
15
- num_attention_heads=40,
16
- hidden_act="silu",
17
- model_max_length=4096,
18
- initializer_range=0.02,
19
- rms_norm_eps=1e-6,
20
- use_cache=True,
21
- pad_token_id=0,
22
- bos_token_id=1,
23
- eos_token_id=2,
24
- tie_word_embeddings=False,
25
- gradient_checkpointing=False,
26
- **kwargs,
27
- ):
28
- self.vocab_size = vocab_size
29
- self.model_max_length = model_max_length
30
- self.hidden_size = hidden_size
31
- self.intermediate_size = intermediate_size
32
- self.num_hidden_layers = num_hidden_layers
33
- self.num_attention_heads = num_attention_heads
34
- self.hidden_act = hidden_act
35
- self.initializer_range = initializer_range
36
- self.rms_norm_eps = rms_norm_eps
37
- self.use_cache = use_cache
38
- self.gradient_checkpointing = gradient_checkpointing,
39
- super().__init__(
40
- pad_token_id=pad_token_id,
41
- bos_token_id=bos_token_id,
42
- eos_token_id=eos_token_id,
43
- tie_word_embeddings=tie_word_embeddings,
44
- **kwargs,
45
- )
46
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Baichuan-13B-Chat-full/generation_config.json DELETED
@@ -1,14 +0,0 @@
1
- {
2
- "assistant_token_id": 196,
3
- "bos_token_id": 1,
4
- "do_sample": true,
5
- "eos_token_id": 2,
6
- "max_new_tokens": 2048,
7
- "pad_token_id": 0,
8
- "repetition_penalty": 1.1,
9
- "temperature": 0.3,
10
- "top_k": 5,
11
- "top_p": 0.85,
12
- "transformers_version": "4.31.0",
13
- "user_token_id": 195
14
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Baichuan-13B-Chat-full/generation_utils.py DELETED
@@ -1,82 +0,0 @@
1
- from typing import List
2
- from queue import Queue
3
-
4
- import torch
5
-
6
-
7
- def build_chat_input(model, tokenizer, messages: List[dict], max_new_tokens: int=0):
8
- def _parse_messages(messages, split_role="user"):
9
- system, rounds = "", []
10
- round = []
11
- for i, message in enumerate(messages):
12
- if message["role"] == "system":
13
- assert i == 0
14
- system = message["content"]
15
- continue
16
- if message["role"] == split_role and round:
17
- rounds.append(round)
18
- round = []
19
- round.append(message)
20
- if round:
21
- rounds.append(round)
22
- return system, rounds
23
-
24
- max_new_tokens = max_new_tokens or model.generation_config.max_new_tokens
25
- max_input_tokens = model.config.model_max_length - max_new_tokens
26
- system, rounds = _parse_messages(messages, split_role="user")
27
- system_tokens = tokenizer.encode(system)
28
- max_history_tokens = max_input_tokens - len(system_tokens)
29
-
30
- history_tokens = []
31
- for round in rounds[::-1]:
32
- round_tokens = []
33
- for message in round:
34
- if message["role"] == "user":
35
- round_tokens.append(model.generation_config.user_token_id)
36
- else:
37
- round_tokens.append(model.generation_config.assistant_token_id)
38
- round_tokens.extend(tokenizer.encode(message["content"]))
39
- if len(history_tokens) == 0 or len(history_tokens) + len(round_tokens) <= max_history_tokens:
40
- history_tokens = round_tokens + history_tokens # concat left
41
- if len(history_tokens) < max_history_tokens:
42
- continue
43
- break
44
-
45
- input_tokens = system_tokens + history_tokens
46
- if messages[-1]["role"] != "assistant":
47
- input_tokens.append(model.generation_config.assistant_token_id)
48
- input_tokens = input_tokens[-max_input_tokens:] # truncate left
49
- return torch.LongTensor([input_tokens]).to(model.device)
50
-
51
-
52
- class TextIterStreamer:
53
- def __init__(self, tokenizer, skip_prompt=False, skip_special_tokens=False):
54
- self.tokenizer = tokenizer
55
- self.skip_prompt = skip_prompt
56
- self.skip_special_tokens = skip_special_tokens
57
- self.tokens = []
58
- self.text_queue = Queue()
59
- self.next_tokens_are_prompt = True
60
-
61
- def put(self, value):
62
- if self.skip_prompt and self.next_tokens_are_prompt:
63
- self.next_tokens_are_prompt = False
64
- else:
65
- if len(value.shape) > 1:
66
- value = value[0]
67
- self.tokens.extend(value.tolist())
68
- self.text_queue.put(
69
- self.tokenizer.decode(self.tokens, skip_special_tokens=self.skip_special_tokens))
70
-
71
- def end(self):
72
- self.text_queue.put(None)
73
-
74
- def __iter__(self):
75
- return self
76
-
77
- def __next__(self):
78
- value = self.text_queue.get()
79
- if value is None:
80
- raise StopIteration()
81
- else:
82
- return value
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Baichuan-13B-Chat-full/modeling_baichuan.py DELETED
@@ -1,572 +0,0 @@
1
- # Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
2
-
3
- import math
4
- from threading import Thread
5
- from typing import List, Optional, Tuple, Union
6
-
7
- import torch
8
- import torch.utils.checkpoint
9
- from torch.nn import CrossEntropyLoss
10
- from transformers import PreTrainedModel
11
- from transformers.activations import ACT2FN
12
- from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
13
- from transformers.utils import logging
14
- from transformers.generation.utils import GenerationConfig
15
-
16
- from .configuration_baichuan import BaichuanConfig
17
- from .generation_utils import build_chat_input, TextIterStreamer
18
-
19
- logger = logging.get_logger(__name__)
20
-
21
-
22
- def _get_interleave(n):
23
- def _get_interleave_power_of_2(n):
24
- start = (2 ** (-2 ** -(math.log2(n) - 3)))
25
- ratio = start
26
- return [start * ratio ** i for i in range(n)]
27
-
28
- if math.log2(n).is_integer():
29
- return _get_interleave_power_of_2(n)
30
- else:
31
- closest_power_of_2 = 2 ** math.floor(math.log2(n))
32
- return _get_interleave_power_of_2(closest_power_of_2) + \
33
- _get_interleave(2 * closest_power_of_2)[0::2][:n - closest_power_of_2]
34
-
35
- def _fill_with_neg_inf(t):
36
- """FP16-compatible function that fills a tensor with -inf."""
37
- return t.float().fill_(float("-inf")).type_as(t)
38
-
39
- def _gen_alibi_mask(n_head, max_pos):
40
- """used in inference only"""
41
- slopes = torch.Tensor(_get_interleave(n_head))
42
- alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(max_pos).unsqueeze(0).unsqueeze(0).expand(
43
- n_head, -1, -1)
44
- alibi = alibi.view(n_head, 1, max_pos)
45
- alibi_mask = torch.triu(
46
- _fill_with_neg_inf(torch.zeros([max_pos, max_pos])), 1
47
- )
48
- alibi_mask = alibi_mask.unsqueeze(0) + alibi
49
- return alibi_mask
50
-
51
- def _buffered_future_mask(tensor, maxpos, alibi, attn_heads):
52
- """used in training only"""
53
- dim = tensor.size(1)
54
- _future_mask = torch.triu(
55
- _fill_with_neg_inf(torch.zeros([maxpos, maxpos])), 1
56
- )
57
- _future_mask = _future_mask.unsqueeze(0) + alibi
58
- _future_mask = _future_mask.to(tensor)
59
- return _future_mask[:tensor.shape[0] * attn_heads, :maxpos, :maxpos]
60
-
61
-
62
- class RMSNorm(torch.nn.Module):
63
- def __init__(self, hidden_size, epsilon=1e-6):
64
- super().__init__()
65
- self.weight = torch.nn.Parameter(torch.empty(hidden_size))
66
- self.epsilon = epsilon
67
-
68
- def forward(self, hidden_states):
69
- variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
70
- hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon)
71
-
72
- # convert into half-precision
73
- if self.weight.dtype in [torch.float16, torch.bfloat16]:
74
- hidden_states = hidden_states.to(self.weight.dtype)
75
-
76
- return self.weight * hidden_states
77
-
78
-
79
- class MLP(torch.nn.Module):
80
- def __init__(
81
- self,
82
- hidden_size: int,
83
- intermediate_size: int,
84
- hidden_act: str,
85
- ):
86
- super().__init__()
87
- self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
88
- self.down_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False)
89
- self.up_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
90
- self.act_fn = ACT2FN[hidden_act]
91
-
92
- def forward(self, x):
93
- return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
94
-
95
-
96
- class BaichuanAttention(torch.nn.Module):
97
- def __init__(self, config: BaichuanConfig):
98
- super().__init__()
99
- self.config = config
100
- self.hidden_size = config.hidden_size
101
- self.num_heads = config.num_attention_heads
102
- self.head_dim = self.hidden_size // self.num_heads
103
- self.max_position_embeddings = config.model_max_length
104
-
105
- if (self.head_dim * self.num_heads) != self.hidden_size:
106
- raise ValueError(
107
- f"hidden_size {self.hidden_size} is not divisible by num_heads {self.num_heads}"
108
- )
109
- self.W_pack = torch.nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
110
- self.o_proj = torch.nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
111
-
112
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
113
- return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
114
-
115
- def forward(
116
- self,
117
- hidden_states: torch.Tensor,
118
- attention_mask: Optional[torch.Tensor] = None,
119
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
120
- output_attentions: bool = False,
121
- use_cache: bool = False,
122
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
123
-
124
- bsz, q_len, _ = hidden_states.size()
125
-
126
- proj = self.W_pack(hidden_states)
127
- proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
128
- query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
129
- key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
130
- value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
131
-
132
- kv_seq_len = key_states.shape[-2]
133
- if past_key_value is not None:
134
- kv_seq_len += past_key_value[0].shape[-2]
135
-
136
- if past_key_value is not None:
137
- # reuse k, v, self_attention
138
- key_states = torch.cat([past_key_value[0], key_states], dim=2)
139
- value_states = torch.cat([past_key_value[1], value_states], dim=2)
140
-
141
- past_key_value = (key_states, value_states) if use_cache else None
142
-
143
- attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
144
-
145
- if attention_mask is not None:
146
- if q_len == 1: # inference with cache
147
- if len(attention_mask.size()) == 4:
148
- attention_mask = attention_mask[:, :, -1:, :]
149
- else:
150
- attention_mask = attention_mask[:, -1:, :]
151
- attn_weights = attn_weights + attention_mask
152
- attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
153
-
154
- attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
155
-
156
- attn_output = torch.matmul(attn_weights, value_states)
157
-
158
- attn_output = attn_output.transpose(1, 2)
159
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
160
- attn_output = self.o_proj(attn_output)
161
-
162
- if not output_attentions:
163
- attn_weights = None
164
-
165
- return attn_output, attn_weights, past_key_value
166
-
167
-
168
- class BaichuanLayer(torch.nn.Module):
169
- def __init__(self, config: BaichuanConfig):
170
- super().__init__()
171
- self.hidden_size = config.hidden_size
172
- self.self_attn = BaichuanAttention(config=config)
173
- self.mlp = MLP(
174
- hidden_size=self.hidden_size,
175
- intermediate_size=config.intermediate_size,
176
- hidden_act=config.hidden_act,
177
- )
178
- self.input_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
179
- self.post_attention_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
180
-
181
- def forward(
182
- self,
183
- hidden_states: torch.Tensor,
184
- attention_mask: Optional[torch.Tensor] = None,
185
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
186
- output_attentions: Optional[bool] = False,
187
- use_cache: Optional[bool] = False,
188
- ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
189
-
190
- residual = hidden_states
191
-
192
- hidden_states = self.input_layernorm(hidden_states)
193
-
194
- # Self Attention
195
- hidden_states, self_attn_weights, present_key_value = self.self_attn(
196
- hidden_states=hidden_states,
197
- attention_mask=attention_mask,
198
- past_key_value=past_key_value,
199
- output_attentions=output_attentions,
200
- use_cache=use_cache,
201
- )
202
- hidden_states = residual + hidden_states
203
-
204
- # Fully Connected
205
- residual = hidden_states
206
- hidden_states = self.post_attention_layernorm(hidden_states)
207
- hidden_states = self.mlp(hidden_states)
208
- hidden_states = residual + hidden_states
209
-
210
- outputs = (hidden_states,)
211
-
212
- if use_cache:
213
- outputs += (present_key_value,)
214
-
215
- return outputs
216
-
217
-
218
- class BaichuanPreTrainedModel(PreTrainedModel):
219
- config_class = BaichuanConfig
220
- base_model_prefix = "model"
221
- supports_gradient_checkpointing = True
222
- _no_split_modules = ["BaichuanLayer"]
223
- _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
224
-
225
- def _init_weights(self, module):
226
- std = self.config.initializer_range
227
- if isinstance(module, torch.nn.Linear):
228
- module.weight.data.normal_(mean=0.0, std=std)
229
- if module.bias is not None:
230
- module.bias.data.zero_()
231
- elif isinstance(module, torch.nn.Embedding):
232
- module.weight.data.normal_(mean=0.0, std=std)
233
- if module.padding_idx is not None:
234
- module.weight.data[module.padding_idx].zero_()
235
-
236
- def _set_gradient_checkpointing(self, module, value=False):
237
- if isinstance(module, BaichuanModel):
238
- module.gradient_checkpointing = value
239
-
240
-
241
- class BaichuanModel(BaichuanPreTrainedModel):
242
- def __init__(self, config: BaichuanConfig):
243
- super().__init__(config)
244
- self.padding_idx = config.pad_token_id
245
- self.vocab_size = config.vocab_size
246
- self.n_head = config.num_attention_heads
247
- self.embed_tokens = torch.nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
248
- self.layers = torch.nn.ModuleList([BaichuanLayer(config) for _ in range(config.num_hidden_layers)])
249
- self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
250
-
251
- self.gradient_checkpointing = config.gradient_checkpointing
252
- self.post_init()
253
- self.max_cache_pos = config.model_max_length
254
- self.first_run = True
255
- self.alibi_mask = None
256
-
257
- def get_input_embeddings(self):
258
- return self.embed_tokens
259
-
260
- def set_input_embeddings(self, value):
261
- self.embed_tokens = value
262
-
263
- def get_alibi_mask(self, tensor, seq_length_with_past):
264
- if self.training:
265
- slopes = torch.Tensor(_get_interleave(self.n_head))
266
- alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(seq_length_with_past).unsqueeze(0).unsqueeze(0).expand(
267
- self.n_head,
268
- -1, -1)
269
- alibi = alibi.view(self.n_head, 1, seq_length_with_past)
270
- mask = _buffered_future_mask(tensor, seq_length_with_past, alibi, self.n_head)
271
- else:
272
- if self.first_run:
273
- self.first_run = False
274
- self.register_buffer("future_mask", _gen_alibi_mask(self.n_head, self.max_cache_pos).to(tensor), persistent=False)
275
- if seq_length_with_past > self.max_cache_pos:
276
- self.max_cache_pos = seq_length_with_past
277
- self.register_buffer("future_mask", _gen_alibi_mask(self.n_head, self.max_cache_pos).to(tensor), persistent=False)
278
- mask = self.future_mask[:self.n_head, :seq_length_with_past, :seq_length_with_past]
279
- return mask
280
-
281
- def forward(
282
- self,
283
- input_ids: torch.LongTensor = None,
284
- attention_mask: Optional[torch.Tensor] = None,
285
- past_key_values: Optional[List[torch.FloatTensor]] = None,
286
- inputs_embeds: Optional[torch.FloatTensor] = None,
287
- use_cache: Optional[bool] = False,
288
- output_attentions: Optional[bool] = False,
289
- output_hidden_states: Optional[bool] = False,
290
- return_dict: Optional[bool] = True,
291
- ) -> Union[Tuple, BaseModelOutputWithPast]:
292
-
293
- if input_ids is not None and inputs_embeds is not None:
294
- raise ValueError("You cannot provide both input_ids and inputs_embeds simultaneously")
295
- elif input_ids is not None:
296
- batch_size, seq_length = input_ids.shape
297
- elif inputs_embeds is not None:
298
- batch_size, seq_length, _ = inputs_embeds.shape
299
- else:
300
- raise ValueError("You need to provide input_ids or inputs_embeds")
301
-
302
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
303
-
304
- seq_length_with_past = seq_length
305
-
306
- if past_key_values is not None:
307
- past_key_values_length = past_key_values[0][0].shape[2]
308
- seq_length_with_past = seq_length_with_past + past_key_values_length
309
-
310
- if inputs_embeds is None:
311
- inputs_embeds = self.embed_tokens(input_ids)
312
-
313
- if self.training:
314
- if self.alibi_mask is None or self.alibi_mask.shape[-1] != seq_length_with_past:
315
- self.alibi_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
316
- alibi_mask = self.alibi_mask
317
- else:
318
- alibi_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
319
-
320
- if attention_mask is not None:
321
- if len(attention_mask.shape) == 2:
322
- expanded_mask = attention_mask.to(alibi_mask.dtype)
323
- expanded_mask = torch.tril(torch.gt(expanded_mask[:, :, None] * expanded_mask[:, None, :], 0)
324
- ) * torch.eq(expanded_mask[:, :, None] - expanded_mask[:, None, :], 0)
325
- else:
326
- expanded_mask = attention_mask
327
- bsz = inputs_embeds.size(0)
328
- src_len, tgt_len = alibi_mask.size()[-2:]
329
- expanded_mask = expanded_mask.unsqueeze(1).expand(bsz, 1, src_len, tgt_len).to(alibi_mask.dtype)
330
- inverted_mask = 1.0 - expanded_mask
331
- inverted_mask = inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(alibi_mask.dtype).min)
332
- attention_mask = inverted_mask + alibi_mask.unsqueeze(0)
333
- else:
334
- attention_mask = alibi_mask
335
-
336
- hidden_states = inputs_embeds
337
-
338
- if self.gradient_checkpointing and self.training:
339
- if use_cache:
340
- logger.warning_once(
341
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
342
- )
343
- use_cache = False
344
-
345
- # decoder layers
346
- all_hidden_states = () if output_hidden_states else None
347
- all_self_attns = () if output_attentions else None
348
- next_decoder_cache = () if use_cache else None
349
-
350
- for idx, decoder_layer in enumerate(self.layers):
351
- if output_hidden_states:
352
- all_hidden_states += (hidden_states,)
353
-
354
- past_key_value = past_key_values[idx] if past_key_values is not None else None
355
-
356
- if self.gradient_checkpointing and self.training:
357
-
358
- def create_custom_forward(module):
359
- def custom_forward(*inputs):
360
- # None for past_key_value
361
- return module(*inputs, output_attentions, None)
362
-
363
- return custom_forward
364
-
365
- layer_outputs = torch.utils.checkpoint.checkpoint(
366
- create_custom_forward(decoder_layer),
367
- hidden_states,
368
- attention_mask,
369
- None,
370
- )
371
- else:
372
- layer_outputs = decoder_layer(
373
- hidden_states,
374
- attention_mask=attention_mask,
375
- past_key_value=past_key_value,
376
- output_attentions=output_attentions,
377
- use_cache=use_cache,
378
- )
379
-
380
- hidden_states = layer_outputs[0]
381
-
382
- if use_cache:
383
- next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
384
-
385
- if output_attentions:
386
- all_self_attns += (layer_outputs[1],)
387
-
388
- hidden_states = self.norm(hidden_states)
389
-
390
- # add hidden states from the last decoder layer
391
- if output_hidden_states:
392
- all_hidden_states += (hidden_states,)
393
-
394
- next_cache = next_decoder_cache if use_cache else None
395
- if not return_dict:
396
- return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
397
- return BaseModelOutputWithPast(
398
- last_hidden_state=hidden_states,
399
- past_key_values=next_cache,
400
- hidden_states=all_hidden_states,
401
- attentions=all_self_attns,
402
- )
403
-
404
-
405
- class BaichuanForCausalLM(BaichuanPreTrainedModel):
406
- def __init__(self, config):
407
- super().__init__(config)
408
- self.model = BaichuanModel(config)
409
- self.lm_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=False)
410
-
411
- # Initialize weights and apply final processing
412
- self.post_init()
413
-
414
- def get_input_embeddings(self):
415
- return self.model.embed_tokens
416
-
417
- def set_input_embeddings(self, value):
418
- self.model.embed_tokens = value
419
-
420
- def get_output_embeddings(self):
421
- return self.lm_head
422
-
423
- def set_output_embeddings(self, new_embeddings):
424
- self.lm_head = new_embeddings
425
-
426
- def set_decoder(self, decoder):
427
- self.model = decoder
428
-
429
- def get_decoder(self):
430
- return self.model
431
-
432
- def forward(
433
- self,
434
- input_ids: torch.LongTensor = None,
435
- attention_mask: Optional[torch.Tensor] = None,
436
- past_key_values: Optional[List[torch.FloatTensor]] = None,
437
- inputs_embeds: Optional[torch.FloatTensor] = None,
438
- labels: Optional[torch.LongTensor] = None,
439
- use_cache: Optional[bool] = None,
440
- output_attentions: Optional[bool] = False,
441
- output_hidden_states: Optional[bool] = False,
442
- return_dict: Optional[bool] = True,
443
- **kwargs
444
- ) -> Union[Tuple, CausalLMOutputWithPast]:
445
-
446
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
447
-
448
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
449
- outputs = self.model(
450
- input_ids=input_ids,
451
- attention_mask=attention_mask,
452
- past_key_values=past_key_values,
453
- inputs_embeds=inputs_embeds,
454
- use_cache=use_cache,
455
- output_attentions=output_attentions,
456
- output_hidden_states=output_hidden_states,
457
- return_dict=return_dict,
458
- )
459
-
460
- hidden_states = outputs[0]
461
- logits = self.lm_head(hidden_states)
462
-
463
- loss = None
464
- if labels is not None:
465
- # Shift so that tokens < n predict n
466
- shift_logits = logits[..., :-1, :].contiguous()
467
- shift_labels = labels[..., 1:].contiguous()
468
- # Flatten the tokens
469
- loss_fct = CrossEntropyLoss()
470
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
471
- shift_labels = shift_labels.view(-1)
472
- # Enable model parallelism
473
- shift_labels = shift_labels.to(shift_logits.device)
474
- loss = loss_fct(shift_logits, shift_labels)
475
-
476
- if not return_dict:
477
- output = (logits,) + outputs[1:]
478
- return (loss,) + output if loss is not None else output
479
-
480
- return CausalLMOutputWithPast(
481
- loss=loss,
482
- logits=logits,
483
- past_key_values=outputs.past_key_values,
484
- hidden_states=outputs.hidden_states,
485
- attentions=outputs.attentions,
486
- )
487
-
488
- def prepare_inputs_for_generation(
489
- self,
490
- input_ids: torch.LongTensor,
491
- past_key_values: Optional[torch.Tensor] = None,
492
- attention_mask: Optional[torch.Tensor] = None,
493
- inputs_embeds: Optional[torch.Tensor] = None,
494
- **kwargs
495
- ):
496
- if past_key_values:
497
- input_ids = input_ids[:, -1:]
498
-
499
- # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
500
- if inputs_embeds is not None and past_key_values is None:
501
- model_inputs = {"inputs_embeds": inputs_embeds}
502
- else:
503
- model_inputs = {"input_ids": input_ids}
504
-
505
- model_inputs.update(
506
- {
507
- "past_key_values": past_key_values,
508
- "use_cache": kwargs.get("use_cache"),
509
- "attention_mask": attention_mask
510
- }
511
- )
512
- return model_inputs
513
-
514
- @staticmethod
515
- def _reorder_cache(past_key_values, beam_idx):
516
- return tuple(
517
- tuple(past_state.index_select(0, beam_idx) for past_state in layer_past)
518
- for layer_past in past_key_values
519
- )
520
-
521
- def quantize(self, bits: int):
522
- try:
523
- from .quantizer import QLinear
524
- except ImportError:
525
- raise ImportError(
526
- f"Needs QLinear to run quantize."
527
- )
528
-
529
- for layer in self.model.layers:
530
- layer.self_attn.W_pack = QLinear(
531
- bits=bits,
532
- weight=layer.self_attn.W_pack.weight,
533
- bias = None,
534
- )
535
- layer.self_attn.o_proj = QLinear(
536
- bits=bits,
537
- weight=layer.self_attn.o_proj.weight,
538
- bias = None,
539
- )
540
- layer.mlp.gate_proj = QLinear(
541
- bits=bits,
542
- weight=layer.mlp.gate_proj.weight,
543
- bias = None,
544
- )
545
- layer.mlp.down_proj = QLinear(
546
- bits=bits,
547
- weight=layer.mlp.down_proj.weight,
548
- bias = None,
549
- )
550
- layer.mlp.up_proj = QLinear(
551
- bits=bits,
552
- weight=layer.mlp.up_proj.weight,
553
- bias = None,
554
- )
555
- return self
556
-
557
- @torch.no_grad()
558
- def chat(self, tokenizer, messages: List[dict], stream=False,
559
- generation_config: Optional[GenerationConfig]=None):
560
- generation_config = generation_config or self.generation_config
561
- input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
562
- if stream:
563
- streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
564
- Thread(target=self.generate, kwargs=dict(
565
- inputs=input_ids, streamer=streamer,
566
- generation_config=generation_config,
567
- )).start()
568
- return streamer
569
- else:
570
- outputs = self.generate(input_ids, generation_config=generation_config)
571
- response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
572
- return response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Baichuan-13B-Chat-full/pytorch_model-00002-of-00003.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f5e1e6afc5fd592dda61582a07f748ef813b21ec6885eba8fe2da9cf973931c4
3
- size 9947420311
 
 
 
 
Baichuan-13B-Chat-full/pytorch_model-00003-of-00003.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:ee03255509602bdb0fc2cd144bd3df07fcd7ad2696778e11dfdf380751698ba1
3
- size 6610199816
 
 
 
 
Baichuan-13B-Chat-full/pytorch_model.bin.index.json DELETED
@@ -1,290 +0,0 @@
1
- {
2
- "metadata": {
3
- "total_size": 26529802240
4
- },
5
- "weight_map": {
6
- "lm_head.weight": "pytorch_model-00003-of-00003.bin",
7
- "model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
8
- "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
9
- "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
10
- "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
11
- "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
12
- "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
13
- "model.layers.0.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
14
- "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
15
- "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
16
- "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
17
- "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
18
- "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
19
- "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
20
- "model.layers.1.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
21
- "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
22
- "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
23
- "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
24
- "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
25
- "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
26
- "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
27
- "model.layers.10.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
28
- "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
29
- "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
30
- "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
31
- "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
32
- "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
33
- "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
34
- "model.layers.11.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
35
- "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
36
- "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
37
- "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
38
- "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
39
- "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
40
- "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
41
- "model.layers.12.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
42
- "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
43
- "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
44
- "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
45
- "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
46
- "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
47
- "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
48
- "model.layers.13.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
49
- "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
50
- "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
51
- "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
52
- "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
53
- "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
54
- "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
55
- "model.layers.14.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
56
- "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
57
- "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
58
- "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
59
- "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
60
- "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
61
- "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
62
- "model.layers.15.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
63
- "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
64
- "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
65
- "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
66
- "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
67
- "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
68
- "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
69
- "model.layers.16.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
70
- "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
71
- "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
72
- "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
73
- "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
74
- "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
75
- "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
76
- "model.layers.17.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
77
- "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
78
- "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
79
- "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
80
- "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
81
- "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
82
- "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
83
- "model.layers.18.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
84
- "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
85
- "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
86
- "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
87
- "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
88
- "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
89
- "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
90
- "model.layers.19.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
91
- "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
92
- "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
93
- "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
94
- "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
95
- "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
96
- "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
97
- "model.layers.2.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
98
- "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
99
- "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
100
- "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
101
- "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
102
- "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
103
- "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
104
- "model.layers.20.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
105
- "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
106
- "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
107
- "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
108
- "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
109
- "model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
110
- "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
111
- "model.layers.21.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
112
- "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
113
- "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
114
- "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
115
- "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
116
- "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
117
- "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
118
- "model.layers.22.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
119
- "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
120
- "model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
121
- "model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
122
- "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
123
- "model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
124
- "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
125
- "model.layers.23.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
126
- "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
127
- "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
128
- "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
129
- "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
130
- "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
131
- "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
132
- "model.layers.24.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
133
- "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
134
- "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
135
- "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
136
- "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
137
- "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
138
- "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
139
- "model.layers.25.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
140
- "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
141
- "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
142
- "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
143
- "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
144
- "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
145
- "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
146
- "model.layers.26.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
147
- "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
148
- "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
149
- "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
150
- "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
151
- "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
152
- "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
153
- "model.layers.27.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
154
- "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
155
- "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
156
- "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
157
- "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
158
- "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
159
- "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
160
- "model.layers.28.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
161
- "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
162
- "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
163
- "model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
164
- "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
165
- "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
166
- "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
167
- "model.layers.29.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
168
- "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
169
- "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
170
- "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
171
- "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
172
- "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
173
- "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
174
- "model.layers.3.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
175
- "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
176
- "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
177
- "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
178
- "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
179
- "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
180
- "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
181
- "model.layers.30.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
182
- "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
183
- "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
184
- "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
185
- "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
186
- "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
187
- "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
188
- "model.layers.31.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
189
- "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
190
- "model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
191
- "model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
192
- "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
193
- "model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
194
- "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
195
- "model.layers.32.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
196
- "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
197
- "model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
198
- "model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
199
- "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
200
- "model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
201
- "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
202
- "model.layers.33.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
203
- "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
204
- "model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
205
- "model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
206
- "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
207
- "model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
208
- "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
209
- "model.layers.34.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
210
- "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
211
- "model.layers.35.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
212
- "model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
213
- "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
214
- "model.layers.35.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
215
- "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
216
- "model.layers.35.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
217
- "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
218
- "model.layers.36.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
219
- "model.layers.36.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
220
- "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
221
- "model.layers.36.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
222
- "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
223
- "model.layers.36.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
224
- "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
225
- "model.layers.37.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
226
- "model.layers.37.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
227
- "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
228
- "model.layers.37.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
229
- "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
230
- "model.layers.37.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
231
- "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
232
- "model.layers.38.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
233
- "model.layers.38.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
234
- "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
235
- "model.layers.38.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
236
- "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
237
- "model.layers.38.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
238
- "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
239
- "model.layers.39.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
240
- "model.layers.39.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
241
- "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
242
- "model.layers.39.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
243
- "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
244
- "model.layers.39.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
245
- "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
246
- "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
247
- "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
248
- "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
249
- "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
250
- "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
251
- "model.layers.4.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
252
- "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
253
- "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
254
- "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
255
- "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
256
- "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
257
- "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
258
- "model.layers.5.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
259
- "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
260
- "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
261
- "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
262
- "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
263
- "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
264
- "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
265
- "model.layers.6.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
266
- "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
267
- "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
268
- "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
269
- "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
270
- "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
271
- "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
272
- "model.layers.7.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
273
- "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
274
- "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
275
- "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
276
- "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
277
- "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
278
- "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
279
- "model.layers.8.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
280
- "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
281
- "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
282
- "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
283
- "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
284
- "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
285
- "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
286
- "model.layers.9.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
287
- "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
288
- "model.norm.weight": "pytorch_model-00003-of-00003.bin"
289
- }
290
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Baichuan-13B-Chat-full/quantizer.py DELETED
@@ -1,123 +0,0 @@
1
- # Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
2
-
3
- import torch
4
- from typing import List
5
- import bz2
6
- import base64
7
- import ctypes
8
- from transformers.utils import logging
9
- logger = logging.get_logger(__name__)
10
-
11
- try:
12
- from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
13
-
14
- class Kernel:
15
- def __init__(self, code: bytes, function_names: List[str]):
16
- self.code = code
17
- self._function_names = function_names
18
- self._cmodule = LazyKernelCModule(self.code)
19
-
20
- for name in self._function_names:
21
- setattr(self, name, KernelFunction(self._cmodule, name))
22
- quantization_code = "QlpoOTFBWSZTWX/mUzwAK6f///////////////////////////////7f////////////4C5duvi2D0Oj1ppVCJ2zQFYbnbsxmq20pAC7kEDb3Z3nWrextY9NZbavON7nveSRqszudmzAGGgkeh0Pewk881e3Tz13kW9YO7uA9AUUiAWLNW2HHWCE005Mdz3jHs1Ic7QNCQBNGgmE000DRNoGjUYmA0mEmJjIaI9JtT0JoaaMTaQ0aMjTTI1TzKMmETwyaJ6k8p4Ke1T0wk2aE0anpPSHppqNM1HqYzVGj0MpsTTUGpoCAAEyAAAmhpPSYowMk9U8mqb0mJtU8ETwCZT1DQ9R5R6htE9TTyRptQeoyHqA0B6g9T1AD1HpGQGgD1A0NPUAAAA0A1Mg00gmhKPU9E2SekHoJ5QHlNDEPUeoDEaBkAHqBoABoNABoAaGgBoAAAAAAA0AAAAAAAAEmoiIgmiD0maRip+qfpR+k9U/QKaZPUepiGeST1HqeU9TQ9JoANAMhoZPU0AAYnqaBoAANABoAAAADQGgAAADTQ0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASJEE0AJo0GkxGJoZNKeBoTCnpNNpU9knqn+ppmUnom1PKZqTaaTTwTTFPNJ6pj1BG0eoaMgwQGkYAGk2gjT0jBqaY0RoDeqZoNEYT1NpsA/+iBrt+OVIiCKqfH7N/e67XZ2Dx9tPHyWbW4gAENNTtyzk+/WdoU604SoXU0JgfqgQxVmzbfdmaFcVxQAYINDyjTKU1FCUUzUuqqptg4SBgwIAHYE4NwQOrbY1bOF26LUVuxYr3Hp4paZXaqKU1UmXO3K+IXn2hURrgAegAaTANS+QBclUN6tpvhn85+uTPCLxzj34YO8MIMg45eRAEy9IYbKxeZTRnTy6GpPLtVGWKKK6iuDLa9wjtSmUQREX6wHfE3JeTVZdoj4Hg/3cHlBdw4c4BdGvigzZsubPr3eTi2hs6tZz3J9zUVm8qH+FPwSx4Tdr6by/OA88iLHk34rWNt7fT7NwqqqqqqqrGMYxjFcdqvY2mXyh42c2ccxhtyvBHojjUlyAKRgbvAB6nhls1wGLTOrfGMBsqRXl9Bl3sOlvafSA7sDrmAQI+mw90af+bvJ8mwjP+RKtjobGNzbfl76iTHMiIIUf9oIoygqSG2NLn0Ys/mZ+hzufu7epmzbvP1t7S0Xo8TKK7q6G5MA8vTgBb7Bf/2kITSLsH7Xmfydz7ahAt4YJbBuAQJI+1M8DLJCQH+UPbv212QWIhcCKhBrR2eryfQYIiIhKE0WtbOQ7OwM7OxtURGbF28NBndi9ejVDVA3dne37uDdzrwINS+O/0AzQTCgUjfCAwkkKFMT4Kr0aV3DicVAelGBesGYoCRcLKq5iBFR6SzOzrAwFWDFVYU2XT1oFaRJk2JBDOwVk1LFZZfwY7tQBYMGdECFA1cLZAg0IlfCTCMgZ4afRQBNvXSuMORVUTxTLSTgMFoUtaGLIr524yIM+INSFFIOHQ4TG5NZbd3Su3Nu9raSLd/ueibSYpAL0D42ZkAtD0pnXrfTxYPBw+mAt1cKPCPmDNMCDYCBiQwmANVhdDjBwsdIKyfH1slCvWbJC4QO8SBxi6A+GEpDBN6UQnPaEvBqFk3TwChKSowEENpyAueDIFs6OxxLRmFSUFpjWgYpECgDgfVBJjhg4GGcI9CD0S3igCrdziS3ZoYHlQE+7AELdvbebTVsdRvrPHCgiAbSYzUN0z0SCshLjaUaREEREQQRHNKAgAS9o0kukdJx0ulaJk0kINzlUYN0wWXLLsmRgSG1BEJNh5sCuVtIybGlKUW29BziJUTpqcA8UCCLtOGU0hH17BYTERfPKhCAwxJqSSSMd+umawlsykXZiKHesslqlVDKEHPzFhIWwJHTfcYCGE9dQK9sKixjNifLkW1iLnyZo57BBx2jksXPYjcaA6Z6rlYTl9ocZHn2URKVXnY/Wsrc5l3aym6Uq7u9eu2szSbJgwhqPqfOR1JCCZl7/AehLVBSIXc9npUk8IDzrRCS9XKMeamSDmFxK6OQDhwNnxubbnQygQb4DEL6oD5qkkG6F03dyDAUJB/awNUoDCa3CmYy2QIsK0Z46BoX1N4kY8aGNFB8WZAfWvaHeUT4gYIjEsZBBARIFAk2jCTxAmpW03GtdW4WCN0bLJiiqY3ixmHAWRqqQKqgS2hlf8mwszkhUy3LDx3GLdo5AHGAgC4BogUAVgH4QM0AGAImwbS6gwANIep0rJIU3hBgaeKAEcnzfs+g/sJZnETvInDcAH5fE7azmr8EyIFx77caxbrDBC64CEU8wCqzAHPgkk4kiPREKYHn2HaoDBWCCrFBrhR+XpeNQkdbzCBHee2hW8EW373k/qd/PxGC2R+IO4vmNEAl1AE0l4bEvmnfd5/JYs5gl9XpgQIS7g/LAK7owBwgso9j0yEB9MRIBjqmkLdG5uED3tICA6PYXe4WItRawAenfJ0lCFupoGvajxuQC/5YQPnwFpgQBMNgBndpgVNJcyw+5vCJgHtWU0EDYk2HsvD8Qkg6ANAd8UQXGH/3X3gXgNDefHyaQ/wd93Xx87hWWtW0kPCQGR+KYiPeMQse27PdNLGwhlz8WJObSnEQyHJw1JmStJXTtIg0ZKEHrLZCXd1ljLGkkxtpsDofXUiBH0LLEM43kb2waJ26KZsJ9sBbxcAqzUgWxzogNFm4vSxjMR58r5Xm8H2+6ItGcNX2AK3GhDIMzSX3YyFsbNG0u0MxvZzGFv19k2E45tXrK+1OKUYRiH2OT2Fs7kqtxMDrANVp2nxreAZg02UaFEsuf6+urQi1PxvNOhuacrStndOnonV3e5Du+Xjp8mjhiHYPNexu7UKSbt0Gs2rPIVVVSFyQ7phtQ0ZOUySoyZA79muzuLBZaLAW20gZIeuJDacErguFE3e70svo0S0mRBMBu33rjqVrNEN9A5PHvOgukEPEgb0tYAMrvcvIXB5ydzJHXQ1n+t7BUI24oJtSCTAUet75rBpXL4ylQ4LGBpbQeQCiOku+8rq90o18ga4WEGBDhvHB0YYd/CDLIMdDh2cO/i/RppcEi3Zd+CCU8OdxAAiOgi5qeghJkUnO6YGZi5LEilo2WhSiEVsU2IK7unV2rXG61Q/LbUqGx72rn2Uzx/q/fzsCWUFCQyAA+XqfGVGvL1kml0MVpjJl1A9vYoYTSatnV1+z2czsdoc4QFWLILHn1S71/r3V1S/fJMgDlXX6DVv8+FeECNi1u8zf8K8r1Khq7twFu5xPfZJT+PLpYUZWgGNDG0Jlq4rsQy86u95xqTdO0TbSGBdDOUSyyGHQAmP5mgNfVvgeY2tPzlKbyrvnaZhgQ7aWeJjzbF4mjPlro1hYjmnWUshKxVsQ6pveK850taANOgIE/aJvr0IAC0g2H2d1agVwnBkAF1kl7IPZc8mBthvlYish4AqABgI9hw2cExRabO+8Xz31+enwlCxSbnfVFlqig3UKGBQiybpEBGQLIxuoUMVYLTt53sY+lPlxSAq9f3lfnVlFmiBFrOhAeAF/0/N6HI6/+rsQ2+D5U5fenadDmtFFgeZLLESwOgWWIlgWFo+uFROhke3lKQ4bf0mLH3XSOgtDGd73hfMwDM2aF7Lonl7AlbiPbV2zY2lvu1Vj7jzlmFYoKieH93wt3fLhBXgYUGJEjga5YWEVyE00qIYWXSKd0ZaZy+vuCQlhaz5ELs9n/pjuFAHpoDCMEEtseECQF+Rk58EyW3nzCdlyCeY5WPItdkDZ4egXmjfZTLSVT29ku6KCGxHbdTBD3z52SxkuXkpoaHyy3t25+JwX5zFdYawDASl7397IB2tunNbt2FygaTBIO5qrG0asQmxEVRGCn26UX6DewTmic/QqkLZjdCTqjQDGlxy4IODucyQlmE0zkwSkR02cZjZcA1MzMczZAf1hfPnZT1IGtWIJGOcpzgYwCGyiNtoxRkupRElCCAgWJcE4igRJEQogPHYVAVBAEYDBkUEBIOSMK3KJNwQllpqWZARLCgMM8TkQoHOSZTDbSrjS6QtkYsQSloWSmQ4BlMjEJuuWh0ERMIVRLbcNDDQalLRQiEoBIUKZaiQpZQ1KoooVlNtjVVGAsG6WkNS84MJcoYIgjBrKaODOaUZG6QUZlCUGKy25MUVYGMWC+95zG4FRE0iyDRISulc0GQJt6m5u8WSQD4NAiDAMD9y0Q4TBGAaAIGe6PfdX9zl9Xginufp+HmPiAGfY8ZoDAarMoQAD9kA2OUJQV3lBq86RzpT8nbXPtqxsvN4YTDyOQgGEarV4Tc5h1yv2Npz+65PJpxO/Tefe5S5U1n8asAC3AQIACrUA5XacxgALbHvUfi9ApR956Do3PCWymCzTo7JjufU9DsGcQWqAFwwZfDzR+m6436pzvncYkARkLKOxX23RuLsQeK067Y/Fq8tB7igBMvb836/03fkV4qZ5YY4pFxADLifQb2iaUAwjesDs8Nhx5vnIw3rZOyb9+jyaYazgr2vbSKuf82URMcyf+99L2sWJHqW/I0PfaMR0KsULcnf9Lx/fJFzattuUwcjv8vdJed+FY1s49FrvJMbRVa82imzbdgSpDhEtleDphWrjgzVu59jsXKG/3f88zolkjqRQUk+Xm8F72190OzfqwfT5XAYbvq8WBzq/B+4rLP8j5PDfiytkicVOAAJ6QOe+hWqqwgfq61qtJ7jrsz89u1dDqsK/9Wur9Po5K1vHsXseRHoyF+LoewZ3uHaanw5S9LCW9Gj8k3e5ObY3NfjabO0cbzotaAPB3XIg+av5zaHst8ijMqapTpVtdwy211QZINMi1UCIHnAB3ZLFDZQuraVlNALggow5ygAhEo9EDHUCSm8+Hhev7eTufm8onZ7pATIUwBEBBUUEPBw/zcrl+pwtDJe2XApoPk8CJjTqtqbv7DYwZWFs/M8EhDcYE8AK8A+GfX/aQkYgSLdftV0Id/5gf3lOuNNC0799E3uYYtpMg6yABaJz5en+HpUfveNBXeYA8Whj8TtZK60F8V863ndv3PwKagCzpXtfv1APjaUgxkGLtptiZPR9vldS2Bfy0pT3RXWJlLCCj+GpAz28S4v0YQrYE7We9WpbVXz7KVTWEtoXM/UPZhYnpzdeokWJdNHQ6JQLxp7bOfci50rBcdOdhOqmyeC7B2rL6rxd969Xxc9L4zMrsqZ0+DoaPeSn8Y5QMLTOLpdvz1qaOO5xT1xPjgKnhTYa5pzi5U+bDcHXzYdxpgAbbhf/e8aBprxka5aM2J3lYXBG5G/r7CunzcPyjz2o79z8eDKkMvdO9WixswXLu3TkpoYcV0465fwUxoxC6L9Zwc+QsLDfqipk3wMSSRkBPM8Bxrwt0Mjr4IWW9Tw+Kw23yTbUyYJqrgNaq7saBKAdzYXMQ6mkrfqt72Lk0YwiZmIKkXUgChISCZMMrwdnjWbJDoR5ZXGxxAX5uRBfHBOk6JS8VVVWd56zxf8v3uR0/zON57e6BDuqIcQDJ7H0q5BNPaWbExYw2Bj4tRM9kB+JfynyyEfR/7ZiPXRFLmwpGGjLF9G6/J65mkUZEaKrUdBZYUxFKqGJL4LAbEfZjLi4GYXhv+x3ZpHkC3YADdMsKeYmfKgtzUd+Y7dVngbdcEFGAL3VqaYfYAYMtY3YKIQumTVXUFTFQyU0bqIeMgV2WOcZFXICpoMvueYVy0mHAiaeyNg1p5/QmSbYgyb7WQdUPfY3QeKc0hewGB2z2vH9t+pvy7B6P21pG+wXCMQHZl30TJonLPhQg8nka+raw1OLPUVWvIidrloKjcLH6/YAwepAoWEykQ9Bw2+YU/N5dbXnsNcPbubOszstYSwQYATYulLN0AHAgwb5t+VfATV6uhICgRgDGUaoVNNLc9ZMMW5+qKVhOyoRMLzJolo17ACLDPes+aoyeD5aIZm46HHKV7KqGX1IGbYEEDaAh0Vj+43wIMep+e+gsP4UEgVjmMAWTPz2XZhQDA6/Vzbk0fK+v0+bNB12LRbfmsufKzRgw7Hp7b+J+N2LqWXdwWTvhQ2rIPjc2cgS2A4Ub7IflPitJFAPyFvbvHK+tXi0Zcbi6mO6HTaIydOeYDmSYUIACAZwJCEgueoJnU7W6WfGdWtl1TdD4WHQ8AgDnmNUD+2YrjxNum3+1R9B+XSiSGrVLcFrVC/Z9R7D8DslIGyMPXbJAFthAMNYs7OdlqPilZtnwtReItC2Ff5vD8mQHwayX/vh1LB+HwoefoZ6LWUKb7WH6D0FmEhEKgwAayAYsoKUCcPepjDQYfA2TMWHoiS1lspYmEi2HdFULic/ucQlrFCCwPxyDeITAUsiAUFggCtZuDuVPLvVtM4WCG6DlrLwBL1JAaQFWuf7/uHZ1WAHEBuz9BMrshS8OhZpwrmYpgUIFoauEJQxtrw2iu9bT1ZLik/F26jhZblz7739qomvexIWc5hKq/GfFAebrnq/23mGuisbZhiROtNdFBDwqCBc2zrTYMfhMPwIF0s37CzzvYKeLjIfQZ3D2N6o+FRgDOkDGFGjCDiy9cJBVMOBWJ1AjDIxTAz/LwSRYuyzhHyDiECf0P53hWshYcMslf0PC0tWfLlUztN1xTxhwgkAudx+IE+NuS3phgEhRBo5lXEG6KhGydUzSU2WphfuFy0VkjH2AIPddbJ679s70tkL1rBEEEEmFgwK5pRCB6ZC5EX7ZCkCTI1pQUDJAwhQoosjBZFAjelFmydnwH9j46Ei5DD9ZaOvgT54UpSh4mD7FR2rjbJjFFdyOauUAjNr/DYBQJkLsUsd2mAXDIMHOuu8ULJhkx21G0UL7fnlqIPfiwdblRpcEaxVjru+6bHpdvj38qAOr1rUACbHrKGDWLFjGCBGYoGREGZBh4aGauRARRTmJdfJBWYoCDdFrBtCgYo6H8NyRIvFfbeTFjxF9riIiIiJABkRljjGMYx1mizcSoJ9AAFqKHXgBBgYnYjs06fFb2fl/bceQ8TeN4h1jrKPd/Pbtl3dl3fnbu7u7u7u7u7u7u7u7u79ZxeoA2gbgjyqd70779v47Lsepzo6y18vJkhQMaDKDNhYbWPpJA6hsD3pzguE4gtOhzrtDoDA3oMbPVBY/3fi0DbkWt7GQwMw2BtpNpeKt+v6KytGxxqCQ8JoLCGKIALFxqwIOeI7fqckjnW8eHjcW3xehEp2SWhvmrtDDdoBSOn6jSjQCgLuhd+EBOwr3q9GbUewJDA4QvH+DpFwt+JbtP30yJTy10KFMLT8MmAGUKkqn3DQHSmTACxjEheIpDhGuZT/WrsHgP+ly7Bsto8UYb2bBvwPRV1O/WaEbmIEMEbQtfphLgUDADF7nayfXs1CXBxYOi1aG36B7rr5EX31tzoym2bTIWw0maxvM3Gs+KAOSMztimS4oGQokBRf5dGKNykDp8tH9chWc9k7/6I+SxG5cZSnx52CFhoDqaZ8wBethxjRVKaRfCZTeBpi6ZNdZFjROy9x6tdgMem0rtuH6wbAz9tKvlhJ0JUP1e+2xVgroJFw8tQxLPdwVnLVMDu+mmfk9b5mK3qMNwiMyBqFaajMIgCDBYUXbdKwwVVhoMXL5YLkI5FFviIkYQTNamuapRILAqCSAYSsIOOVAtAUUrDwBSthRBgyVAM1wBrIQhhTlJKQIwFnj+b+aXuJyerhwx7HxQLofddtH71c6UuefecFIrANhfgkaIt5KL4iV43tMeP17BD8D7Dl8+AQTGQfz/rp3JWOfDodJOcvDAquYl1QQiHknUmAQ3lYpRUtJEUowXnnJnOZjZzdINlj+y7lXBb2uPR6a2E5AC3S6dBaJxYl1qyRXwQ15QflVkAK8AmAwql/n4frTztb/XRXV9J3eXRfv0MuB1OShRrtbrfdudwKxsAYC+QHiNISbAQu46ffUU/Flrw68uJ5L+7p69JjfglHs5PSd0bjADZeFsIWCqy0kQ20m3CskYLPShb0aoDdHoJBUQVEirAUgeRTtUBwAa0INXTIBPMHp9AongtXzSfuWCFQfDtzRuYRVG3WIXUjEg7b2vBZKT4ESq2tTcMyGXlqZN+uJ3CaGHEJB/3Q6/xrGIGIxyzCG5tLlSXx61sy0Bra4IFaYrjF1zJj5JPK/SslbN65uYffnqtyIX9zren+rrSsXVVhq8VZ6DFpnBVlD48AoMeltsyGSZSpdUjR6bM9J+oHRVmhpp2HBv+N4PXeS76ctP4LOLvreBzzyCr2v1K7eBo+dr2gwZ2x9k6EpHd7pNRl6Pv+IgXtj4WmtlEUQxkzWOVcT6jcLrhax5PVvgurz9q7DtdWriVdnpnTlTrQqdvWN6ZNr4OdpMM/T5Gg8irLXS/YOgvhteS49VEj8+IfNiPOf8MfMkUw+lYehdNxKZnNbjIoJiqRY1KVGIOWpRtq4m6GCyiypZKKzWBQq5j8RYJE0NCiyjJmgUmDBi8BoJgMVJYXMF4aGDL2XQ4HDKaRGaGhctNBrShK0bSU1BpFoRaTkkCCUWaDCx1MUXQCaGRhgoqhCHmzrFyZwUFG27KVdmNgbChCbZNAMghZRoXKM0CMEXaUTZswtBpLoCkxONrpa2wL0qn0mw2eV0yXs1MGgGSTcAo/GELIbpoe+8gKSqpV0ZIoIa4UCcM2EdVikuAPuDlU89YsXrb9Zb+Pr/F8NexBBbEwTQs9HmsQGBYPoK6bZKDvj9yyALrlOaMbLpKxRM+njvB4id/1Y1WPm3K2A0BVSlgWJNjYxne6JZ8mZfv7w1Nm3/GFOiwonktduZaRH2loGGhNBUlQiHENkybM8pBim0iaXcpE8dAF4GodlriMfOGH6hHY20huVvSlLDBRKHQ4Y3SyKrmCcy7ZZMDyNqVWWwpS+RHQaYnmEURGCKmQc8ARghpQffVMwK2vz6V97O+59X5foz4jUfN33Z49cKeKObXDE1rNvV2QaDOLOi+R0fl+RM8jVQ7QgNiDMzMgUCLlYO71Vn7X7vF0UcSZX1pu+s+xC4MZXNQCl0/rb68aAY3rOJ/jaw7EOYIIlln6V+oFpwZLOUjUVHfe6pdjXgAqsD219Ri16edZ03hcjePW71C29Wy0nTw5YIfs/Y9sNovb+v8vA1P7beB5bQmvEv59b+BnUs8yqQ5/cLKV0EZRMOGHmpsMrPidWDXTyP3fuO+w/9+kbujeEbdg+n4WXJQBn1kL3Py/M1JnkOu70oufaRPG6bsd6SUhq1TALBZAhKpoyMIvkQGRAzJD+udGR9e+WlVzjlJeqELl+D2smL4vG6BUFpiKHDwqftFBbX+9VV338vNg+5kL11bd1yrZaYZrGW36mrUIRi/MVgrNNITCj++zpFSOrRLE+Prlr3mYOP1TtXvtpOwLP5Kmt+3zZvXSsOXW+ix6mXS5mb1MnTvW0u8yHF356RuzXUyeGiLTe+IvXvKmJrEymIxQT9QMSU8WTHgnJi1BgP/WoqICgO21v9Hiw8IaXJY1619oEj/3cb/7R/nddLm6VA5xoN0t3XY6Hiep4VGnzs/Od0hj8f39YuAC5HvfwvWuOeV5fz820AAGglyrLFDjUrv//M/fwNdsEvj0MrTXrV8vLZfMvKMAzJ0/Sda/28/N0QniGmKhoagYUYMGp8IFDrOoi40L48r/SLxfSSDw9TM4P4vUeHE+iTmchyj7Vmwp7m7dejVSNZx+2Is5jzuf+HmHr2aml3fWein0wnXnxne72A86Cc3hrzXgbfc7lNQiJuGMljn2Y8pgXjrTczIy1teeafy8Tz8vmzBWAAFXfojX/x4Kv/YFNprgURbUBytnsI9/0WeuKmZjrWcumUGQgRDIEUsAwZkQMwPsGTJjpTEw7YAwCs7Oxn2XE+hexXn+z/L7HC65bJhCR3SxMdHngfkGgqJnhYzTGjw9StB6E4VI6SgkdNEdesLFW0cgxeYq7YABEPlMspZSBtZDQYZMvK9Cbu/UzXvja7MLlO4BfVYkMH5dwAfQ3u9WEkCoveLyp86iGmleemxREJQ0NoFyWpMxsNQCuuLGCdP703Uv1a3JeT7vfpxp8J+o/ft+J70dz7dV+1QEcxyT6REE6vsl2+0Yd8ayjKWBg2j8pRTeGhVxiYZDc6/YatrSzsw56wbWzGkp3FLpa8+60pan1LSvb+rcfyjTyEM7yC5BVyZL4r0qVCMZRc+AMHxlyZMP5QQiFATNqpVSdy8i66S7oSIl4APKPMzOTus/KeI8rrY6qBkuRSWT0y7LGvNz4KBjigkR4r0v9/bluxFmxePnvZRhpjgezOiX6bPa5LZkzsaLjmf6NzPP1ZfH9p7j4MsQL0YMETXjeb/5lAYcJWU1RECXppb+33HdO5Etl4xLXPxfV8cGZ43FFYXKVoMFQHssoAIzyiClcZR8W8vqiACqmcw8DAwzLM+FeLFaAYRiJ1DFqKh2Fcs+6Zd6erYKNpF09oZhCZNX4DO1OL94JPGTBXIPMmPjmDb0GlmwFaWG2CUqSjhc20YNd6Wwzu52BklGYvDcMnERi4Yh1wqwcOlqiLatNe4rj8FcXDxqMSsgYP5/FnSoTq2VVKttXQ3Gxq0q0Shp+qCbIAeWxu1Ynpd88H5zJfn/V+v+5/N7nyR7Q+n02bmML7aF1Sg+a32Ud2eQx2a8dQqTABf2SKJgvKADJgAJV8Rd0Wt1oIVj9nr/ZfC7fkbdqnS9R4eIbqH2HVNjOYdggfFeSAHKIkaC5R2rzEzdxs7dDCzizsiB7OluhJplyBBWKXPmS0tsUNnNs2D8zfW/QTSAr0EcsnQ/YPZBD4D0rHa3rkC2DHq+G97XfliTeY63fQow3RQpyKsCFgdUC2sF7aep4TmSDjlnDDpfIUJ3Ne7AMT4D7xpuM+j1hXBxYcyIpO3bvLubMhwY3Lrr6KfLP4PF0tpDjMOew5rBbSSUJPAfRMkDCSBum/B7S97oYaYZS56rtu79Vh408mfXcm6HcL0Qe7fRiqav0GhPcuxMpZIm/WHpICgBUirY8aK56MaW53+L/x+BbXNrjaySqntSLsoHFEiExu5hX7+yaqu7Ss2LrWVpPp9L8fuVDJdVcPqIQRFv/gWlUadkCUYMxFQf26Nlq3czS1/zwLAGILGRazcevp3q9/0O/YUWwXKvQTQghgHliLIIbcY0XxVr/9oV2++gsQ57NkRK084MjYapPJJ6Gd7WONsJRq6iIJo0GH/kO9e74wvERAiMW7UqLI+2obG59Xcazzvdk2UIhBDN4V/KqrwHJ9EpMftxjsugftMee96M9+G1DfnomWt7OmvNC5TP5/Fa50GNfJjieHFJ0mwlIothDYzg3BQyahykpudGZEmgiK9ViiKhI9ypBUuKuau8PitJWe1r0kVIrV4VRDTDa74vSvBytKDcNCzJ66Oq5G+hTTGgbpBMS6pJTOmrIjb0m9HsPvrI3rQhSkRYc1aEmn4+CFS9MpIxTpLccqtp+dpwTDqQfFDvleEeOfwGuSJEiR4QBtGkWjWrKysrJEiRI3Pd252xBk1NTBRRRZZZZZZZZZe4EJvbjqWGaaZgEypipYBc9da7d615Ozv+0TPBMoiPZt+OB7H2evtWBqyXzg9jgyNarCYQHxeABDu8KyT59xFO4fpXed3nMVTnQhwffnGz0DpW+c5RkbdjYgCQgDV6Sk3OZyVhq5u3M66CH4jQq6byDLwIv8D7ipARoPE7/rm7y2+93QALi1QT9F/QCxMDOQkHeUdC+o3NN9GXve/W1Ua/wcVgmxFD1YTuKB+xQIiSdMyXLjSbjWwNfsJH8DqADRWZHIyjHLolbAN4CAMrT3YQqcfwcVf9TtpcgPfzwWRN7XWJzrS1KzOVWXccRQ+9TusY64JEtzfyHJnKixBwcbgCBAgQiIiIiiqp3Pje3Y4/hFGgiIiqrTGMYxtsZSR3dlixYyrLVZTH79fh8yNTc4ezofRU9vjHOIATEYEQNb4IG7bzkD59jIzRNInn9c62cuu1ZkYpfHu7uokt8nd1Hc6ApKjEt2qqbEG2l6oUPERCkrFLjmUay3EPnj2vUe43MqIYdrm3PZT7WrLfnw7y9is1SEtuI3OsO3EW80l8imWVq1Yje2a7qnbRVNK7eZSUzwnE6j9CLm24oqbZ35UTokBKroRjwJNyCBEACLMRjnOy84O5zJREd0g8Xa+y0W7O3tcCI+46EvAjDUyqYnOCQAfEhYjlWVo9HFVl0Fk1g6rWywYXLyW9gmyJHKcFdans6g078Q9ryUjaXacP7/PvwauCguS3VK61FsSTIa5RZd+GJqurSiskfDyz7d0Bd7WxYHfJfTrpTamo87sRYMCEdyYaUdCzhu3027ABTtQCAnwKi9q3KK/rIpk6zEjGHEvADnOwuJ1nOvPr8XZNswFPZ07G/LauwBMG1tOWNT76s7Jw1OxxW1BImaJT6XUIQ/1VPRP6UZLBjAVwit2h7xS6TLbCUnzPvqOrOfrbFh/ZAFnP7jW/zIMkMNMUk5C20iKshen2HLTcv3ge8jBXRbUso7c88qlYXXozqDXWcHg21XXWzupu9YmNN2aY8W/tJ3ru1cs4YtK5b/YBitp4WYoOvZCpCIC0Ju2+xw3MABgLVFBetW9KA2pqTQMLlkKFfMNANN6+JBLD7W6/i0AiMi2fIgslxtlD+bdgBbDk1FxvsbR+npU23xUVtnBjvadzYRwqwnvWSPbrgxgFM01Y2yuGIJh4HBXDlmKSUokWxg39HUAD4u4+D8ivAiXNQkqnkKxTsDkVM+u/s6rx/w/VPZ1yL9nnzJm2YZ9Wl+9izPDiRnfzWU5Eo5duybQnktKu3b+J3pVuuBmmnebBXfiZtkpUjLRKvtuhD3GDAd3t8lPpMQgVQmkICwxxqhUhLQMPWxbwjlswPn5rmN8Fi0j25H0DYQMgIsU4+OvNxfxINfZR+ndisEVJrn6M1cgs+qsqW2AYv5gIBUG2nAI2sRJdPp0pkIFsJQ9DC0Exajuxg+5pGLShRHi9wPxlNGkITynkwYgPc5Bjm1ceZiqsTuXbr2ZrcqBszMKehW3A7cYHig2nqO46ef4275H+NjUxZ7Yxj0XWdJ+CBStOyj3EqZrP6f8049HRTOibY6aHBkysu7Zy/0S6gyH3v1st5NJVth4dqmwuarDr5z62e9OpPUqH6te3WRJmOs5XNggNsBgGGgo4SSlh/wYAXsqj3aHIiODcmQbAbQltCKcIoU5klptJHQ0l2P4Tgjad8WBWp9XyPm/j3QYeU5tV+GSJ4bCaYcK2PA4Spq7rr4bGK2La8fhcB+ZpbeVZdDoKcxwCBZQgvQmADvnSmoonhrOe7esVg+7JS5aUYwMCekjlC6YlQHUxfh1evKIB8OGrutYZ4YX41h6Jq6hHuvnBsJnjhYHY81i95iJiJTU6/T7VS3gB1qH0ACm35YBe58z7ceWShP5goYAvCcHOTphatcimJSi7e8cPtVNlLBeanev47WzlgmaIlrfg8PQALIwuyc+Ce7PTEdI6IMaL62wH5dzYaANEsRgmxYif+uWKupAwqrJ4eXO3BFsHrOiYQRSnB5GwA01qir3ZWamHuBtKIrzLS3by/XYFMY2AJEnhaR7ycHZFV8q2AKplu2J5dsQ24LL0qZisABXaOzHlwBFOQv0vOYWldhDsVt5f3Y4pEAsNwPQChB5QmJB9EYeqbx1Mx3plDVGMY02NMYxjG228wkHXLQBuctwIzDl0DNb2d3Zr2eV57mni8HxuT3pPieEQB9MdPlRq2ASoAJ5D34BKD2+jwhMSM3k9e3pXf6aOC4LK2IgIYJ4xQMEhhPzy+0BRQRAMTrG+uVq2FlPAAWvayCMW6HdOctiAZvYzmADuOlcPkF5QWJAaMRsb5I0Onl1kWwDFstny1tu3cPUt/f34gagGAiIG0z+LwJMwuBjAAO0oXQ+j2OhzkkDWu/H1iOt9LZS2d9xud3NjEIOUBcEGiLbYAIhuk6kG3QiZ7Vx448qOR0823ux6gaDAo/m7VGENCDY55QyihE8PY2c3FAOq0eB5VrR2rVOD8Pk54g10gYFruoShyCA600IlGADNkNWFwSUq26fo1MfJozZb8ivAWwKtUCnsIy1VVc6gilxgZXuOpIn5NqpQ4t1rnTCc+zVGQ8dLhuE4NDF7wA+sXOKNy3yzCWV69Yg3C0AUAEgSDmXcoIVu+dFgcdgdaEhA+iWl1AC/p9ikx5Lmxupjb3zEXwOwav5pXeGFu/i1uQdRtu2CBnIi7j7vIXJ+0+JkKDrtuikSysRrZuAkIPGGIXa2KOvhm+tzKtliPPcIGhgwSePz0mjUO5L7zzmcZMHoTM00cmhmTJXLHXXVL0wJj4s1MzRHFFiZHJnI5xbqYKxtqajjQWsuDBeCnFPf3bjFXVC0XXPfJZnZvcUOvlJ5TfVc9np7+YKcF8Pr101cACqIsDSQrhevDLMRutoELrdyRd4yc4EBhnWVGVUo4LsLWMYimrKjHNShUXacMGzWd1rteL0aqM9Wd9vU8jWwVgD0CDq0ypYdiu5V1wDsEFjDwLXJ6pe46MvOgOONLlAwPQwQmNUX+2AdnCCSJdjtaAefC8AY7bANwtVktFIQWVBQ95dSmjz8VnKFc5xsXgOQl3TQHPvghbPELlyOR3/IjaKbR4oXeqF4EjmEktr0SghMIXS60jhlBQIfEIJnyehMgiETwigxDpiHows1RgnEalhk2EzYwRLmRwajUmIaCFSzCXWStGaaJgaMaFOidK9crUyN2ZuYmDCMxbjQvOVrOaRTDXXVeCjhum+v9g5xzwDtdCQ0k+kA7IgR/IB4DE2B6gEv0Dv6l1YUCwQl4cgIQLDp7+vyQ0Ua6AogR/cA0tRku3sTszsBxdKvDwb0HSuapgWAtRzrmM+GLTWgg8og8IOyt6ZvFLTvQ6TdIU4jAZ9qJLorPPx8ToMIzve9bunjAzUZTwZAuejvlIVhEDGHZ43P+c2vnuH0s6xLjGN5IxE0xoW1w0CkEhDEzZIIIKKKJQkS+HFVRzrtPvD4ASgRgCszCJ7egCW+IZ1AZrFQIbETEL8gYz6s0SYtQwYi6Qsmdq1IQVCNcDQEDNHPNnw9vKmss525+DcQrAWHAQARzWHlAGPJFvL0qtVnM2mDSOxfDb56lUUmGI9SmNfCBxBRJtxwA+2eJCOmpSpXLFbYv8diZyMpTv2LEbyMNcTJr20IxsYzUrvRbyu5dvYHUZsRs8gfCLXUEVYi8a2a9PXF+ZtLPx0ZOLRblX8XTa0QJJSoa+VKRIKD5RCmFKYOIiBoFAUCXYIXCCWZKNExSIoiMUmCpS01EkRLAsoE0NCxCz8oQK0iCYNZrgS0sWA4zJgpKMgxYZxIN0k6OoboxHmMgmKyNy3rUrA2BW11g0yU50ArBdUNYm7rW6l+FmQDmsfUcr8Nxpt6ME1pzmPW2YuvyqQA1FEqGKaOFgPS4YwF0qjqJ96aNghQyxO4ETMPCpx6cPhE1xsRksh7qapVjAG7QQVa6blYCqhJolWKylASeNpfutZRkWEfehrAM1hps1M6VN9y+8pnOeOL3eSrvGKkr3kEDbExtsYADtYMAhLoFzWdZo6F3T89cLurlkYDQ8iWVgjINJHQatNc/BZZPPYhX7J3dX5zJTnZ1pJIV4y+k2MF25BTUhIvz2okmED6ax7KgYdJtMkMMjHiBpMVmJIippQbqyHkJreoQDGrZe8QH4qNpIBqEHFpVTrJVwkLCu5ds3+pbccosPAGFjP4J0AB15EXRr4rcAbXmibqr2600yb4dM8VbMHACFOCBZhZIxpWCMkDUZIBUQoKpooWCkAnBzOK5na/LqSSLTATYIaabQCteZkFlqs0bDPpuWAcNiRn6GWSnwrsatNVFIK0+WUGVX3p1UghXmamW9amFzoPHfP2Z3WLhW9ZEaq0DQiqOJyRC17MYwQA84eUDjyR/GOBNpNoO1pV6NwwsBZoAgBWz+M+YS5GC+Su1IEB0A5in0LwPQxXq7joeDPBdd3DzF6z96RTojxR29u8vE3GnO6jAa0MBmCuoxyYl/SDsbSpYIlMINttOUZndGWJ2JgBs8s7bw1GhnALOxFBnZayRRjt4bSvH+Ma9WNZSaKBoUDtDEQNIMt5XAZJIvEFZSahWUgL7ADIBAjZYJVAK8NHljSCRbLZdxbuCkFfrZVirL+GkBWYaJFCoglTaEWtiguhCVZNjj+c9eMUMbOVJQmcHOmKmRIKboAMkAbohUflNANgubKuhTXDGSlSKY0PetmdL+7bQoIJCVRY+osfasgH1NADQYBBoYd+dccoSIhapDyYkRkhkYGAZDWCMlJReDHnRJZKAxUYiJmPGYriVoGAkdW2QI785BQQakRBFiFEknMOMGpw8jj8a7sLaWrGrZ5gDnB2Ys6AFHfczh5BvVw8R6n1P4QHEbDeIf/i7kinChIP/Mpng="
23
- kernels = Kernel(
24
- bz2.decompress(base64.b64decode(quantization_code)),
25
- [
26
- "int4_to_fp16",
27
- "fp16_to_int4",
28
- "int8_to_fp16",
29
- "fp16_to_int8",
30
- "int4_to_bf16",
31
- "bf16_to_int4",
32
- "int8_to_bf16",
33
- "bf16_to_int8",
34
- ],
35
- )
36
- except Exception as exception:
37
- kernels = None
38
- logger.warning("Failed to load kernels:" + str(exception))
39
-
40
- def quant4(weight: torch.Tensor, scale: torch.Tensor):
41
- stream = torch.cuda.current_stream()
42
- num_row = weight.size(0)
43
- num_chan_fp16 = weight.size(1)
44
- # 4bit
45
- num_chan_int = num_chan_fp16 // 8
46
- qweight = torch.zeros((num_row, num_chan_int), dtype=torch.int32, device=weight.device)
47
- intweight = torch.empty(num_row, num_chan_fp16, dtype = torch.int32)
48
- intweight = torch.clip(torch.round(weight.to(scale.dtype) / scale[:, None]),-16, 15).to(dtype=torch.int32)
49
-
50
- for j in range(num_chan_int):
51
- qweight[:, j] = ((intweight[:, j*8+7] & 0x0f) << 28) \
52
- | ((intweight[:, j*8+6] & 0x0f) << 24) \
53
- | ((intweight[:, j*8+5] & 0x0f) << 20) \
54
- | ((intweight[:, j*8+4] & 0x0f) << 16) \
55
- | ((intweight[:, j*8+3] & 0x0f) << 12) \
56
- | ((intweight[:, j*8+2] & 0x0f) << 8) \
57
- | ((intweight[:, j*8+1] & 0x0f) << 4) \
58
- | ((intweight[:, j*8] & 0x0f))
59
- return qweight
60
-
61
- def dequant4(qweight: torch.Tensor, scale: torch.Tensor, input: torch.Tensor):
62
- stream = torch.cuda.current_stream()
63
- num_row = qweight.size(0)
64
- num_chan_int = qweight.size(1)
65
- # 4bit
66
- num_chan_fp16 = num_chan_int * 8
67
-
68
- out = torch.empty((num_row, num_chan_fp16), dtype=input.dtype, device=qweight.device)
69
-
70
- blockDim = (128, 1, 1)
71
- gridDim = ((num_chan_int + blockDim[0] - 1) // blockDim[0], num_row, 1)
72
- if input.dtype == torch.bfloat16:
73
- kernels.int4_to_bf16(
74
- gridDim,
75
- blockDim,
76
- 0,
77
- stream,
78
- [ctypes.c_void_p(out.data_ptr()), ctypes.c_void_p(qweight.data_ptr()),
79
- ctypes.c_void_p(scale.data_ptr()), ctypes.c_int32(num_row), ctypes.c_int32(num_chan_int), ctypes.c_int32(num_chan_fp16)],
80
- )
81
- elif input.dtype == torch.float16:
82
- kernels.int4_to_fp16(
83
- gridDim,
84
- blockDim,
85
- 0,
86
- stream,
87
- [ctypes.c_void_p(out.data_ptr()), ctypes.c_void_p(qweight.data_ptr()),
88
- ctypes.c_void_p(scale.data_ptr()), ctypes.c_int32(num_row), ctypes.c_int32(num_chan_int), ctypes.c_int32(num_chan_fp16)],
89
- )
90
- return out
91
-
92
- class QLinear(torch.nn.Module):
93
- def __init__(self, bits: int, weight: torch.Tensor, bias=None):
94
- super().__init__()
95
- self.quant_bits = bits
96
- self.scale = weight.abs().max(dim=-1).values / ((2 ** (bits - 1)) - 1)
97
- self.scale = self.scale.to(torch.float32)
98
- if self.quant_bits == 4:
99
- self.weight = quant4(weight, self.scale)
100
- elif self.quant_bits == 8:
101
- self.weight = torch.round(weight.to(self.scale.dtype) / self.scale[:, None]).to(torch.int8)
102
- if self.quant_bits == 8:
103
- self.weight = self.weight.T
104
- self.bias = None
105
-
106
- def forward(self, input):
107
- if self.quant_bits == 4:
108
- assert(input.dtype == torch.bfloat16 or input.dtype == torch.float16)
109
-
110
- if self.weight.device != input.device:
111
- self.weight = self.weight.to(input.device)
112
- self.scale = self.scale.to(input.device)
113
-
114
- if self.quant_bits == 4:
115
- self.scale = self.scale.to(input.dtype)
116
- rweight = dequant4(self.weight, self.scale, input).T
117
- output = torch.matmul(input, rweight)
118
- elif self.quant_bits == 8:
119
- rweight = self.weight.to(input.dtype) * self.scale.to(input.dtype)
120
- output = torch.matmul(input, rweight)
121
- if self.bias is not None:
122
- output = output + self.bias
123
- return output
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Baichuan-13B-Chat-full/train_results.json DELETED
@@ -1,7 +0,0 @@
1
- {
2
- "epoch": 2.0,
3
- "train_loss": 0.5708327819994277,
4
- "train_runtime": 105327.89,
5
- "train_samples_per_second": 4.797,
6
- "train_steps_per_second": 0.019
7
- }
 
 
 
 
 
 
 
 
Baichuan-13B-Chat-full/trainer_log.jsonl DELETED
@@ -1,198 +0,0 @@
1
- {"current_steps": 10, "total_steps": 1974, "loss": 0.9175, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9996834033646177e-05, "epoch": 0.01, "percentage": 0.51, "elapsed_time": "0:08:53", "remaining_time": "1 day, 5:06:00"}
2
- {"current_steps": 20, "total_steps": 1974, "loss": 0.7595, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.998733693645213e-05, "epoch": 0.02, "percentage": 1.01, "elapsed_time": "0:17:16", "remaining_time": "1 day, 4:07:31"}
3
- {"current_steps": 30, "total_steps": 1974, "loss": 0.7375, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.997151111381707e-05, "epoch": 0.03, "percentage": 1.52, "elapsed_time": "0:25:37", "remaining_time": "1 day, 3:40:03"}
4
- {"current_steps": 40, "total_steps": 1974, "loss": 0.7227, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9949360574062774e-05, "epoch": 0.04, "percentage": 2.03, "elapsed_time": "0:33:53", "remaining_time": "1 day, 3:18:52"}
5
- {"current_steps": 50, "total_steps": 1974, "loss": 0.7147, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9920890927418316e-05, "epoch": 0.05, "percentage": 2.53, "elapsed_time": "0:42:08", "remaining_time": "1 day, 3:01:22"}
6
- {"current_steps": 60, "total_steps": 1974, "loss": 0.7102, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.988610938459917e-05, "epoch": 0.06, "percentage": 3.04, "elapsed_time": "0:50:24", "remaining_time": "1 day, 2:47:46"}
7
- {"current_steps": 70, "total_steps": 1974, "loss": 0.7056, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9845024754980876e-05, "epoch": 0.07, "percentage": 3.55, "elapsed_time": "0:58:37", "remaining_time": "1 day, 2:34:35"}
8
- {"current_steps": 80, "total_steps": 1974, "loss": 0.7128, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.979764744436784e-05, "epoch": 0.08, "percentage": 4.05, "elapsed_time": "1:06:53", "remaining_time": "1 day, 2:23:46"}
9
- {"current_steps": 90, "total_steps": 1974, "loss": 0.6982, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9743989452357756e-05, "epoch": 0.09, "percentage": 4.56, "elapsed_time": "1:15:09", "remaining_time": "1 day, 2:13:11"}
10
- {"current_steps": 100, "total_steps": 1974, "loss": 0.7258, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.968406436930243e-05, "epoch": 0.1, "percentage": 5.07, "elapsed_time": "1:23:27", "remaining_time": "1 day, 2:04:01"}
11
- {"current_steps": 110, "total_steps": 1974, "loss": 0.7095, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.961788737286559e-05, "epoch": 0.11, "percentage": 5.57, "elapsed_time": "1:31:45", "remaining_time": "1 day, 1:54:50"}
12
- {"current_steps": 120, "total_steps": 1974, "loss": 0.7048, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.954547522417877e-05, "epoch": 0.12, "percentage": 6.08, "elapsed_time": "1:40:03", "remaining_time": "1 day, 1:45:50"}
13
- {"current_steps": 130, "total_steps": 1974, "loss": 0.6805, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.946684626359607e-05, "epoch": 0.13, "percentage": 6.59, "elapsed_time": "1:48:21", "remaining_time": "1 day, 1:36:59"}
14
- {"current_steps": 140, "total_steps": 1974, "loss": 0.6798, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.938202040604898e-05, "epoch": 0.14, "percentage": 7.09, "elapsed_time": "1:56:36", "remaining_time": "1 day, 1:27:37"}
15
- {"current_steps": 150, "total_steps": 1974, "loss": 0.7134, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.929101913600238e-05, "epoch": 0.15, "percentage": 7.6, "elapsed_time": "2:04:53", "remaining_time": "1 day, 1:18:36"}
16
- {"current_steps": 160, "total_steps": 1974, "loss": 0.6895, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.919386550201299e-05, "epoch": 0.16, "percentage": 8.11, "elapsed_time": "2:13:08", "remaining_time": "1 day, 1:09:32"}
17
- {"current_steps": 170, "total_steps": 1974, "loss": 0.705, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.909058411089174e-05, "epoch": 0.17, "percentage": 8.61, "elapsed_time": "2:21:25", "remaining_time": "1 day, 1:00:44"}
18
- {"current_steps": 180, "total_steps": 1974, "loss": 0.6712, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8981201121471356e-05, "epoch": 0.18, "percentage": 9.12, "elapsed_time": "2:29:41", "remaining_time": "1 day, 0:51:58"}
19
- {"current_steps": 190, "total_steps": 1974, "loss": 0.6744, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.886574423798097e-05, "epoch": 0.19, "percentage": 9.63, "elapsed_time": "2:37:59", "remaining_time": "1 day, 0:43:26"}
20
- {"current_steps": 200, "total_steps": 1974, "loss": 0.6675, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.874424270302927e-05, "epoch": 0.2, "percentage": 10.13, "elapsed_time": "2:46:13", "remaining_time": "1 day, 0:34:29"}
21
- {"current_steps": 210, "total_steps": 1974, "loss": 0.6726, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.861672729019797e-05, "epoch": 0.21, "percentage": 10.64, "elapsed_time": "3:06:14", "remaining_time": "1 day, 2:04:28"}
22
- {"current_steps": 220, "total_steps": 1974, "loss": 0.6821, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.848323029624761e-05, "epoch": 0.22, "percentage": 11.14, "elapsed_time": "3:14:32", "remaining_time": "1 day, 1:50:57"}
23
- {"current_steps": 230, "total_steps": 1974, "loss": 0.7133, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.834378553293748e-05, "epoch": 0.23, "percentage": 11.65, "elapsed_time": "3:22:48", "remaining_time": "1 day, 1:37:50"}
24
- {"current_steps": 240, "total_steps": 1974, "loss": 0.6681, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.81984283184619e-05, "epoch": 0.24, "percentage": 12.16, "elapsed_time": "3:31:01", "remaining_time": "1 day, 1:24:41"}
25
- {"current_steps": 250, "total_steps": 1974, "loss": 0.682, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.804719546850487e-05, "epoch": 0.25, "percentage": 12.66, "elapsed_time": "3:39:18", "remaining_time": "1 day, 1:12:19"}
26
- {"current_steps": 260, "total_steps": 1974, "loss": 0.6755, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.789012528691558e-05, "epoch": 0.26, "percentage": 13.17, "elapsed_time": "3:47:36", "remaining_time": "1 day, 1:00:28"}
27
- {"current_steps": 270, "total_steps": 1974, "loss": 0.68, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.772725755600682e-05, "epoch": 0.27, "percentage": 13.68, "elapsed_time": "3:55:51", "remaining_time": "1 day, 0:48:32"}
28
- {"current_steps": 280, "total_steps": 1974, "loss": 0.6663, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.755863352647909e-05, "epoch": 0.28, "percentage": 14.18, "elapsed_time": "4:04:07", "remaining_time": "1 day, 0:36:58"}
29
- {"current_steps": 290, "total_steps": 1974, "loss": 0.6672, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.738429590697271e-05, "epoch": 0.29, "percentage": 14.69, "elapsed_time": "4:12:21", "remaining_time": "1 day, 0:25:24"}
30
- {"current_steps": 300, "total_steps": 1974, "loss": 0.6466, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.720428885325069e-05, "epoch": 0.3, "percentage": 15.2, "elapsed_time": "4:20:38", "remaining_time": "1 day, 0:14:20"}
31
- {"current_steps": 310, "total_steps": 1974, "loss": 0.6668, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.701865795701505e-05, "epoch": 0.31, "percentage": 15.7, "elapsed_time": "4:28:57", "remaining_time": "1 day, 0:03:40"}
32
- {"current_steps": 320, "total_steps": 1974, "loss": 0.6591, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.684682059461469e-05, "epoch": 0.32, "percentage": 16.21, "elapsed_time": "4:37:10", "remaining_time": "23:52:39"}
33
- {"current_steps": 330, "total_steps": 1974, "loss": 0.661, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.665063509461097e-05, "epoch": 0.33, "percentage": 16.72, "elapsed_time": "4:45:27", "remaining_time": "23:42:06"}
34
- {"current_steps": 340, "total_steps": 1974, "loss": 0.6749, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.644896598002736e-05, "epoch": 0.34, "percentage": 17.22, "elapsed_time": "4:53:43", "remaining_time": "23:31:35"}
35
- {"current_steps": 350, "total_steps": 1974, "loss": 0.6654, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.624186432907437e-05, "epoch": 0.35, "percentage": 17.73, "elapsed_time": "5:01:59", "remaining_time": "23:21:16"}
36
- {"current_steps": 360, "total_steps": 1974, "loss": 0.6716, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.602938259590072e-05, "epoch": 0.36, "percentage": 18.24, "elapsed_time": "5:10:16", "remaining_time": "23:11:05"}
37
- {"current_steps": 370, "total_steps": 1974, "loss": 0.6796, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.581157459730783e-05, "epoch": 0.37, "percentage": 18.74, "elapsed_time": "5:18:35", "remaining_time": "23:01:09"}
38
- {"current_steps": 380, "total_steps": 1974, "loss": 0.6794, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.558849549911931e-05, "epoch": 0.39, "percentage": 19.25, "elapsed_time": "5:26:55", "remaining_time": "22:51:20"}
39
- {"current_steps": 390, "total_steps": 1974, "loss": 0.6651, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.536020180220871e-05, "epoch": 0.4, "percentage": 19.76, "elapsed_time": "5:35:12", "remaining_time": "22:41:26"}
40
- {"current_steps": 400, "total_steps": 1974, "loss": 0.6823, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.515032675559024e-05, "epoch": 0.41, "percentage": 20.26, "elapsed_time": "5:43:27", "remaining_time": "22:31:30"}
41
- {"current_steps": 410, "total_steps": 1974, "loss": 0.6677, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.4912285699446786e-05, "epoch": 0.42, "percentage": 20.77, "elapsed_time": "6:04:58", "remaining_time": "23:12:15"}
42
- {"current_steps": 420, "total_steps": 1974, "loss": 0.6704, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.4669201313179155e-05, "epoch": 0.43, "percentage": 21.28, "elapsed_time": "6:13:18", "remaining_time": "23:01:12"}
43
- {"current_steps": 430, "total_steps": 1974, "loss": 0.6481, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.442113516454638e-05, "epoch": 0.44, "percentage": 21.78, "elapsed_time": "6:21:37", "remaining_time": "22:50:18"}
44
- {"current_steps": 440, "total_steps": 1974, "loss": 0.665, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.416815008307488e-05, "epoch": 0.45, "percentage": 22.29, "elapsed_time": "6:29:58", "remaining_time": "22:39:35"}
45
- {"current_steps": 450, "total_steps": 1974, "loss": 0.6658, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.391031014414514e-05, "epoch": 0.46, "percentage": 22.8, "elapsed_time": "6:38:16", "remaining_time": "22:28:49"}
46
- {"current_steps": 460, "total_steps": 1974, "loss": 0.6699, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.364768065276284e-05, "epoch": 0.47, "percentage": 23.3, "elapsed_time": "6:46:39", "remaining_time": "22:18:26"}
47
- {"current_steps": 470, "total_steps": 1974, "loss": 0.6664, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.338032812701867e-05, "epoch": 0.48, "percentage": 23.81, "elapsed_time": "6:55:02", "remaining_time": "22:08:08"}
48
- {"current_steps": 480, "total_steps": 1974, "loss": 0.6817, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.310832028124069e-05, "epoch": 0.49, "percentage": 24.32, "elapsed_time": "7:03:24", "remaining_time": "21:57:52"}
49
- {"current_steps": 490, "total_steps": 1974, "loss": 0.6791, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.283172600884393e-05, "epoch": 0.5, "percentage": 24.82, "elapsed_time": "7:11:47", "remaining_time": "21:47:43"}
50
- {"current_steps": 500, "total_steps": 1974, "loss": 0.6679, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.2550615364881194e-05, "epoch": 0.51, "percentage": 25.33, "elapsed_time": "7:20:10", "remaining_time": "21:37:38"}
51
- {"current_steps": 510, "total_steps": 1974, "loss": 0.6476, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.226505954829973e-05, "epoch": 0.52, "percentage": 25.84, "elapsed_time": "7:28:32", "remaining_time": "21:27:33"}
52
- {"current_steps": 520, "total_steps": 1974, "loss": 0.6721, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.197513088390813e-05, "epoch": 0.53, "percentage": 26.34, "elapsed_time": "7:36:52", "remaining_time": "21:17:30"}
53
- {"current_steps": 530, "total_steps": 1974, "loss": 0.6563, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.1680902804058095e-05, "epoch": 0.54, "percentage": 26.85, "elapsed_time": "7:45:10", "remaining_time": "21:07:22"}
54
- {"current_steps": 540, "total_steps": 1974, "loss": 0.6391, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.138244983004574e-05, "epoch": 0.55, "percentage": 27.36, "elapsed_time": "7:53:26", "remaining_time": "20:57:14"}
55
- {"current_steps": 550, "total_steps": 1974, "loss": 0.6672, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.107984755323697e-05, "epoch": 0.56, "percentage": 27.86, "elapsed_time": "8:01:42", "remaining_time": "20:47:11"}
56
- {"current_steps": 560, "total_steps": 1974, "loss": 0.6497, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.077317261592194e-05, "epoch": 0.57, "percentage": 28.37, "elapsed_time": "8:09:57", "remaining_time": "20:37:08"}
57
- {"current_steps": 570, "total_steps": 1974, "loss": 0.668, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.04625026919033e-05, "epoch": 0.58, "percentage": 28.88, "elapsed_time": "8:18:10", "remaining_time": "20:27:04"}
58
- {"current_steps": 580, "total_steps": 1974, "loss": 0.6682, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.0147916466823174e-05, "epoch": 0.59, "percentage": 29.38, "elapsed_time": "8:26:24", "remaining_time": "20:17:07"}
59
- {"current_steps": 590, "total_steps": 1974, "loss": 0.6352, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.982949361823388e-05, "epoch": 0.6, "percentage": 29.89, "elapsed_time": "8:34:38", "remaining_time": "20:07:14"}
60
- {"current_steps": 600, "total_steps": 1974, "loss": 0.6698, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.950731479541743e-05, "epoch": 0.61, "percentage": 30.4, "elapsed_time": "8:42:55", "remaining_time": "19:57:30"}
61
- {"current_steps": 610, "total_steps": 1974, "loss": 0.6549, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.918146159895882e-05, "epoch": 0.62, "percentage": 30.9, "elapsed_time": "9:01:46", "remaining_time": "20:11:25"}
62
- {"current_steps": 620, "total_steps": 1974, "loss": 0.6516, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.8852016560078605e-05, "epoch": 0.63, "percentage": 31.41, "elapsed_time": "9:10:12", "remaining_time": "20:01:35"}
63
- {"current_steps": 630, "total_steps": 1974, "loss": 0.6629, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.851906311972943e-05, "epoch": 0.64, "percentage": 31.91, "elapsed_time": "9:18:37", "remaining_time": "19:51:44"}
64
- {"current_steps": 640, "total_steps": 1974, "loss": 0.6764, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.821647502051616e-05, "epoch": 0.65, "percentage": 32.42, "elapsed_time": "9:26:58", "remaining_time": "19:41:46"}
65
- {"current_steps": 650, "total_steps": 1974, "loss": 0.6415, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.787708866250794e-05, "epoch": 0.66, "percentage": 32.93, "elapsed_time": "9:35:20", "remaining_time": "19:31:54"}
66
- {"current_steps": 660, "total_steps": 1974, "loss": 0.6463, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.7534440830144466e-05, "epoch": 0.67, "percentage": 33.43, "elapsed_time": "9:43:42", "remaining_time": "19:22:06"}
67
- {"current_steps": 670, "total_steps": 1974, "loss": 0.6508, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.71886183083464e-05, "epoch": 0.68, "percentage": 33.94, "elapsed_time": "9:52:04", "remaining_time": "19:12:19"}
68
- {"current_steps": 680, "total_steps": 1974, "loss": 0.6411, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.683970868611123e-05, "epoch": 0.69, "percentage": 34.45, "elapsed_time": "10:00:24", "remaining_time": "19:02:31"}
69
- {"current_steps": 690, "total_steps": 1974, "loss": 0.6266, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.648780033432891e-05, "epoch": 0.7, "percentage": 34.95, "elapsed_time": "10:08:43", "remaining_time": "18:52:44"}
70
- {"current_steps": 700, "total_steps": 1974, "loss": 0.6409, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.613298238339955e-05, "epoch": 0.71, "percentage": 35.46, "elapsed_time": "10:17:01", "remaining_time": "18:42:58"}
71
- {"current_steps": 710, "total_steps": 1974, "loss": 0.6594, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5775344700658705e-05, "epoch": 0.72, "percentage": 35.97, "elapsed_time": "10:25:18", "remaining_time": "18:33:13"}
72
- {"current_steps": 720, "total_steps": 1974, "loss": 0.6427, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5414977867616006e-05, "epoch": 0.73, "percentage": 36.47, "elapsed_time": "10:33:40", "remaining_time": "18:23:38"}
73
- {"current_steps": 730, "total_steps": 1974, "loss": 0.6462, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.505197315701292e-05, "epoch": 0.74, "percentage": 36.98, "elapsed_time": "10:41:59", "remaining_time": "18:14:01"}
74
- {"current_steps": 740, "total_steps": 1974, "loss": 0.6277, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.468642250970547e-05, "epoch": 0.75, "percentage": 37.49, "elapsed_time": "10:50:18", "remaining_time": "18:04:25"}
75
- {"current_steps": 750, "total_steps": 1974, "loss": 0.6551, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.431841851137764e-05, "epoch": 0.76, "percentage": 37.99, "elapsed_time": "10:58:35", "remaining_time": "17:54:48"}
76
- {"current_steps": 760, "total_steps": 1974, "loss": 0.6402, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.394805436909157e-05, "epoch": 0.77, "percentage": 38.5, "elapsed_time": "11:06:52", "remaining_time": "17:45:15"}
77
- {"current_steps": 770, "total_steps": 1974, "loss": 0.6515, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.357542388768033e-05, "epoch": 0.78, "percentage": 39.01, "elapsed_time": "11:15:12", "remaining_time": "17:35:47"}
78
- {"current_steps": 780, "total_steps": 1974, "loss": 0.6489, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.3200621445989226e-05, "epoch": 0.79, "percentage": 39.51, "elapsed_time": "11:23:30", "remaining_time": "17:26:18"}
79
- {"current_steps": 790, "total_steps": 1974, "loss": 0.6568, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.282374197297185e-05, "epoch": 0.8, "percentage": 40.02, "elapsed_time": "11:31:50", "remaining_time": "17:16:53"}
80
- {"current_steps": 800, "total_steps": 1974, "loss": 0.615, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.2444880923646674e-05, "epoch": 0.81, "percentage": 40.53, "elapsed_time": "11:40:07", "remaining_time": "17:07:26"}
81
- {"current_steps": 810, "total_steps": 1974, "loss": 0.6447, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.20641342549205e-05, "epoch": 0.82, "percentage": 41.03, "elapsed_time": "12:02:31", "remaining_time": "17:18:17"}
82
- {"current_steps": 820, "total_steps": 1974, "loss": 0.6159, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.168159840128472e-05, "epoch": 0.83, "percentage": 41.54, "elapsed_time": "12:10:54", "remaining_time": "17:08:37"}
83
- {"current_steps": 830, "total_steps": 1974, "loss": 0.6347, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.129737025039068e-05, "epoch": 0.84, "percentage": 42.05, "elapsed_time": "12:19:18", "remaining_time": "16:58:59"}
84
- {"current_steps": 840, "total_steps": 1974, "loss": 0.6361, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.091154711851022e-05, "epoch": 0.85, "percentage": 42.55, "elapsed_time": "12:27:42", "remaining_time": "16:49:24"}
85
- {"current_steps": 850, "total_steps": 1974, "loss": 0.6504, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.052422672588765e-05, "epoch": 0.86, "percentage": 43.06, "elapsed_time": "12:36:05", "remaining_time": "16:39:48"}
86
- {"current_steps": 860, "total_steps": 1974, "loss": 0.6467, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.013550717198948e-05, "epoch": 0.87, "percentage": 43.57, "elapsed_time": "12:44:27", "remaining_time": "16:30:14"}
87
- {"current_steps": 870, "total_steps": 1974, "loss": 0.6364, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9745486910657993e-05, "epoch": 0.88, "percentage": 44.07, "elapsed_time": "12:52:51", "remaining_time": "16:20:44"}
88
- {"current_steps": 880, "total_steps": 1974, "loss": 0.6361, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9354264725175185e-05, "epoch": 0.89, "percentage": 44.58, "elapsed_time": "13:01:16", "remaining_time": "16:11:15"}
89
- {"current_steps": 890, "total_steps": 1974, "loss": 0.6441, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8961939703243122e-05, "epoch": 0.9, "percentage": 45.09, "elapsed_time": "13:09:39", "remaining_time": "16:01:47"}
90
- {"current_steps": 900, "total_steps": 1974, "loss": 0.6404, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.856861121188735e-05, "epoch": 0.91, "percentage": 45.59, "elapsed_time": "13:18:01", "remaining_time": "15:52:19"}
91
- {"current_steps": 910, "total_steps": 1974, "loss": 0.6307, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8174378872289446e-05, "epoch": 0.92, "percentage": 46.1, "elapsed_time": "13:26:21", "remaining_time": "15:42:49"}
92
- {"current_steps": 920, "total_steps": 1974, "loss": 0.6484, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.777934253455522e-05, "epoch": 0.93, "percentage": 46.61, "elapsed_time": "13:34:42", "remaining_time": "15:33:21"}
93
- {"current_steps": 930, "total_steps": 1974, "loss": 0.6237, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7383602252424985e-05, "epoch": 0.94, "percentage": 47.11, "elapsed_time": "13:43:00", "remaining_time": "15:23:53"}
94
- {"current_steps": 940, "total_steps": 1974, "loss": 0.6161, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6987258257932175e-05, "epoch": 0.95, "percentage": 47.62, "elapsed_time": "13:51:20", "remaining_time": "15:14:29"}
95
- {"current_steps": 950, "total_steps": 1974, "loss": 0.6381, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6590410936016895e-05, "epoch": 0.96, "percentage": 48.13, "elapsed_time": "13:59:40", "remaining_time": "15:05:05"}
96
- {"current_steps": 960, "total_steps": 1974, "loss": 0.6366, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.619316079910063e-05, "epoch": 0.97, "percentage": 48.63, "elapsed_time": "14:07:59", "remaining_time": "14:55:41"}
97
- {"current_steps": 970, "total_steps": 1974, "loss": 0.6202, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5795608461628802e-05, "epoch": 0.98, "percentage": 49.14, "elapsed_time": "14:16:20", "remaining_time": "14:46:21"}
98
- {"current_steps": 980, "total_steps": 1974, "loss": 0.6334, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5397854614587334e-05, "epoch": 0.99, "percentage": 49.65, "elapsed_time": "14:24:38", "remaining_time": "14:36:59"}
99
- {"current_steps": 990, "total_steps": 1974, "loss": 0.5954, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5e-05, "epoch": 1.0, "percentage": 50.15, "elapsed_time": "14:32:58", "remaining_time": "14:27:41"}
100
- {"current_steps": 1000, "total_steps": 1974, "loss": 0.4963, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.460214538541267e-05, "epoch": 1.01, "percentage": 50.66, "elapsed_time": "14:41:17", "remaining_time": "14:18:23"}
101
- {"current_steps": 1010, "total_steps": 1974, "loss": 0.487, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4204391538371207e-05, "epoch": 1.02, "percentage": 51.17, "elapsed_time": "15:03:28", "remaining_time": "14:22:20"}
102
- {"current_steps": 1020, "total_steps": 1974, "loss": 0.489, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3806839200899377e-05, "epoch": 1.03, "percentage": 51.67, "elapsed_time": "15:11:48", "remaining_time": "14:12:48"}
103
- {"current_steps": 1030, "total_steps": 1974, "loss": 0.4805, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3409589063983117e-05, "epoch": 1.04, "percentage": 52.18, "elapsed_time": "15:20:06", "remaining_time": "14:03:17"}
104
- {"current_steps": 1040, "total_steps": 1974, "loss": 0.4907, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3012741742067838e-05, "epoch": 1.05, "percentage": 52.68, "elapsed_time": "15:28:27", "remaining_time": "13:53:49"}
105
- {"current_steps": 1050, "total_steps": 1974, "loss": 0.4719, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.261639774757503e-05, "epoch": 1.06, "percentage": 53.19, "elapsed_time": "15:36:47", "remaining_time": "13:44:22"}
106
- {"current_steps": 1060, "total_steps": 1974, "loss": 0.4914, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2220657465444782e-05, "epoch": 1.07, "percentage": 53.7, "elapsed_time": "15:45:07", "remaining_time": "13:34:56"}
107
- {"current_steps": 1070, "total_steps": 1974, "loss": 0.4775, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.182562112771056e-05, "epoch": 1.08, "percentage": 54.2, "elapsed_time": "15:53:27", "remaining_time": "13:25:32"}
108
- {"current_steps": 1080, "total_steps": 1974, "loss": 0.4935, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.143138878811265e-05, "epoch": 1.09, "percentage": 54.71, "elapsed_time": "16:01:47", "remaining_time": "13:16:09"}
109
- {"current_steps": 1090, "total_steps": 1974, "loss": 0.5082, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.1038060296756883e-05, "epoch": 1.1, "percentage": 55.22, "elapsed_time": "16:10:09", "remaining_time": "13:06:48"}
110
- {"current_steps": 1100, "total_steps": 1974, "loss": 0.4868, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.064573527482482e-05, "epoch": 1.11, "percentage": 55.72, "elapsed_time": "16:18:28", "remaining_time": "12:57:26"}
111
- {"current_steps": 1110, "total_steps": 1974, "loss": 0.4988, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.025451308934201e-05, "epoch": 1.12, "percentage": 56.23, "elapsed_time": "16:26:44", "remaining_time": "12:48:03"}
112
- {"current_steps": 1120, "total_steps": 1974, "loss": 0.4653, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9864492828010526e-05, "epoch": 1.13, "percentage": 56.74, "elapsed_time": "16:35:02", "remaining_time": "12:38:43"}
113
- {"current_steps": 1130, "total_steps": 1974, "loss": 0.4915, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9475773274112354e-05, "epoch": 1.14, "percentage": 57.24, "elapsed_time": "16:43:23", "remaining_time": "12:29:25"}
114
- {"current_steps": 1140, "total_steps": 1974, "loss": 0.4763, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9088452881489787e-05, "epoch": 1.16, "percentage": 57.75, "elapsed_time": "16:51:43", "remaining_time": "12:20:09"}
115
- {"current_steps": 1150, "total_steps": 1974, "loss": 0.4807, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8702629749609324e-05, "epoch": 1.17, "percentage": 58.26, "elapsed_time": "17:00:05", "remaining_time": "12:10:54"}
116
- {"current_steps": 1160, "total_steps": 1974, "loss": 0.4653, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8318401598715284e-05, "epoch": 1.18, "percentage": 58.76, "elapsed_time": "17:08:24", "remaining_time": "12:01:39"}
117
- {"current_steps": 1170, "total_steps": 1974, "loss": 0.4778, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.793586574507951e-05, "epoch": 1.19, "percentage": 59.27, "elapsed_time": "17:16:43", "remaining_time": "11:52:24"}
118
- {"current_steps": 1180, "total_steps": 1974, "loss": 0.4839, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7555119076353338e-05, "epoch": 1.2, "percentage": 59.78, "elapsed_time": "17:25:04", "remaining_time": "11:43:12"}
119
- {"current_steps": 1190, "total_steps": 1974, "loss": 0.4718, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7176258027028152e-05, "epoch": 1.21, "percentage": 60.28, "elapsed_time": "17:33:23", "remaining_time": "11:33:59"}
120
- {"current_steps": 1200, "total_steps": 1974, "loss": 0.4793, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6799378554010773e-05, "epoch": 1.22, "percentage": 60.79, "elapsed_time": "17:41:44", "remaining_time": "11:24:49"}
121
- {"current_steps": 1210, "total_steps": 1974, "loss": 0.4825, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6424576112319672e-05, "epoch": 1.23, "percentage": 61.3, "elapsed_time": "18:04:33", "remaining_time": "11:24:47"}
122
- {"current_steps": 1220, "total_steps": 1974, "loss": 0.4857, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6051945630908426e-05, "epoch": 1.24, "percentage": 61.8, "elapsed_time": "18:12:53", "remaining_time": "11:15:26"}
123
- {"current_steps": 1230, "total_steps": 1974, "loss": 0.4802, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5681581488622367e-05, "epoch": 1.25, "percentage": 62.31, "elapsed_time": "18:21:13", "remaining_time": "11:06:06"}
124
- {"current_steps": 1240, "total_steps": 1974, "loss": 0.4812, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5313577490294538e-05, "epoch": 1.26, "percentage": 62.82, "elapsed_time": "18:29:36", "remaining_time": "10:56:49"}
125
- {"current_steps": 1250, "total_steps": 1974, "loss": 0.4682, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4948026842987084e-05, "epoch": 1.27, "percentage": 63.32, "elapsed_time": "18:38:01", "remaining_time": "10:47:33"}
126
- {"current_steps": 1260, "total_steps": 1974, "loss": 0.4974, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4585022132384008e-05, "epoch": 1.28, "percentage": 63.83, "elapsed_time": "18:46:25", "remaining_time": "10:38:18"}
127
- {"current_steps": 1270, "total_steps": 1974, "loss": 0.4737, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4224655299341304e-05, "epoch": 1.29, "percentage": 64.34, "elapsed_time": "18:54:44", "remaining_time": "10:29:01"}
128
- {"current_steps": 1280, "total_steps": 1974, "loss": 0.4877, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3867017616600456e-05, "epoch": 1.3, "percentage": 64.84, "elapsed_time": "19:03:02", "remaining_time": "10:19:44"}
129
- {"current_steps": 1290, "total_steps": 1974, "loss": 0.4753, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3512199665671094e-05, "epoch": 1.31, "percentage": 65.35, "elapsed_time": "19:11:23", "remaining_time": "10:10:30"}
130
- {"current_steps": 1300, "total_steps": 1974, "loss": 0.4638, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.316029131388878e-05, "epoch": 1.32, "percentage": 65.86, "elapsed_time": "19:19:45", "remaining_time": "10:01:17"}
131
- {"current_steps": 1310, "total_steps": 1974, "loss": 0.4626, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2811381691653607e-05, "epoch": 1.33, "percentage": 66.36, "elapsed_time": "19:28:04", "remaining_time": "9:52:03"}
132
- {"current_steps": 1320, "total_steps": 1974, "loss": 0.4786, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2465559169855535e-05, "epoch": 1.34, "percentage": 66.87, "elapsed_time": "19:36:26", "remaining_time": "9:42:52"}
133
- {"current_steps": 1330, "total_steps": 1974, "loss": 0.4717, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.212291133749206e-05, "epoch": 1.35, "percentage": 67.38, "elapsed_time": "19:44:49", "remaining_time": "9:33:42"}
134
- {"current_steps": 1340, "total_steps": 1974, "loss": 0.4803, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.178352497948384e-05, "epoch": 1.36, "percentage": 67.88, "elapsed_time": "19:53:08", "remaining_time": "9:24:31"}
135
- {"current_steps": 1350, "total_steps": 1974, "loss": 0.4803, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1447486054694112e-05, "epoch": 1.37, "percentage": 68.39, "elapsed_time": "20:01:28", "remaining_time": "9:15:20"}
136
- {"current_steps": 1360, "total_steps": 1974, "loss": 0.4739, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1114879674157233e-05, "epoch": 1.38, "percentage": 68.9, "elapsed_time": "20:09:47", "remaining_time": "9:06:11"}
137
- {"current_steps": 1370, "total_steps": 1974, "loss": 0.471, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0785790079522001e-05, "epoch": 1.39, "percentage": 69.4, "elapsed_time": "20:18:06", "remaining_time": "8:57:01"}
138
- {"current_steps": 1380, "total_steps": 1974, "loss": 0.4799, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.046030062171512e-05, "epoch": 1.4, "percentage": 69.91, "elapsed_time": "20:26:25", "remaining_time": "8:47:53"}
139
- {"current_steps": 1390, "total_steps": 1974, "loss": 0.4689, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0138493739830352e-05, "epoch": 1.41, "percentage": 70.42, "elapsed_time": "20:34:44", "remaining_time": "8:38:46"}
140
- {"current_steps": 1400, "total_steps": 1974, "loss": 0.4599, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.820450940248544e-06, "epoch": 1.42, "percentage": 70.92, "elapsed_time": "20:43:03", "remaining_time": "8:29:39"}
141
- {"current_steps": 1410, "total_steps": 1974, "loss": 0.5019, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.506252775993882e-06, "epoch": 1.43, "percentage": 71.43, "elapsed_time": "21:01:37", "remaining_time": "8:24:39"}
142
- {"current_steps": 1420, "total_steps": 1974, "loss": 0.4764, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.195978826331697e-06, "epoch": 1.44, "percentage": 71.94, "elapsed_time": "21:10:01", "remaining_time": "8:15:29"}
143
- {"current_steps": 1430, "total_steps": 1974, "loss": 0.4579, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.889707676612791e-06, "epoch": 1.45, "percentage": 72.44, "elapsed_time": "21:18:24", "remaining_time": "8:06:19"}
144
- {"current_steps": 1440, "total_steps": 1974, "loss": 0.4592, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.587516898369589e-06, "epoch": 1.46, "percentage": 72.95, "elapsed_time": "21:26:47", "remaining_time": "7:57:11"}
145
- {"current_steps": 1450, "total_steps": 1974, "loss": 0.4861, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.289483029668972e-06, "epoch": 1.47, "percentage": 73.45, "elapsed_time": "21:35:09", "remaining_time": "7:48:02"}
146
- {"current_steps": 1460, "total_steps": 1974, "loss": 0.4753, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.99568155572701e-06, "epoch": 1.48, "percentage": 73.96, "elapsed_time": "21:43:33", "remaining_time": "7:38:55"}
147
- {"current_steps": 1470, "total_steps": 1974, "loss": 0.4929, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.706186889790209e-06, "epoch": 1.49, "percentage": 74.47, "elapsed_time": "21:51:52", "remaining_time": "7:29:47"}
148
- {"current_steps": 1480, "total_steps": 1974, "loss": 0.4594, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.421072354288302e-06, "epoch": 1.5, "percentage": 74.97, "elapsed_time": "22:00:14", "remaining_time": "7:20:40"}
149
- {"current_steps": 1490, "total_steps": 1974, "loss": 0.4912, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.140410162263414e-06, "epoch": 1.51, "percentage": 75.48, "elapsed_time": "22:08:35", "remaining_time": "7:11:34"}
150
- {"current_steps": 1500, "total_steps": 1974, "loss": 0.4681, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.86427139908008e-06, "epoch": 1.52, "percentage": 75.99, "elapsed_time": "22:16:55", "remaining_time": "7:02:28"}
151
- {"current_steps": 1510, "total_steps": 1974, "loss": 0.4816, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.5927260044209655e-06, "epoch": 1.53, "percentage": 76.49, "elapsed_time": "22:25:16", "remaining_time": "6:53:22"}
152
- {"current_steps": 1520, "total_steps": 1974, "loss": 0.4723, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.3258427545727e-06, "epoch": 1.54, "percentage": 77.0, "elapsed_time": "22:33:37", "remaining_time": "6:44:18"}
153
- {"current_steps": 1530, "total_steps": 1974, "loss": 0.4856, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.063689245006443e-06, "epoch": 1.55, "percentage": 77.51, "elapsed_time": "22:41:56", "remaining_time": "6:35:13"}
154
- {"current_steps": 1540, "total_steps": 1974, "loss": 0.4829, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.806331873257462e-06, "epoch": 1.56, "percentage": 78.01, "elapsed_time": "22:50:16", "remaining_time": "6:26:10"}
155
- {"current_steps": 1550, "total_steps": 1974, "loss": 0.4741, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.553835822108152e-06, "epoch": 1.57, "percentage": 78.52, "elapsed_time": "22:58:38", "remaining_time": "6:17:07"}
156
- {"current_steps": 1560, "total_steps": 1974, "loss": 0.4654, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.306265043078693e-06, "epoch": 1.58, "percentage": 79.03, "elapsed_time": "23:06:58", "remaining_time": "6:08:04"}
157
- {"current_steps": 1570, "total_steps": 1974, "loss": 0.4668, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.0636822402296165e-06, "epoch": 1.59, "percentage": 79.53, "elapsed_time": "23:15:15", "remaining_time": "5:59:02"}
158
- {"current_steps": 1580, "total_steps": 1974, "loss": 0.4723, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.826148854280277e-06, "epoch": 1.6, "percentage": 80.04, "elapsed_time": "23:23:36", "remaining_time": "5:50:00"}
159
- {"current_steps": 1590, "total_steps": 1974, "loss": 0.4639, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.593725047047293e-06, "epoch": 1.61, "percentage": 80.55, "elapsed_time": "23:31:55", "remaining_time": "5:40:59"}
160
- {"current_steps": 1600, "total_steps": 1974, "loss": 0.4777, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.3664696862069505e-06, "epoch": 1.62, "percentage": 81.05, "elapsed_time": "23:40:12", "remaining_time": "5:31:58"}
161
- {"current_steps": 1610, "total_steps": 1974, "loss": 0.4546, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.144440330385347e-06, "epoch": 1.63, "percentage": 81.56, "elapsed_time": "1 day, 0:03:58", "remaining_time": "5:26:27"}
162
- {"current_steps": 1620, "total_steps": 1974, "loss": 0.4543, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.927693214580075e-06, "epoch": 1.64, "percentage": 82.07, "elapsed_time": "1 day, 0:12:13", "remaining_time": "5:17:20"}
163
- {"current_steps": 1630, "total_steps": 1974, "loss": 0.4543, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.71628323591722e-06, "epoch": 1.65, "percentage": 82.57, "elapsed_time": "1 day, 0:20:27", "remaining_time": "5:08:13"}
164
- {"current_steps": 1640, "total_steps": 1974, "loss": 0.4659, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5102639397471214e-06, "epoch": 1.66, "percentage": 83.08, "elapsed_time": "1 day, 0:28:43", "remaining_time": "4:59:07"}
165
- {"current_steps": 1650, "total_steps": 1974, "loss": 0.485, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.3096875060825845e-06, "epoch": 1.67, "percentage": 83.59, "elapsed_time": "1 day, 0:36:59", "remaining_time": "4:50:01"}
166
- {"current_steps": 1660, "total_steps": 1974, "loss": 0.4768, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.11460473638282e-06, "epoch": 1.68, "percentage": 84.09, "elapsed_time": "1 day, 0:45:17", "remaining_time": "4:40:57"}
167
- {"current_steps": 1670, "total_steps": 1974, "loss": 0.4635, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.925065040686642e-06, "epoch": 1.69, "percentage": 84.6, "elapsed_time": "1 day, 0:53:32", "remaining_time": "4:31:52"}
168
- {"current_steps": 1680, "total_steps": 1974, "loss": 0.4681, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.741116425097995e-06, "epoch": 1.7, "percentage": 85.11, "elapsed_time": "1 day, 1:01:47", "remaining_time": "4:22:48"}
169
- {"current_steps": 1690, "total_steps": 1974, "loss": 0.4492, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5628054796271063e-06, "epoch": 1.71, "percentage": 85.61, "elapsed_time": "1 day, 1:10:02", "remaining_time": "4:13:45"}
170
- {"current_steps": 1700, "total_steps": 1974, "loss": 0.4664, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.390177366390273e-06, "epoch": 1.72, "percentage": 86.12, "elapsed_time": "1 day, 1:18:18", "remaining_time": "4:04:42"}
171
- {"current_steps": 1710, "total_steps": 1974, "loss": 0.48, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.22327580817136e-06, "epoch": 1.73, "percentage": 86.63, "elapsed_time": "1 day, 1:26:34", "remaining_time": "3:55:40"}
172
- {"current_steps": 1720, "total_steps": 1974, "loss": 0.4616, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0621430773477947e-06, "epoch": 1.74, "percentage": 87.13, "elapsed_time": "1 day, 1:34:47", "remaining_time": "3:46:38"}
173
- {"current_steps": 1730, "total_steps": 1974, "loss": 0.4854, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.906819985183908e-06, "epoch": 1.75, "percentage": 87.64, "elapsed_time": "1 day, 1:43:03", "remaining_time": "3:37:38"}
174
- {"current_steps": 1740, "total_steps": 1974, "loss": 0.4846, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7573458714944063e-06, "epoch": 1.76, "percentage": 88.15, "elapsed_time": "1 day, 1:51:18", "remaining_time": "3:28:37"}
175
- {"current_steps": 1750, "total_steps": 1974, "loss": 0.4552, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6137585946804674e-06, "epoch": 1.77, "percentage": 88.65, "elapsed_time": "1 day, 1:59:35", "remaining_time": "3:19:37"}
176
- {"current_steps": 1760, "total_steps": 1974, "loss": 0.4615, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4760945221410638e-06, "epoch": 1.78, "percentage": 89.16, "elapsed_time": "1 day, 2:07:51", "remaining_time": "3:10:38"}
177
- {"current_steps": 1770, "total_steps": 1974, "loss": 0.4735, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3443885210619428e-06, "epoch": 1.79, "percentage": 89.67, "elapsed_time": "1 day, 2:16:10", "remaining_time": "3:01:39"}
178
- {"current_steps": 1780, "total_steps": 1974, "loss": 0.4705, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2186739495845477e-06, "epoch": 1.8, "percentage": 90.17, "elapsed_time": "1 day, 2:24:26", "remaining_time": "2:52:41"}
179
- {"current_steps": 1790, "total_steps": 1974, "loss": 0.4653, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0989826483571552e-06, "epoch": 1.81, "percentage": 90.68, "elapsed_time": "1 day, 2:32:40", "remaining_time": "2:43:42"}
180
- {"current_steps": 1800, "total_steps": 1974, "loss": 0.4632, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.85344932470364e-07, "epoch": 1.82, "percentage": 91.19, "elapsed_time": "1 day, 2:40:51", "remaining_time": "2:34:44"}
181
- {"current_steps": 1810, "total_steps": 1974, "loss": 0.481, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.77789583778979e-07, "epoch": 1.83, "percentage": 91.69, "elapsed_time": "1 day, 2:59:37", "remaining_time": "2:26:45"}
182
- {"current_steps": 1820, "total_steps": 1974, "loss": 0.4773, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.763438436122122e-07, "epoch": 1.84, "percentage": 92.2, "elapsed_time": "1 day, 3:07:54", "remaining_time": "2:17:44"}
183
- {"current_steps": 1830, "total_steps": 1974, "loss": 0.4791, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.810334058740736e-07, "epoch": 1.85, "percentage": 92.71, "elapsed_time": "1 day, 3:16:15", "remaining_time": "2:08:45"}
184
- {"current_steps": 1840, "total_steps": 1974, "loss": 0.4793, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.918824105356797e-07, "epoch": 1.86, "percentage": 93.21, "elapsed_time": "1 day, 3:24:34", "remaining_time": "1:59:46"}
185
- {"current_steps": 1850, "total_steps": 1974, "loss": 0.4647, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.08913437521169e-07, "epoch": 1.87, "percentage": 93.72, "elapsed_time": "1 day, 3:32:49", "remaining_time": "1:50:47"}
186
- {"current_steps": 1860, "total_steps": 1974, "loss": 0.4765, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.3214750098869995e-07, "epoch": 1.88, "percentage": 94.22, "elapsed_time": "1 day, 3:41:06", "remaining_time": "1:41:48"}
187
- {"current_steps": 1870, "total_steps": 1974, "loss": 0.4787, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.616040440080432e-07, "epoch": 1.89, "percentage": 94.73, "elapsed_time": "1 day, 3:49:26", "remaining_time": "1:32:50"}
188
- {"current_steps": 1880, "total_steps": 1974, "loss": 0.4723, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.973009336361021e-07, "epoch": 1.9, "percentage": 95.24, "elapsed_time": "1 day, 3:57:44", "remaining_time": "1:23:53"}
189
- {"current_steps": 1890, "total_steps": 1974, "loss": 0.453, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.392544563915883e-07, "epoch": 1.91, "percentage": 95.74, "elapsed_time": "1 day, 4:06:01", "remaining_time": "1:14:56"}
190
- {"current_steps": 1900, "total_steps": 1974, "loss": 0.4561, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8747931413001795e-07, "epoch": 1.93, "percentage": 96.25, "elapsed_time": "1 day, 4:14:18", "remaining_time": "1:05:59"}
191
- {"current_steps": 1910, "total_steps": 1974, "loss": 0.4612, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4198862032005488e-07, "epoch": 1.94, "percentage": 96.76, "elapsed_time": "1 day, 4:22:35", "remaining_time": "0:57:03"}
192
- {"current_steps": 1920, "total_steps": 1974, "loss": 0.4774, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0279389672218365e-07, "epoch": 1.95, "percentage": 97.26, "elapsed_time": "1 day, 4:30:53", "remaining_time": "0:48:07"}
193
- {"current_steps": 1930, "total_steps": 1974, "loss": 0.4635, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.990507047049676e-08, "epoch": 1.96, "percentage": 97.77, "elapsed_time": "1 day, 4:39:09", "remaining_time": "0:39:11"}
194
- {"current_steps": 1940, "total_steps": 1974, "loss": 0.4761, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.3330471558378213e-08, "epoch": 1.97, "percentage": 98.28, "elapsed_time": "1 day, 4:47:22", "remaining_time": "0:30:16"}
195
- {"current_steps": 1950, "total_steps": 1974, "loss": 0.4593, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3076830728713252e-08, "epoch": 1.98, "percentage": 98.78, "elapsed_time": "1 day, 4:55:39", "remaining_time": "0:21:21"}
196
- {"current_steps": 1960, "total_steps": 1974, "loss": 0.4736, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.149277769132658e-09, "epoch": 1.99, "percentage": 99.29, "elapsed_time": "1 day, 5:03:51", "remaining_time": "0:12:27"}
197
- {"current_steps": 1970, "total_steps": 1974, "loss": 0.4486, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.551340212760377e-09, "epoch": 2.0, "percentage": 99.8, "elapsed_time": "1 day, 5:12:08", "remaining_time": "0:03:33"}
198
- {"current_steps": 1974, "total_steps": 1974, "loss": null, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.0, "percentage": 100.0, "elapsed_time": "1 day, 5:15:27", "remaining_time": "0:00:00"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Baichuan-13B-Chat-full/training_loss.png DELETED
Binary file (44.1 kB)
 
Baichuan-13B-Chat-lora-Task/README.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ ---
4
+ ## Training procedure
5
+
6
+ ### Framework versions
7
+
8
+
9
+ - PEFT 0.5.0
Baichuan-13B-Chat-lora-Task/adapter_config.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_mapping": null,
3
+ "base_model_name_or_path": "baichuan-inc/Baichuan-13B-Chat",
4
+ "bias": "none",
5
+ "fan_in_fan_out": false,
6
+ "inference_mode": true,
7
+ "init_lora_weights": true,
8
+ "layers_pattern": null,
9
+ "layers_to_transform": null,
10
+ "lora_alpha": 32.0,
11
+ "lora_dropout": 0.1,
12
+ "modules_to_save": null,
13
+ "peft_type": "LORA",
14
+ "r": 8,
15
+ "revision": null,
16
+ "target_modules": [
17
+ "W_pack"
18
+ ],
19
+ "task_type": "CAUSAL_LM"
20
+ }
Baichuan-13B-Chat-full/pytorch_model-00001-of-00003.bin → Baichuan-13B-Chat-lora-Task/adapter_model.bin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8ba122d5818b6681b04be1cf1cbd5a8d8bba0b187481b1481fccdc50e3efe479
3
- size 9972280267
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84594037c53e9a300bbdebbc3534f704f22f429b6b912fe36e32aeec5a928e3a
3
+ size 26243422
Baichuan-13B-Chat-lora-Task/all_results.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.0,
3
+ "eval_loss": 0.41885045170783997,
4
+ "eval_runtime": 69.6555,
5
+ "eval_samples_per_second": 15.821,
6
+ "eval_steps_per_second": 1.594,
7
+ "train_loss": 0.46561298847898175,
8
+ "train_runtime": 35477.4141,
9
+ "train_samples_per_second": 6.149,
10
+ "train_steps_per_second": 0.077
11
+ }
Baichuan-13B-Chat-lora-Task/eval_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.0,
3
+ "eval_loss": 0.41885045170783997,
4
+ "eval_runtime": 69.6555,
5
+ "eval_samples_per_second": 15.821,
6
+ "eval_steps_per_second": 1.594
7
+ }
{Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/special_tokens_map.json RENAMED
File without changes
{Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/tokenization_baichuan.py RENAMED
File without changes
{Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/tokenizer.model RENAMED
File without changes
{Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/tokenizer_config.json RENAMED
File without changes
Baichuan-13B-Chat-lora-Task/train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.0,
3
+ "train_loss": 0.46561298847898175,
4
+ "train_runtime": 35477.4141,
5
+ "train_samples_per_second": 6.149,
6
+ "train_steps_per_second": 0.077
7
+ }
Baichuan-13B-Chat-lora-Task/trainer_log.jsonl ADDED
@@ -0,0 +1,287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 10, "total_steps": 2726, "loss": 1.5452, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.999865525734509e-05, "epoch": 0.01, "percentage": 0.37, "elapsed_time": "0:02:32", "remaining_time": "11:29:51"}
2
+ {"current_steps": 20, "total_steps": 2726, "loss": 1.3291, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9994621174046976e-05, "epoch": 0.01, "percentage": 0.73, "elapsed_time": "0:04:36", "remaining_time": "10:23:36"}
3
+ {"current_steps": 30, "total_steps": 2726, "loss": 1.1048, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9986985231938546e-05, "epoch": 0.02, "percentage": 1.1, "elapsed_time": "0:06:36", "remaining_time": "9:54:30"}
4
+ {"current_steps": 40, "total_steps": 2726, "loss": 0.9155, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.99760306731191e-05, "epoch": 0.03, "percentage": 1.47, "elapsed_time": "0:08:47", "remaining_time": "9:50:47"}
5
+ {"current_steps": 50, "total_steps": 2726, "loss": 0.8856, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9961758952505326e-05, "epoch": 0.04, "percentage": 1.83, "elapsed_time": "0:10:46", "remaining_time": "9:36:34"}
6
+ {"current_steps": 60, "total_steps": 2726, "loss": 0.8052, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9944171965578836e-05, "epoch": 0.04, "percentage": 2.2, "elapsed_time": "0:13:03", "remaining_time": "9:40:26"}
7
+ {"current_steps": 70, "total_steps": 2726, "loss": 0.7332, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.992327204813435e-05, "epoch": 0.05, "percentage": 2.57, "elapsed_time": "0:15:01", "remaining_time": "9:30:01"}
8
+ {"current_steps": 80, "total_steps": 2726, "loss": 0.6982, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.989906197596955e-05, "epoch": 0.06, "percentage": 2.93, "elapsed_time": "0:17:01", "remaining_time": "9:22:57"}
9
+ {"current_steps": 90, "total_steps": 2726, "loss": 0.6811, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.987154496451635e-05, "epoch": 0.07, "percentage": 3.3, "elapsed_time": "0:18:51", "remaining_time": "9:12:22"}
10
+ {"current_steps": 100, "total_steps": 2726, "loss": 0.6323, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.984072466841389e-05, "epoch": 0.07, "percentage": 3.67, "elapsed_time": "0:21:04", "remaining_time": "9:13:18"}
11
+ {"current_steps": 110, "total_steps": 2726, "loss": 0.6234, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.981016546765289e-05, "epoch": 0.08, "percentage": 4.04, "elapsed_time": "0:23:02", "remaining_time": "9:07:57"}
12
+ {"current_steps": 120, "total_steps": 2726, "loss": 0.6125, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.977308057009269e-05, "epoch": 0.09, "percentage": 4.4, "elapsed_time": "0:25:11", "remaining_time": "9:07:04"}
13
+ {"current_steps": 130, "total_steps": 2726, "loss": 0.5977, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.97327054653146e-05, "epoch": 0.1, "percentage": 4.77, "elapsed_time": "0:27:29", "remaining_time": "9:08:54"}
14
+ {"current_steps": 140, "total_steps": 2726, "loss": 0.6179, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.968904551569013e-05, "epoch": 0.1, "percentage": 5.14, "elapsed_time": "0:29:47", "remaining_time": "9:10:22"}
15
+ {"current_steps": 150, "total_steps": 2726, "loss": 0.5879, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9642106519863544e-05, "epoch": 0.11, "percentage": 5.5, "elapsed_time": "0:31:46", "remaining_time": "9:05:40"}
16
+ {"current_steps": 160, "total_steps": 2726, "loss": 0.5472, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.959189471198171e-05, "epoch": 0.12, "percentage": 5.87, "elapsed_time": "0:33:38", "remaining_time": "8:59:28"}
17
+ {"current_steps": 170, "total_steps": 2726, "loss": 0.602, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.953841676086613e-05, "epoch": 0.12, "percentage": 6.24, "elapsed_time": "0:35:33", "remaining_time": "8:54:43"}
18
+ {"current_steps": 180, "total_steps": 2726, "loss": 0.5773, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9481679769127275e-05, "epoch": 0.13, "percentage": 6.6, "elapsed_time": "0:37:48", "remaining_time": "8:54:48"}
19
+ {"current_steps": 190, "total_steps": 2726, "loss": 0.5615, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9421691272221167e-05, "epoch": 0.14, "percentage": 6.97, "elapsed_time": "0:39:45", "remaining_time": "8:50:36"}
20
+ {"current_steps": 200, "total_steps": 2726, "loss": 0.5704, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.935845923744865e-05, "epoch": 0.15, "percentage": 7.34, "elapsed_time": "0:41:50", "remaining_time": "8:48:29"}
21
+ {"current_steps": 200, "total_steps": 2726, "loss": null, "eval_loss": 0.5564362406730652, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.15, "percentage": 7.34, "elapsed_time": "0:41:50", "remaining_time": "8:48:29"}
22
+ {"current_steps": 210, "total_steps": 2726, "loss": 0.5803, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9291992062897183e-05, "epoch": 0.15, "percentage": 7.7, "elapsed_time": "0:44:59", "remaining_time": "8:59:06"}
23
+ {"current_steps": 220, "total_steps": 2726, "loss": 0.5655, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.922229857632545e-05, "epoch": 0.16, "percentage": 8.07, "elapsed_time": "0:46:42", "remaining_time": "8:52:03"}
24
+ {"current_steps": 230, "total_steps": 2726, "loss": 0.5769, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9149388033990966e-05, "epoch": 0.17, "percentage": 8.44, "elapsed_time": "0:49:02", "remaining_time": "8:52:13"}
25
+ {"current_steps": 240, "total_steps": 2726, "loss": 0.5862, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9073270119420635e-05, "epoch": 0.18, "percentage": 8.8, "elapsed_time": "0:51:04", "remaining_time": "8:49:08"}
26
+ {"current_steps": 250, "total_steps": 2726, "loss": 0.5506, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.899395494212471e-05, "epoch": 0.18, "percentage": 9.17, "elapsed_time": "0:53:13", "remaining_time": "8:47:07"}
27
+ {"current_steps": 260, "total_steps": 2726, "loss": 0.5183, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.891145303625408e-05, "epoch": 0.19, "percentage": 9.54, "elapsed_time": "0:55:40", "remaining_time": "8:48:05"}
28
+ {"current_steps": 270, "total_steps": 2726, "loss": 0.575, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.882577535920121e-05, "epoch": 0.2, "percentage": 9.9, "elapsed_time": "0:58:06", "remaining_time": "8:48:33"}
29
+ {"current_steps": 280, "total_steps": 2726, "loss": 0.5359, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8736933290144815e-05, "epoch": 0.21, "percentage": 10.27, "elapsed_time": "1:00:24", "remaining_time": "8:47:41"}
30
+ {"current_steps": 290, "total_steps": 2726, "loss": 0.5302, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8644938628538606e-05, "epoch": 0.21, "percentage": 10.64, "elapsed_time": "1:02:22", "remaining_time": "8:43:57"}
31
+ {"current_steps": 300, "total_steps": 2726, "loss": 0.5399, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8549803592544076e-05, "epoch": 0.22, "percentage": 11.01, "elapsed_time": "1:04:13", "remaining_time": "8:39:25"}
32
+ {"current_steps": 310, "total_steps": 2726, "loss": 0.5379, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.845154081740783e-05, "epoch": 0.23, "percentage": 11.37, "elapsed_time": "1:06:13", "remaining_time": "8:36:11"}
33
+ {"current_steps": 320, "total_steps": 2726, "loss": 0.5299, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.835016335378343e-05, "epoch": 0.23, "percentage": 11.74, "elapsed_time": "1:08:08", "remaining_time": "8:32:17"}
34
+ {"current_steps": 330, "total_steps": 2726, "loss": 0.535, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8245684665998073e-05, "epoch": 0.24, "percentage": 12.11, "elapsed_time": "1:10:23", "remaining_time": "8:31:06"}
35
+ {"current_steps": 340, "total_steps": 2726, "loss": 0.5145, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.813811863026436e-05, "epoch": 0.25, "percentage": 12.47, "elapsed_time": "1:12:33", "remaining_time": "8:29:13"}
36
+ {"current_steps": 350, "total_steps": 2726, "loss": 0.5126, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.802747953283732e-05, "epoch": 0.26, "percentage": 12.84, "elapsed_time": "1:14:40", "remaining_time": "8:26:55"}
37
+ {"current_steps": 360, "total_steps": 2726, "loss": 0.5012, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.791378206811704e-05, "epoch": 0.26, "percentage": 13.21, "elapsed_time": "1:16:47", "remaining_time": "8:24:39"}
38
+ {"current_steps": 370, "total_steps": 2726, "loss": 0.5373, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7797041336696995e-05, "epoch": 0.27, "percentage": 13.57, "elapsed_time": "1:19:07", "remaining_time": "8:23:47"}
39
+ {"current_steps": 380, "total_steps": 2726, "loss": 0.4778, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.767727284335852e-05, "epoch": 0.28, "percentage": 13.94, "elapsed_time": "1:21:18", "remaining_time": "8:21:59"}
40
+ {"current_steps": 390, "total_steps": 2726, "loss": 0.4894, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.755449249501155e-05, "epoch": 0.29, "percentage": 14.31, "elapsed_time": "1:23:03", "remaining_time": "8:17:32"}
41
+ {"current_steps": 400, "total_steps": 2726, "loss": 0.4986, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7428716598581934e-05, "epoch": 0.29, "percentage": 14.67, "elapsed_time": "1:25:10", "remaining_time": "8:15:20"}
42
+ {"current_steps": 400, "total_steps": 2726, "loss": null, "eval_loss": 0.4967592656612396, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.29, "percentage": 14.67, "elapsed_time": "1:25:10", "remaining_time": "8:15:20"}
43
+ {"current_steps": 410, "total_steps": 2726, "loss": 0.4928, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.729996185884571e-05, "epoch": 0.3, "percentage": 15.04, "elapsed_time": "1:28:14", "remaining_time": "8:18:25"}
44
+ {"current_steps": 420, "total_steps": 2726, "loss": 0.4807, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.716824537621042e-05, "epoch": 0.31, "percentage": 15.41, "elapsed_time": "1:30:05", "remaining_time": "8:14:40"}
45
+ {"current_steps": 430, "total_steps": 2726, "loss": 0.4734, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.703358464444397e-05, "epoch": 0.32, "percentage": 15.77, "elapsed_time": "1:32:27", "remaining_time": "8:13:42"}
46
+ {"current_steps": 440, "total_steps": 2726, "loss": 0.4603, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.689599754835122e-05, "epoch": 0.32, "percentage": 16.14, "elapsed_time": "1:34:29", "remaining_time": "8:10:56"}
47
+ {"current_steps": 450, "total_steps": 2726, "loss": 0.4661, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.6755502361398616e-05, "epoch": 0.33, "percentage": 16.51, "elapsed_time": "1:36:31", "remaining_time": "8:08:14"}
48
+ {"current_steps": 460, "total_steps": 2726, "loss": 0.5072, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.6612117743287234e-05, "epoch": 0.34, "percentage": 16.87, "elapsed_time": "1:38:36", "remaining_time": "8:05:42"}
49
+ {"current_steps": 470, "total_steps": 2726, "loss": 0.5056, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.646586273747452e-05, "epoch": 0.34, "percentage": 17.24, "elapsed_time": "1:40:39", "remaining_time": "8:03:07"}
50
+ {"current_steps": 480, "total_steps": 2726, "loss": 0.4391, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.631675676864503e-05, "epoch": 0.35, "percentage": 17.61, "elapsed_time": "1:43:01", "remaining_time": "8:02:03"}
51
+ {"current_steps": 490, "total_steps": 2726, "loss": 0.483, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.6164819640130595e-05, "epoch": 0.36, "percentage": 17.98, "elapsed_time": "1:45:28", "remaining_time": "8:01:17"}
52
+ {"current_steps": 500, "total_steps": 2726, "loss": 0.4774, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.601007153128014e-05, "epoch": 0.37, "percentage": 18.34, "elapsed_time": "1:47:35", "remaining_time": "7:59:00"}
53
+ {"current_steps": 510, "total_steps": 2726, "loss": 0.4848, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.5852532994779606e-05, "epoch": 0.37, "percentage": 18.71, "elapsed_time": "1:49:45", "remaining_time": "7:56:55"}
54
+ {"current_steps": 520, "total_steps": 2726, "loss": 0.5099, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.5692224953922266e-05, "epoch": 0.38, "percentage": 19.08, "elapsed_time": "1:51:38", "remaining_time": "7:53:35"}
55
+ {"current_steps": 530, "total_steps": 2726, "loss": 0.4851, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.5529168699829805e-05, "epoch": 0.39, "percentage": 19.44, "elapsed_time": "1:53:42", "remaining_time": "7:51:09"}
56
+ {"current_steps": 540, "total_steps": 2726, "loss": 0.498, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.536338588862459e-05, "epoch": 0.4, "percentage": 19.81, "elapsed_time": "1:55:51", "remaining_time": "7:48:59"}
57
+ {"current_steps": 550, "total_steps": 2726, "loss": 0.5398, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.519489853855341e-05, "epoch": 0.4, "percentage": 20.18, "elapsed_time": "1:58:05", "remaining_time": "7:47:11"}
58
+ {"current_steps": 560, "total_steps": 2726, "loss": 0.4566, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.50237290270632e-05, "epoch": 0.41, "percentage": 20.54, "elapsed_time": "1:59:55", "remaining_time": "7:43:50"}
59
+ {"current_steps": 570, "total_steps": 2726, "loss": 0.4942, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.484990008782893e-05, "epoch": 0.42, "percentage": 20.91, "elapsed_time": "2:01:51", "remaining_time": "7:40:56"}
60
+ {"current_steps": 580, "total_steps": 2726, "loss": 0.4625, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.467343480773433e-05, "epoch": 0.43, "percentage": 21.28, "elapsed_time": "2:04:02", "remaining_time": "7:38:55"}
61
+ {"current_steps": 590, "total_steps": 2726, "loss": 0.4703, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.44943566238056e-05, "epoch": 0.43, "percentage": 21.64, "elapsed_time": "2:06:02", "remaining_time": "7:36:17"}
62
+ {"current_steps": 600, "total_steps": 2726, "loss": 0.464, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.431268932009865e-05, "epoch": 0.44, "percentage": 22.01, "elapsed_time": "2:08:29", "remaining_time": "7:35:16"}
63
+ {"current_steps": 600, "total_steps": 2726, "loss": null, "eval_loss": 0.46821752190589905, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.44, "percentage": 22.01, "elapsed_time": "2:08:29", "remaining_time": "7:35:16"}
64
+ {"current_steps": 610, "total_steps": 2726, "loss": 0.4739, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.412845702454024e-05, "epoch": 0.45, "percentage": 22.38, "elapsed_time": "2:11:46", "remaining_time": "7:37:07"}
65
+ {"current_steps": 620, "total_steps": 2726, "loss": 0.4529, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.394168420572349e-05, "epoch": 0.45, "percentage": 22.74, "elapsed_time": "2:14:01", "remaining_time": "7:35:15"}
66
+ {"current_steps": 630, "total_steps": 2726, "loss": 0.4433, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.3752395669658086e-05, "epoch": 0.46, "percentage": 23.11, "elapsed_time": "2:16:41", "remaining_time": "7:34:47"}
67
+ {"current_steps": 640, "total_steps": 2726, "loss": 0.459, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.356061655647571e-05, "epoch": 0.47, "percentage": 23.48, "elapsed_time": "2:18:53", "remaining_time": "7:32:41"}
68
+ {"current_steps": 650, "total_steps": 2726, "loss": 0.4877, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.336637233709107e-05, "epoch": 0.48, "percentage": 23.84, "elapsed_time": "2:20:42", "remaining_time": "7:29:22"}
69
+ {"current_steps": 660, "total_steps": 2726, "loss": 0.4676, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.316968880981903e-05, "epoch": 0.48, "percentage": 24.21, "elapsed_time": "2:22:37", "remaining_time": "7:26:26"}
70
+ {"current_steps": 670, "total_steps": 2726, "loss": 0.4782, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.2970592096948236e-05, "epoch": 0.49, "percentage": 24.58, "elapsed_time": "2:24:37", "remaining_time": "7:23:48"}
71
+ {"current_steps": 680, "total_steps": 2726, "loss": 0.4778, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.276910864127168e-05, "epoch": 0.5, "percentage": 24.94, "elapsed_time": "2:26:47", "remaining_time": "7:21:39"}
72
+ {"current_steps": 690, "total_steps": 2726, "loss": 0.454, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.25652652025748e-05, "epoch": 0.51, "percentage": 25.31, "elapsed_time": "2:28:42", "remaining_time": "7:18:47"}
73
+ {"current_steps": 700, "total_steps": 2726, "loss": 0.4399, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.235908885408133e-05, "epoch": 0.51, "percentage": 25.68, "elapsed_time": "2:30:54", "remaining_time": "7:16:47"}
74
+ {"current_steps": 710, "total_steps": 2726, "loss": 0.5106, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.215060697885767e-05, "epoch": 0.52, "percentage": 26.05, "elapsed_time": "2:32:57", "remaining_time": "7:14:19"}
75
+ {"current_steps": 720, "total_steps": 2726, "loss": 0.4683, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.1939847266176e-05, "epoch": 0.53, "percentage": 26.41, "elapsed_time": "2:35:12", "remaining_time": "7:12:26"}
76
+ {"current_steps": 730, "total_steps": 2726, "loss": 0.4896, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.172683770783677e-05, "epoch": 0.54, "percentage": 26.78, "elapsed_time": "2:37:07", "remaining_time": "7:09:37"}
77
+ {"current_steps": 740, "total_steps": 2726, "loss": 0.4633, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.1511606594451016e-05, "epoch": 0.54, "percentage": 27.15, "elapsed_time": "2:39:14", "remaining_time": "7:07:20"}
78
+ {"current_steps": 750, "total_steps": 2726, "loss": 0.4486, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.1294182511682946e-05, "epoch": 0.55, "percentage": 27.51, "elapsed_time": "2:41:16", "remaining_time": "7:04:53"}
79
+ {"current_steps": 760, "total_steps": 2726, "loss": 0.4706, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.1074594336453384e-05, "epoch": 0.56, "percentage": 27.88, "elapsed_time": "2:43:11", "remaining_time": "7:02:09"}
80
+ {"current_steps": 770, "total_steps": 2726, "loss": 0.4797, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.085287123310455e-05, "epoch": 0.56, "percentage": 28.25, "elapsed_time": "2:44:59", "remaining_time": "6:59:07"}
81
+ {"current_steps": 780, "total_steps": 2726, "loss": 0.4251, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.062904264952657e-05, "epoch": 0.57, "percentage": 28.61, "elapsed_time": "2:47:04", "remaining_time": "6:56:49"}
82
+ {"current_steps": 790, "total_steps": 2726, "loss": 0.4687, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.0403138313246435e-05, "epoch": 0.58, "percentage": 28.98, "elapsed_time": "2:49:15", "remaining_time": "6:54:47"}
83
+ {"current_steps": 800, "total_steps": 2726, "loss": 0.48, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.017518822747976e-05, "epoch": 0.59, "percentage": 29.35, "elapsed_time": "2:51:34", "remaining_time": "6:53:03"}
84
+ {"current_steps": 800, "total_steps": 2726, "loss": null, "eval_loss": 0.4554018974304199, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.59, "percentage": 29.35, "elapsed_time": "2:51:34", "remaining_time": "6:53:03"}
85
+ {"current_steps": 810, "total_steps": 2726, "loss": 0.4662, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.994522266714594e-05, "epoch": 0.59, "percentage": 29.71, "elapsed_time": "2:54:51", "remaining_time": "6:53:36"}
86
+ {"current_steps": 820, "total_steps": 2726, "loss": 0.4837, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.9713272174847246e-05, "epoch": 0.6, "percentage": 30.08, "elapsed_time": "2:57:25", "remaining_time": "6:52:24"}
87
+ {"current_steps": 830, "total_steps": 2726, "loss": 0.5014, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.947936755681229e-05, "epoch": 0.61, "percentage": 30.45, "elapsed_time": "2:59:33", "remaining_time": "6:50:10"}
88
+ {"current_steps": 840, "total_steps": 2726, "loss": 0.4764, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.92435398788046e-05, "epoch": 0.62, "percentage": 30.81, "elapsed_time": "3:01:44", "remaining_time": "6:48:02"}
89
+ {"current_steps": 850, "total_steps": 2726, "loss": 0.4587, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.9005820461996604e-05, "epoch": 0.62, "percentage": 31.18, "elapsed_time": "3:03:52", "remaining_time": "6:45:49"}
90
+ {"current_steps": 860, "total_steps": 2726, "loss": 0.484, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.876624087880979e-05, "epoch": 0.63, "percentage": 31.55, "elapsed_time": "3:06:00", "remaining_time": "6:43:35"}
91
+ {"current_steps": 870, "total_steps": 2726, "loss": 0.4285, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.85248329487214e-05, "epoch": 0.64, "percentage": 31.91, "elapsed_time": "3:08:03", "remaining_time": "6:41:10"}
92
+ {"current_steps": 880, "total_steps": 2726, "loss": 0.4742, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.828162873403843e-05, "epoch": 0.65, "percentage": 32.28, "elapsed_time": "3:10:09", "remaining_time": "6:38:53"}
93
+ {"current_steps": 890, "total_steps": 2726, "loss": 0.4533, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.803666053563926e-05, "epoch": 0.65, "percentage": 32.65, "elapsed_time": "3:12:20", "remaining_time": "6:36:48"}
94
+ {"current_steps": 900, "total_steps": 2726, "loss": 0.4395, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.778996088868365e-05, "epoch": 0.66, "percentage": 33.02, "elapsed_time": "3:14:34", "remaining_time": "6:34:47"}
95
+ {"current_steps": 910, "total_steps": 2726, "loss": 0.4519, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.754156255829167e-05, "epoch": 0.67, "percentage": 33.38, "elapsed_time": "3:16:42", "remaining_time": "6:32:33"}
96
+ {"current_steps": 920, "total_steps": 2726, "loss": 0.4684, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.7291498535191996e-05, "epoch": 0.67, "percentage": 33.75, "elapsed_time": "3:18:41", "remaining_time": "6:30:02"}
97
+ {"current_steps": 930, "total_steps": 2726, "loss": 0.4259, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.703980203134029e-05, "epoch": 0.68, "percentage": 34.12, "elapsed_time": "3:20:24", "remaining_time": "6:27:00"}
98
+ {"current_steps": 940, "total_steps": 2726, "loss": 0.4576, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.678650647550822e-05, "epoch": 0.69, "percentage": 34.48, "elapsed_time": "3:22:27", "remaining_time": "6:24:40"}
99
+ {"current_steps": 950, "total_steps": 2726, "loss": 0.446, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.6531645508843636e-05, "epoch": 0.7, "percentage": 34.85, "elapsed_time": "3:24:21", "remaining_time": "6:22:01"}
100
+ {"current_steps": 960, "total_steps": 2726, "loss": 0.4439, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.6275252980402544e-05, "epoch": 0.7, "percentage": 35.22, "elapsed_time": "3:26:18", "remaining_time": "6:19:31"}
101
+ {"current_steps": 970, "total_steps": 2726, "loss": 0.476, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.601736294265354e-05, "epoch": 0.71, "percentage": 35.58, "elapsed_time": "3:28:32", "remaining_time": "6:17:31"}
102
+ {"current_steps": 980, "total_steps": 2726, "loss": 0.4153, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5758009646955115e-05, "epoch": 0.72, "percentage": 35.95, "elapsed_time": "3:30:27", "remaining_time": "6:14:57"}
103
+ {"current_steps": 990, "total_steps": 2726, "loss": 0.4444, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5497227539006614e-05, "epoch": 0.73, "percentage": 36.32, "elapsed_time": "3:32:34", "remaining_time": "6:12:46"}
104
+ {"current_steps": 1000, "total_steps": 2726, "loss": 0.4395, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.523505125427341e-05, "epoch": 0.73, "percentage": 36.68, "elapsed_time": "3:34:52", "remaining_time": "6:10:52"}
105
+ {"current_steps": 1000, "total_steps": 2726, "loss": null, "eval_loss": 0.44357746839523315, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.73, "percentage": 36.68, "elapsed_time": "3:34:52", "remaining_time": "6:10:52"}
106
+ {"current_steps": 1010, "total_steps": 2726, "loss": 0.4387, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.497151561338678e-05, "epoch": 0.74, "percentage": 37.05, "elapsed_time": "3:38:14", "remaining_time": "6:10:46"}
107
+ {"current_steps": 1020, "total_steps": 2726, "loss": 0.4559, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.470665561751928e-05, "epoch": 0.75, "percentage": 37.42, "elapsed_time": "3:40:04", "remaining_time": "6:08:04"}
108
+ {"current_steps": 1030, "total_steps": 2726, "loss": 0.4349, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.444050644373611e-05, "epoch": 0.76, "percentage": 37.78, "elapsed_time": "3:42:11", "remaining_time": "6:05:50"}
109
+ {"current_steps": 1040, "total_steps": 2726, "loss": 0.4661, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.417310344032309e-05, "epoch": 0.76, "percentage": 38.15, "elapsed_time": "3:44:11", "remaining_time": "6:03:26"}
110
+ {"current_steps": 1050, "total_steps": 2726, "loss": 0.4945, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.390448212209191e-05, "epoch": 0.77, "percentage": 38.52, "elapsed_time": "3:46:22", "remaining_time": "6:01:20"}
111
+ {"current_steps": 1060, "total_steps": 2726, "loss": 0.4399, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.3634678165663325e-05, "epoch": 0.78, "percentage": 38.88, "elapsed_time": "3:48:36", "remaining_time": "5:59:18"}
112
+ {"current_steps": 1070, "total_steps": 2726, "loss": 0.4399, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.336372740472877e-05, "epoch": 0.78, "percentage": 39.25, "elapsed_time": "3:50:31", "remaining_time": "5:56:47"}
113
+ {"current_steps": 1080, "total_steps": 2726, "loss": 0.4251, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.309166582529114e-05, "epoch": 0.79, "percentage": 39.62, "elapsed_time": "3:52:21", "remaining_time": "5:54:08"}
114
+ {"current_steps": 1090, "total_steps": 2726, "loss": 0.4385, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.281852956088537e-05, "epoch": 0.8, "percentage": 39.99, "elapsed_time": "3:54:18", "remaining_time": "5:51:40"}
115
+ {"current_steps": 1100, "total_steps": 2726, "loss": 0.4566, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.254435488777941e-05, "epoch": 0.81, "percentage": 40.35, "elapsed_time": "3:56:22", "remaining_time": "5:49:24"}
116
+ {"current_steps": 1110, "total_steps": 2726, "loss": 0.4352, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.226917822015623e-05, "epoch": 0.81, "percentage": 40.72, "elapsed_time": "3:58:33", "remaining_time": "5:47:19"}
117
+ {"current_steps": 1120, "total_steps": 2726, "loss": 0.4617, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.199303610527749e-05, "epoch": 0.82, "percentage": 41.09, "elapsed_time": "4:00:57", "remaining_time": "5:45:30"}
118
+ {"current_steps": 1130, "total_steps": 2726, "loss": 0.476, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.1715965218629595e-05, "epoch": 0.83, "percentage": 41.45, "elapsed_time": "4:02:46", "remaining_time": "5:42:54"}
119
+ {"current_steps": 1140, "total_steps": 2726, "loss": 0.4322, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.143800235905268e-05, "epoch": 0.84, "percentage": 41.82, "elapsed_time": "4:04:46", "remaining_time": "5:40:32"}
120
+ {"current_steps": 1150, "total_steps": 2726, "loss": 0.4736, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.115918444385315e-05, "epoch": 0.84, "percentage": 42.19, "elapsed_time": "4:06:57", "remaining_time": "5:38:26"}
121
+ {"current_steps": 1160, "total_steps": 2726, "loss": 0.4322, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.0879548503900665e-05, "epoch": 0.85, "percentage": 42.55, "elapsed_time": "4:09:21", "remaining_time": "5:36:37"}
122
+ {"current_steps": 1170, "total_steps": 2726, "loss": 0.4152, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.0599131678709836e-05, "epoch": 0.86, "percentage": 42.92, "elapsed_time": "4:11:20", "remaining_time": "5:34:16"}
123
+ {"current_steps": 1180, "total_steps": 2726, "loss": 0.4187, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.031797121150764e-05, "epoch": 0.87, "percentage": 43.29, "elapsed_time": "4:13:18", "remaining_time": "5:31:52"}
124
+ {"current_steps": 1190, "total_steps": 2726, "loss": 0.4331, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.0036104444286954e-05, "epoch": 0.87, "percentage": 43.65, "elapsed_time": "4:15:22", "remaining_time": "5:29:37"}
125
+ {"current_steps": 1200, "total_steps": 2726, "loss": 0.45, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9753568812847065e-05, "epoch": 0.88, "percentage": 44.02, "elapsed_time": "4:17:56", "remaining_time": "5:28:00"}
126
+ {"current_steps": 1200, "total_steps": 2726, "loss": null, "eval_loss": 0.43782830238342285, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.88, "percentage": 44.02, "elapsed_time": "4:17:56", "remaining_time": "5:28:00"}
127
+ {"current_steps": 1210, "total_steps": 2726, "loss": 0.4457, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9470401841821686e-05, "epoch": 0.89, "percentage": 44.39, "elapsed_time": "4:21:17", "remaining_time": "5:27:22"}
128
+ {"current_steps": 1220, "total_steps": 2726, "loss": 0.4667, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9186641139695108e-05, "epoch": 0.89, "percentage": 44.75, "elapsed_time": "4:23:21", "remaining_time": "5:25:05"}
129
+ {"current_steps": 1230, "total_steps": 2726, "loss": 0.4516, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8902324393807333e-05, "epoch": 0.9, "percentage": 45.12, "elapsed_time": "4:25:38", "remaining_time": "5:23:05"}
130
+ {"current_steps": 1240, "total_steps": 2726, "loss": 0.4695, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.861748936534867e-05, "epoch": 0.91, "percentage": 45.49, "elapsed_time": "4:27:43", "remaining_time": "5:20:50"}
131
+ {"current_steps": 1250, "total_steps": 2726, "loss": 0.45, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8332173884344477e-05, "epoch": 0.92, "percentage": 45.85, "elapsed_time": "4:30:07", "remaining_time": "5:18:58"}
132
+ {"current_steps": 1260, "total_steps": 2726, "loss": 0.4246, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8046415844630857e-05, "epoch": 0.92, "percentage": 46.22, "elapsed_time": "4:32:04", "remaining_time": "5:16:33"}
133
+ {"current_steps": 1270, "total_steps": 2726, "loss": 0.4449, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7760253198821822e-05, "epoch": 0.93, "percentage": 46.59, "elapsed_time": "4:34:02", "remaining_time": "5:14:10"}
134
+ {"current_steps": 1280, "total_steps": 2726, "loss": 0.4217, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7473723953268687e-05, "epoch": 0.94, "percentage": 46.96, "elapsed_time": "4:36:21", "remaining_time": "5:12:11"}
135
+ {"current_steps": 1290, "total_steps": 2726, "loss": 0.4495, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7186866163012232e-05, "epoch": 0.95, "percentage": 47.32, "elapsed_time": "4:38:18", "remaining_time": "5:09:48"}
136
+ {"current_steps": 1300, "total_steps": 2726, "loss": 0.4523, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6899717926728535e-05, "epoch": 0.95, "percentage": 47.69, "elapsed_time": "4:40:31", "remaining_time": "5:07:43"}
137
+ {"current_steps": 1310, "total_steps": 2726, "loss": 0.4523, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6612317381668915e-05, "epoch": 0.96, "percentage": 48.06, "elapsed_time": "4:42:52", "remaining_time": "5:05:45"}
138
+ {"current_steps": 1320, "total_steps": 2726, "loss": 0.45, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.632470269859478e-05, "epoch": 0.97, "percentage": 48.42, "elapsed_time": "4:44:43", "remaining_time": "5:03:16"}
139
+ {"current_steps": 1330, "total_steps": 2726, "loss": 0.4371, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.603691207670803e-05, "epoch": 0.98, "percentage": 48.79, "elapsed_time": "4:46:50", "remaining_time": "5:01:04"}
140
+ {"current_steps": 1340, "total_steps": 2726, "loss": 0.4221, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5748983738577653e-05, "epoch": 0.98, "percentage": 49.16, "elapsed_time": "4:49:12", "remaining_time": "4:59:08"}
141
+ {"current_steps": 1350, "total_steps": 2726, "loss": 0.4565, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5460955925063268e-05, "epoch": 0.99, "percentage": 49.52, "elapsed_time": "4:51:37", "remaining_time": "4:57:14"}
142
+ {"current_steps": 1360, "total_steps": 2726, "loss": 0.3892, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5172866890236203e-05, "epoch": 1.0, "percentage": 49.89, "elapsed_time": "4:53:48", "remaining_time": "4:55:05"}
143
+ {"current_steps": 1370, "total_steps": 2726, "loss": 0.3973, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.48847548962988e-05, "epoch": 1.0, "percentage": 50.26, "elapsed_time": "4:56:07", "remaining_time": "4:53:06"}
144
+ {"current_steps": 1380, "total_steps": 2726, "loss": 0.4151, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4596658208502713e-05, "epoch": 1.01, "percentage": 50.62, "elapsed_time": "4:58:09", "remaining_time": "4:50:48"}
145
+ {"current_steps": 1390, "total_steps": 2726, "loss": 0.3839, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4308615090066735e-05, "epoch": 1.02, "percentage": 50.99, "elapsed_time": "5:00:25", "remaining_time": "4:48:44"}
146
+ {"current_steps": 1400, "total_steps": 2726, "loss": 0.4062, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4020663797094864e-05, "epoch": 1.03, "percentage": 51.36, "elapsed_time": "5:02:30", "remaining_time": "4:46:31"}
147
+ {"current_steps": 1400, "total_steps": 2726, "loss": null, "eval_loss": 0.43284282088279724, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.03, "percentage": 51.36, "elapsed_time": "5:02:30", "remaining_time": "4:46:31"}
148
+ {"current_steps": 1410, "total_steps": 2726, "loss": 0.4003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.373284257349544e-05, "epoch": 1.03, "percentage": 51.72, "elapsed_time": "5:05:58", "remaining_time": "4:45:34"}
149
+ {"current_steps": 1420, "total_steps": 2726, "loss": 0.4447, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3445189645901806e-05, "epoch": 1.04, "percentage": 52.09, "elapsed_time": "5:08:26", "remaining_time": "4:43:40"}
150
+ {"current_steps": 1430, "total_steps": 2726, "loss": 0.4565, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3157743218595247e-05, "epoch": 1.05, "percentage": 52.46, "elapsed_time": "5:10:20", "remaining_time": "4:41:15"}
151
+ {"current_steps": 1440, "total_steps": 2726, "loss": 0.4265, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.287054146843097e-05, "epoch": 1.06, "percentage": 52.82, "elapsed_time": "5:12:13", "remaining_time": "4:38:50"}
152
+ {"current_steps": 1450, "total_steps": 2726, "loss": 0.4056, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2583622539767668e-05, "epoch": 1.06, "percentage": 53.19, "elapsed_time": "5:14:21", "remaining_time": "4:36:38"}
153
+ {"current_steps": 1460, "total_steps": 2726, "loss": 0.4074, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2297024539401463e-05, "epoch": 1.07, "percentage": 53.56, "elapsed_time": "5:16:26", "remaining_time": "4:34:23"}
154
+ {"current_steps": 1470, "total_steps": 2726, "loss": 0.4281, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2010785531504716e-05, "epoch": 1.08, "percentage": 53.93, "elapsed_time": "5:18:46", "remaining_time": "4:32:22"}
155
+ {"current_steps": 1480, "total_steps": 2726, "loss": 0.4663, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.172494353257066e-05, "epoch": 1.09, "percentage": 54.29, "elapsed_time": "5:21:04", "remaining_time": "4:30:18"}
156
+ {"current_steps": 1490, "total_steps": 2726, "loss": 0.4281, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.1439536506364274e-05, "epoch": 1.09, "percentage": 54.66, "elapsed_time": "5:23:36", "remaining_time": "4:28:26"}
157
+ {"current_steps": 1500, "total_steps": 2726, "loss": 0.4111, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.1154602358880122e-05, "epoch": 1.1, "percentage": 55.03, "elapsed_time": "5:25:52", "remaining_time": "4:26:20"}
158
+ {"current_steps": 1510, "total_steps": 2726, "loss": 0.4187, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0870178933307948e-05, "epoch": 1.11, "percentage": 55.39, "elapsed_time": "5:27:49", "remaining_time": "4:23:59"}
159
+ {"current_steps": 1520, "total_steps": 2726, "loss": 0.3964, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0586304005006585e-05, "epoch": 1.11, "percentage": 55.76, "elapsed_time": "5:30:05", "remaining_time": "4:21:54"}
160
+ {"current_steps": 1530, "total_steps": 2726, "loss": 0.4331, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.030301527648684e-05, "epoch": 1.12, "percentage": 56.13, "elapsed_time": "5:32:15", "remaining_time": "4:19:43"}
161
+ {"current_steps": 1540, "total_steps": 2726, "loss": 0.4432, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0020350372404102e-05, "epoch": 1.13, "percentage": 56.49, "elapsed_time": "5:34:15", "remaining_time": "4:17:25"}
162
+ {"current_steps": 1550, "total_steps": 2726, "loss": 0.4056, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9738346834561254e-05, "epoch": 1.14, "percentage": 56.86, "elapsed_time": "5:36:18", "remaining_time": "4:15:09"}
163
+ {"current_steps": 1560, "total_steps": 2726, "loss": 0.4354, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.945704211692262e-05, "epoch": 1.14, "percentage": 57.23, "elapsed_time": "5:38:26", "remaining_time": "4:12:57"}
164
+ {"current_steps": 1570, "total_steps": 2726, "loss": 0.4309, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9176473580639538e-05, "epoch": 1.15, "percentage": 57.59, "elapsed_time": "5:40:42", "remaining_time": "4:10:52"}
165
+ {"current_steps": 1580, "total_steps": 2726, "loss": 0.4058, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8896678489088304e-05, "epoch": 1.16, "percentage": 57.96, "elapsed_time": "5:42:44", "remaining_time": "4:08:35"}
166
+ {"current_steps": 1590, "total_steps": 2726, "loss": 0.4319, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8617694002921064e-05, "epoch": 1.17, "percentage": 58.33, "elapsed_time": "5:44:54", "remaining_time": "4:06:25"}
167
+ {"current_steps": 1600, "total_steps": 2726, "loss": 0.4267, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8339557175130383e-05, "epoch": 1.17, "percentage": 58.69, "elapsed_time": "5:46:47", "remaining_time": "4:04:03"}
168
+ {"current_steps": 1600, "total_steps": 2726, "loss": null, "eval_loss": 0.42894992232322693, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.17, "percentage": 58.69, "elapsed_time": "5:46:47", "remaining_time": "4:04:03"}
169
+ {"current_steps": 1610, "total_steps": 2726, "loss": 0.3921, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8062304946128073e-05, "epoch": 1.18, "percentage": 59.06, "elapsed_time": "5:50:11", "remaining_time": "4:02:44"}
170
+ {"current_steps": 1620, "total_steps": 2726, "loss": 0.4206, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7785974138839018e-05, "epoch": 1.19, "percentage": 59.43, "elapsed_time": "5:52:10", "remaining_time": "4:00:26"}
171
+ {"current_steps": 1630, "total_steps": 2726, "loss": 0.4356, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7510601453810594e-05, "epoch": 1.2, "percentage": 59.79, "elapsed_time": "5:54:17", "remaining_time": "3:58:13"}
172
+ {"current_steps": 1640, "total_steps": 2726, "loss": 0.4167, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.723622346433828e-05, "epoch": 1.2, "percentage": 60.16, "elapsed_time": "5:56:29", "remaining_time": "3:56:03"}
173
+ {"current_steps": 1650, "total_steps": 2726, "loss": 0.4233, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6962876611608262e-05, "epoch": 1.21, "percentage": 60.53, "elapsed_time": "5:58:26", "remaining_time": "3:53:45"}
174
+ {"current_steps": 1660, "total_steps": 2726, "loss": 0.4176, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6690597199857523e-05, "epoch": 1.22, "percentage": 60.9, "elapsed_time": "6:00:33", "remaining_time": "3:51:32"}
175
+ {"current_steps": 1670, "total_steps": 2726, "loss": 0.4241, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6419421391552142e-05, "epoch": 1.22, "percentage": 61.26, "elapsed_time": "6:02:41", "remaining_time": "3:49:20"}
176
+ {"current_steps": 1680, "total_steps": 2726, "loss": 0.4524, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6149385202584423e-05, "epoch": 1.23, "percentage": 61.63, "elapsed_time": "6:04:45", "remaining_time": "3:47:06"}
177
+ {"current_steps": 1690, "total_steps": 2726, "loss": 0.4647, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5880524497489474e-05, "epoch": 1.24, "percentage": 62.0, "elapsed_time": "6:07:03", "remaining_time": "3:45:01"}
178
+ {"current_steps": 1700, "total_steps": 2726, "loss": 0.4036, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5612874984681923e-05, "epoch": 1.25, "percentage": 62.36, "elapsed_time": "6:09:03", "remaining_time": "3:42:44"}
179
+ {"current_steps": 1710, "total_steps": 2726, "loss": 0.4148, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.534647221171334e-05, "epoch": 1.25, "percentage": 62.73, "elapsed_time": "6:11:22", "remaining_time": "3:40:38"}
180
+ {"current_steps": 1720, "total_steps": 2726, "loss": 0.408, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5081351560551021e-05, "epoch": 1.26, "percentage": 63.1, "elapsed_time": "6:13:19", "remaining_time": "3:38:21"}
181
+ {"current_steps": 1730, "total_steps": 2726, "loss": 0.457, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4817548242878759e-05, "epoch": 1.27, "percentage": 63.46, "elapsed_time": "6:15:23", "remaining_time": "3:36:07"}
182
+ {"current_steps": 1740, "total_steps": 2726, "loss": 0.4193, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.45550972954203e-05, "epoch": 1.28, "percentage": 63.83, "elapsed_time": "6:17:21", "remaining_time": "3:33:50"}
183
+ {"current_steps": 1750, "total_steps": 2726, "loss": 0.4149, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4294033575285914e-05, "epoch": 1.28, "percentage": 64.2, "elapsed_time": "6:19:35", "remaining_time": "3:31:42"}
184
+ {"current_steps": 1760, "total_steps": 2726, "loss": 0.4032, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4034391755342972e-05, "epoch": 1.29, "percentage": 64.56, "elapsed_time": "6:21:52", "remaining_time": "3:29:35"}
185
+ {"current_steps": 1770, "total_steps": 2726, "loss": 0.4078, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3776206319610823e-05, "epoch": 1.3, "percentage": 64.93, "elapsed_time": "6:23:56", "remaining_time": "3:27:22"}
186
+ {"current_steps": 1780, "total_steps": 2726, "loss": 0.4123, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3519511558680892e-05, "epoch": 1.31, "percentage": 65.3, "elapsed_time": "6:26:23", "remaining_time": "3:25:21"}
187
+ {"current_steps": 1790, "total_steps": 2726, "loss": 0.4089, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3264341565162422e-05, "epoch": 1.31, "percentage": 65.66, "elapsed_time": "6:28:17", "remaining_time": "3:23:02"}
188
+ {"current_steps": 1800, "total_steps": 2726, "loss": 0.383, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3010730229154445e-05, "epoch": 1.32, "percentage": 66.03, "elapsed_time": "6:30:17", "remaining_time": "3:20:47"}
189
+ {"current_steps": 1800, "total_steps": 2726, "loss": null, "eval_loss": 0.4250344932079315, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.32, "percentage": 66.03, "elapsed_time": "6:30:17", "remaining_time": "3:20:47"}
190
+ {"current_steps": 1810, "total_steps": 2726, "loss": 0.3936, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2758711233744783e-05, "epoch": 1.33, "percentage": 66.4, "elapsed_time": "6:33:42", "remaining_time": "3:19:14"}
191
+ {"current_steps": 1820, "total_steps": 2726, "loss": 0.4127, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2508318050536421e-05, "epoch": 1.33, "percentage": 66.76, "elapsed_time": "6:35:33", "remaining_time": "3:16:54"}
192
+ {"current_steps": 1830, "total_steps": 2726, "loss": 0.4015, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2259583935202062e-05, "epoch": 1.34, "percentage": 67.13, "elapsed_time": "6:37:28", "remaining_time": "3:14:36"}
193
+ {"current_steps": 1840, "total_steps": 2726, "loss": 0.4203, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2012541923067244e-05, "epoch": 1.35, "percentage": 67.5, "elapsed_time": "6:39:29", "remaining_time": "3:12:21"}
194
+ {"current_steps": 1850, "total_steps": 2726, "loss": 0.4367, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.176722482472286e-05, "epoch": 1.36, "percentage": 67.87, "elapsed_time": "6:41:25", "remaining_time": "3:10:04"}
195
+ {"current_steps": 1860, "total_steps": 2726, "loss": 0.4233, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1523665221667398e-05, "epoch": 1.36, "percentage": 68.23, "elapsed_time": "6:43:12", "remaining_time": "3:07:44"}
196
+ {"current_steps": 1870, "total_steps": 2726, "loss": 0.4405, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1281895461979732e-05, "epoch": 1.37, "percentage": 68.6, "elapsed_time": "6:45:16", "remaining_time": "3:05:31"}
197
+ {"current_steps": 1880, "total_steps": 2726, "loss": 0.4379, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.104194765602281e-05, "epoch": 1.38, "percentage": 68.97, "elapsed_time": "6:47:24", "remaining_time": "3:03:20"}
198
+ {"current_steps": 1890, "total_steps": 2726, "loss": 0.4146, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0803853672178946e-05, "epoch": 1.39, "percentage": 69.33, "elapsed_time": "6:49:44", "remaining_time": "3:01:14"}
199
+ {"current_steps": 1900, "total_steps": 2726, "loss": 0.4438, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0567645132617316e-05, "epoch": 1.39, "percentage": 69.7, "elapsed_time": "6:51:53", "remaining_time": "2:59:03"}
200
+ {"current_steps": 1910, "total_steps": 2726, "loss": 0.3915, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0333353409094015e-05, "epoch": 1.4, "percentage": 70.07, "elapsed_time": "6:54:02", "remaining_time": "2:56:53"}
201
+ {"current_steps": 1920, "total_steps": 2726, "loss": 0.4063, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0101009618785528e-05, "epoch": 1.41, "percentage": 70.43, "elapsed_time": "6:56:21", "remaining_time": "2:54:47"}
202
+ {"current_steps": 1930, "total_steps": 2726, "loss": 0.3974, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.870644620155877e-06, "epoch": 1.42, "percentage": 70.8, "elapsed_time": "6:58:32", "remaining_time": "2:52:37"}
203
+ {"current_steps": 1940, "total_steps": 2726, "loss": 0.4015, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.642289008858244e-06, "epoch": 1.42, "percentage": 71.17, "elapsed_time": "7:00:49", "remaining_time": "2:50:30"}
204
+ {"current_steps": 1950, "total_steps": 2726, "loss": 0.4264, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.41597311367142e-06, "epoch": 1.43, "percentage": 71.53, "elapsed_time": "7:02:59", "remaining_time": "2:48:19"}
205
+ {"current_steps": 1960, "total_steps": 2726, "loss": 0.4334, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.191726992471725e-06, "epoch": 1.44, "percentage": 71.9, "elapsed_time": "7:05:22", "remaining_time": "2:46:14"}
206
+ {"current_steps": 1970, "total_steps": 2726, "loss": 0.4197, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.969580428240903e-06, "epoch": 1.44, "percentage": 72.27, "elapsed_time": "7:07:11", "remaining_time": "2:43:56"}
207
+ {"current_steps": 1980, "total_steps": 2726, "loss": 0.422, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.74956292511056e-06, "epoch": 1.45, "percentage": 72.63, "elapsed_time": "7:09:23", "remaining_time": "2:41:46"}
208
+ {"current_steps": 1990, "total_steps": 2726, "loss": 0.4077, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.531703704443575e-06, "epoch": 1.46, "percentage": 73.0, "elapsed_time": "7:11:33", "remaining_time": "2:39:36"}
209
+ {"current_steps": 2000, "total_steps": 2726, "loss": 0.4334, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.316031700953086e-06, "epoch": 1.47, "percentage": 73.37, "elapsed_time": "7:13:58", "remaining_time": "2:37:31"}
210
+ {"current_steps": 2000, "total_steps": 2726, "loss": null, "eval_loss": 0.4206145107746124, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.47, "percentage": 73.37, "elapsed_time": "7:13:58", "remaining_time": "2:37:31"}
211
+ {"current_steps": 2010, "total_steps": 2726, "loss": 0.4171, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.102575558859612e-06, "epoch": 1.47, "percentage": 73.73, "elapsed_time": "7:17:28", "remaining_time": "2:35:50"}
212
+ {"current_steps": 2020, "total_steps": 2726, "loss": 0.3957, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.891363628086671e-06, "epoch": 1.48, "percentage": 74.1, "elapsed_time": "7:19:27", "remaining_time": "2:33:35"}
213
+ {"current_steps": 2030, "total_steps": 2726, "loss": 0.4174, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.682423960495517e-06, "epoch": 1.49, "percentage": 74.47, "elapsed_time": "7:21:25", "remaining_time": "2:31:20"}
214
+ {"current_steps": 2040, "total_steps": 2726, "loss": 0.4187, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.475784306159478e-06, "epoch": 1.5, "percentage": 74.83, "elapsed_time": "7:23:33", "remaining_time": "2:29:09"}
215
+ {"current_steps": 2050, "total_steps": 2726, "loss": 0.3775, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.271472109678379e-06, "epoch": 1.5, "percentage": 75.2, "elapsed_time": "7:25:41", "remaining_time": "2:26:58"}
216
+ {"current_steps": 2060, "total_steps": 2726, "loss": 0.4019, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.0695145065334585e-06, "epoch": 1.51, "percentage": 75.57, "elapsed_time": "7:27:36", "remaining_time": "2:24:42"}
217
+ {"current_steps": 2070, "total_steps": 2726, "loss": 0.4143, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.869938319483471e-06, "epoch": 1.52, "percentage": 75.94, "elapsed_time": "7:29:45", "remaining_time": "2:22:31"}
218
+ {"current_steps": 2080, "total_steps": 2726, "loss": 0.3853, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.67277005500222e-06, "epoch": 1.53, "percentage": 76.3, "elapsed_time": "7:31:46", "remaining_time": "2:20:18"}
219
+ {"current_steps": 2090, "total_steps": 2726, "loss": 0.4403, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.478035899758139e-06, "epoch": 1.53, "percentage": 76.67, "elapsed_time": "7:33:54", "remaining_time": "2:18:07"}
220
+ {"current_steps": 2100, "total_steps": 2726, "loss": 0.3888, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.285761717136335e-06, "epoch": 1.54, "percentage": 77.04, "elapsed_time": "7:36:12", "remaining_time": "2:15:59"}
221
+ {"current_steps": 2110, "total_steps": 2726, "loss": 0.4123, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.095973043803577e-06, "epoch": 1.55, "percentage": 77.4, "elapsed_time": "7:38:32", "remaining_time": "2:13:52"}
222
+ {"current_steps": 2120, "total_steps": 2726, "loss": 0.4035, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.908695086316701e-06, "epoch": 1.55, "percentage": 77.77, "elapsed_time": "7:40:48", "remaining_time": "2:11:43"}
223
+ {"current_steps": 2130, "total_steps": 2726, "loss": 0.4219, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.723952717774763e-06, "epoch": 1.56, "percentage": 78.14, "elapsed_time": "7:42:48", "remaining_time": "2:09:30"}
224
+ {"current_steps": 2140, "total_steps": 2726, "loss": 0.4209, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.54177047451562e-06, "epoch": 1.57, "percentage": 78.5, "elapsed_time": "7:44:53", "remaining_time": "2:07:18"}
225
+ {"current_steps": 2150, "total_steps": 2726, "loss": 0.4286, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.362172552857128e-06, "epoch": 1.58, "percentage": 78.87, "elapsed_time": "7:47:02", "remaining_time": "2:05:07"}
226
+ {"current_steps": 2160, "total_steps": 2726, "loss": 0.4134, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.18518280588354e-06, "epoch": 1.58, "percentage": 79.24, "elapsed_time": "7:49:04", "remaining_time": "2:02:54"}
227
+ {"current_steps": 2170, "total_steps": 2726, "loss": 0.4005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.010824740277501e-06, "epoch": 1.59, "percentage": 79.6, "elapsed_time": "7:51:12", "remaining_time": "2:00:44"}
228
+ {"current_steps": 2180, "total_steps": 2726, "loss": 0.3973, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.83912151319802e-06, "epoch": 1.6, "percentage": 79.97, "elapsed_time": "7:53:12", "remaining_time": "1:58:31"}
229
+ {"current_steps": 2190, "total_steps": 2726, "loss": 0.3959, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.6700959292048875e-06, "epoch": 1.61, "percentage": 80.34, "elapsed_time": "7:55:29", "remaining_time": "1:56:22"}
230
+ {"current_steps": 2200, "total_steps": 2726, "loss": 0.4017, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.503770437229918e-06, "epoch": 1.61, "percentage": 80.7, "elapsed_time": "7:57:38", "remaining_time": "1:54:12"}
231
+ {"current_steps": 2200, "total_steps": 2726, "loss": null, "eval_loss": 0.41970890760421753, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.61, "percentage": 80.7, "elapsed_time": "7:57:38", "remaining_time": "1:54:12"}
232
+ {"current_steps": 2210, "total_steps": 2726, "loss": 0.4013, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.340167127595407e-06, "epoch": 1.62, "percentage": 81.07, "elapsed_time": "8:00:51", "remaining_time": "1:52:16"}
233
+ {"current_steps": 2220, "total_steps": 2726, "loss": 0.4069, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.179307729080256e-06, "epoch": 1.63, "percentage": 81.44, "elapsed_time": "8:03:00", "remaining_time": "1:50:05"}
234
+ {"current_steps": 2230, "total_steps": 2726, "loss": 0.3857, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.021213606034064e-06, "epoch": 1.64, "percentage": 81.8, "elapsed_time": "8:05:05", "remaining_time": "1:47:53"}
235
+ {"current_steps": 2240, "total_steps": 2726, "loss": 0.4262, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.8659057555396645e-06, "epoch": 1.64, "percentage": 82.17, "elapsed_time": "8:07:03", "remaining_time": "1:45:40"}
236
+ {"current_steps": 2250, "total_steps": 2726, "loss": 0.3953, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.713404804624418e-06, "epoch": 1.65, "percentage": 82.54, "elapsed_time": "8:09:07", "remaining_time": "1:43:28"}
237
+ {"current_steps": 2260, "total_steps": 2726, "loss": 0.4231, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5637310075206544e-06, "epoch": 1.66, "percentage": 82.91, "elapsed_time": "8:11:23", "remaining_time": "1:41:19"}
238
+ {"current_steps": 2270, "total_steps": 2726, "loss": 0.407, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.416904242975635e-06, "epoch": 1.66, "percentage": 83.27, "elapsed_time": "8:13:23", "remaining_time": "1:39:06"}
239
+ {"current_steps": 2280, "total_steps": 2726, "loss": 0.4254, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.2729440116113843e-06, "epoch": 1.67, "percentage": 83.64, "elapsed_time": "8:15:40", "remaining_time": "1:36:57"}
240
+ {"current_steps": 2290, "total_steps": 2726, "loss": 0.4054, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.131869433334725e-06, "epoch": 1.68, "percentage": 84.01, "elapsed_time": "8:17:43", "remaining_time": "1:34:45"}
241
+ {"current_steps": 2300, "total_steps": 2726, "loss": 0.3801, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9936992447979068e-06, "epoch": 1.69, "percentage": 84.37, "elapsed_time": "8:20:05", "remaining_time": "1:32:37"}
242
+ {"current_steps": 2310, "total_steps": 2726, "loss": 0.4335, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8584517969101054e-06, "epoch": 1.69, "percentage": 84.74, "elapsed_time": "8:21:46", "remaining_time": "1:30:21"}
243
+ {"current_steps": 2320, "total_steps": 2726, "loss": 0.412, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7261450524001807e-06, "epoch": 1.7, "percentage": 85.11, "elapsed_time": "8:23:37", "remaining_time": "1:28:08"}
244
+ {"current_steps": 2330, "total_steps": 2726, "loss": 0.4456, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.596796583430969e-06, "epoch": 1.71, "percentage": 85.47, "elapsed_time": "8:25:39", "remaining_time": "1:25:56"}
245
+ {"current_steps": 2340, "total_steps": 2726, "loss": 0.3972, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.470423569265462e-06, "epoch": 1.72, "percentage": 85.84, "elapsed_time": "8:27:30", "remaining_time": "1:23:43"}
246
+ {"current_steps": 2350, "total_steps": 2726, "loss": 0.3935, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.34704279398516e-06, "epoch": 1.72, "percentage": 86.21, "elapsed_time": "8:29:12", "remaining_time": "1:21:28"}
247
+ {"current_steps": 2360, "total_steps": 2726, "loss": 0.3974, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2266706442609226e-06, "epoch": 1.73, "percentage": 86.57, "elapsed_time": "8:31:13", "remaining_time": "1:19:17"}
248
+ {"current_steps": 2370, "total_steps": 2726, "loss": 0.4157, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.109323107176578e-06, "epoch": 1.74, "percentage": 86.94, "elapsed_time": "8:33:31", "remaining_time": "1:17:08"}
249
+ {"current_steps": 2380, "total_steps": 2726, "loss": 0.4379, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9950157681056318e-06, "epoch": 1.75, "percentage": 87.31, "elapsed_time": "8:35:40", "remaining_time": "1:14:58"}
250
+ {"current_steps": 2390, "total_steps": 2726, "loss": 0.4035, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8837638086413063e-06, "epoch": 1.75, "percentage": 87.67, "elapsed_time": "8:37:35", "remaining_time": "1:12:46"}
251
+ {"current_steps": 2400, "total_steps": 2726, "loss": 0.4455, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7755820045802145e-06, "epoch": 1.76, "percentage": 88.04, "elapsed_time": "8:39:45", "remaining_time": "1:10:35"}
252
+ {"current_steps": 2400, "total_steps": 2726, "loss": null, "eval_loss": 0.41885045170783997, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.76, "percentage": 88.04, "elapsed_time": "8:39:45", "remaining_time": "1:10:35"}
253
+ {"current_steps": 2410, "total_steps": 2726, "loss": 0.4532, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6704847239599364e-06, "epoch": 1.77, "percentage": 88.41, "elapsed_time": "8:43:09", "remaining_time": "1:08:35"}
254
+ {"current_steps": 2420, "total_steps": 2726, "loss": 0.4213, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5684859251507394e-06, "epoch": 1.77, "percentage": 88.77, "elapsed_time": "8:45:22", "remaining_time": "1:06:25"}
255
+ {"current_steps": 2430, "total_steps": 2726, "loss": 0.3873, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4695991550017164e-06, "epoch": 1.78, "percentage": 89.14, "elapsed_time": "8:47:29", "remaining_time": "1:04:15"}
256
+ {"current_steps": 2440, "total_steps": 2726, "loss": 0.4163, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.373837547041576e-06, "epoch": 1.79, "percentage": 89.51, "elapsed_time": "8:49:41", "remaining_time": "1:02:05"}
257
+ {"current_steps": 2450, "total_steps": 2726, "loss": 0.3946, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2812138197343392e-06, "epoch": 1.8, "percentage": 89.88, "elapsed_time": "8:51:48", "remaining_time": "0:59:54"}
258
+ {"current_steps": 2460, "total_steps": 2726, "loss": 0.41, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1917402747901152e-06, "epoch": 1.8, "percentage": 90.24, "elapsed_time": "8:53:44", "remaining_time": "0:57:42"}
259
+ {"current_steps": 2470, "total_steps": 2726, "loss": 0.4126, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.105428795531327e-06, "epoch": 1.81, "percentage": 90.61, "elapsed_time": "8:55:59", "remaining_time": "0:55:33"}
260
+ {"current_steps": 2480, "total_steps": 2726, "loss": 0.4505, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0222908453143804e-06, "epoch": 1.82, "percentage": 90.98, "elapsed_time": "8:58:09", "remaining_time": "0:53:22"}
261
+ {"current_steps": 2490, "total_steps": 2726, "loss": 0.4303, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.423374660072065e-07, "epoch": 1.83, "percentage": 91.34, "elapsed_time": "9:00:00", "remaining_time": "0:51:10"}
262
+ {"current_steps": 2500, "total_steps": 2726, "loss": 0.4179, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.655792765227405e-07, "epoch": 1.83, "percentage": 91.71, "elapsed_time": "9:01:58", "remaining_time": "0:48:59"}
263
+ {"current_steps": 2510, "total_steps": 2726, "loss": 0.4376, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.920264714085828e-07, "epoch": 1.84, "percentage": 92.08, "elapsed_time": "9:04:05", "remaining_time": "0:46:49"}
264
+ {"current_steps": 2520, "total_steps": 2726, "loss": 0.4069, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.216888194930272e-07, "epoch": 1.85, "percentage": 92.44, "elapsed_time": "9:06:08", "remaining_time": "0:44:38"}
265
+ {"current_steps": 2530, "total_steps": 2726, "loss": 0.3887, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.545756625876031e-07, "epoch": 1.86, "percentage": 92.81, "elapsed_time": "9:08:12", "remaining_time": "0:42:28"}
266
+ {"current_steps": 2540, "total_steps": 2726, "loss": 0.3972, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.906959142463947e-07, "epoch": 1.86, "percentage": 93.18, "elapsed_time": "9:10:08", "remaining_time": "0:40:17"}
267
+ {"current_steps": 2550, "total_steps": 2726, "loss": 0.4078, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.300580585821696e-07, "epoch": 1.87, "percentage": 93.54, "elapsed_time": "9:12:17", "remaining_time": "0:38:07"}
268
+ {"current_steps": 2560, "total_steps": 2726, "loss": 0.4467, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7267014913956463e-07, "epoch": 1.88, "percentage": 93.91, "elapsed_time": "9:14:11", "remaining_time": "0:35:56"}
269
+ {"current_steps": 2570, "total_steps": 2726, "loss": 0.4567, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.1853980782549097e-07, "epoch": 1.88, "percentage": 94.28, "elapsed_time": "9:16:09", "remaining_time": "0:33:45"}
270
+ {"current_steps": 2580, "total_steps": 2726, "loss": 0.4494, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.6767422389682173e-07, "epoch": 1.89, "percentage": 94.64, "elapsed_time": "9:18:36", "remaining_time": "0:31:36"}
271
+ {"current_steps": 2590, "total_steps": 2726, "loss": 0.4344, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.2008015300555306e-07, "epoch": 1.9, "percentage": 95.01, "elapsed_time": "9:20:48", "remaining_time": "0:29:26"}
272
+ {"current_steps": 2600, "total_steps": 2726, "loss": 0.4101, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.757639163015774e-07, "epoch": 1.91, "percentage": 95.38, "elapsed_time": "9:22:52", "remaining_time": "0:27:16"}
273
+ {"current_steps": 2600, "total_steps": 2726, "loss": null, "eval_loss": 0.41886425018310547, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.91, "percentage": 95.38, "elapsed_time": "9:22:52", "remaining_time": "0:27:16"}
274
+ {"current_steps": 2610, "total_steps": 2726, "loss": 0.4058, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.347313995931466e-07, "epoch": 1.91, "percentage": 95.74, "elapsed_time": "9:26:02", "remaining_time": "0:25:09"}
275
+ {"current_steps": 2620, "total_steps": 2726, "loss": 0.414, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9698805256513908e-07, "epoch": 1.92, "percentage": 96.11, "elapsed_time": "9:28:14", "remaining_time": "0:22:59"}
276
+ {"current_steps": 2630, "total_steps": 2726, "loss": 0.4254, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6253888805527474e-07, "epoch": 1.93, "percentage": 96.48, "elapsed_time": "9:30:26", "remaining_time": "0:20:49"}
277
+ {"current_steps": 2640, "total_steps": 2726, "loss": 0.4017, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3138848138835313e-07, "epoch": 1.94, "percentage": 96.85, "elapsed_time": "9:32:34", "remaining_time": "0:18:39"}
278
+ {"current_steps": 2650, "total_steps": 2726, "loss": 0.4258, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0354096976856186e-07, "epoch": 1.94, "percentage": 97.21, "elapsed_time": "9:34:48", "remaining_time": "0:16:29"}
279
+ {"current_steps": 2660, "total_steps": 2726, "loss": 0.4098, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.900005173002712e-08, "epoch": 1.95, "percentage": 97.58, "elapsed_time": "9:37:06", "remaining_time": "0:14:19"}
280
+ {"current_steps": 2670, "total_steps": 2726, "loss": 0.42, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.776898664557051e-08, "epoch": 1.96, "percentage": 97.95, "elapsed_time": "9:39:14", "remaining_time": "0:12:08"}
281
+ {"current_steps": 2680, "total_steps": 2726, "loss": 0.3886, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.985059429383875e-08, "epoch": 1.97, "percentage": 98.31, "elapsed_time": "9:41:31", "remaining_time": "0:09:58"}
282
+ {"current_steps": 2690, "total_steps": 2726, "loss": 0.4276, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5247254484794813e-08, "epoch": 1.97, "percentage": 98.68, "elapsed_time": "9:43:48", "remaining_time": "0:07:48"}
283
+ {"current_steps": 2700, "total_steps": 2726, "loss": 0.4006, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3960906743634706e-08, "epoch": 1.98, "percentage": 99.05, "elapsed_time": "9:45:40", "remaining_time": "0:05:38"}
284
+ {"current_steps": 2710, "total_steps": 2726, "loss": 0.4243, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.993050053204607e-09, "epoch": 1.99, "percentage": 99.41, "elapsed_time": "9:47:47", "remaining_time": "0:03:28"}
285
+ {"current_steps": 2720, "total_steps": 2726, "loss": 0.4439, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3447426549129117e-09, "epoch": 1.99, "percentage": 99.78, "elapsed_time": "9:50:02", "remaining_time": "0:01:18"}
286
+ {"current_steps": 2726, "total_steps": 2726, "loss": null, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.0, "percentage": 100.0, "elapsed_time": "9:51:16", "remaining_time": "0:00:00"}
287
+ {"current_steps": 111, "total_steps": 111, "loss": null, "eval_loss": 0.41885045170783997, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.0, "percentage": 100.0, "elapsed_time": "9:52:25", "remaining_time": "0:00:00"}
{Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/trainer_state.json RENAMED
@@ -1,1207 +1,1761 @@
1
  {
2
- "best_metric": null,
3
- "best_model_checkpoint": null,
4
- "epoch": 2.0,
5
- "global_step": 1974,
6
  "is_hyper_param_search": false,
7
  "is_local_process_zero": true,
8
  "is_world_process_zero": true,
9
  "log_history": [
10
  {
11
  "epoch": 0.01,
12
- "learning_rate": 4.9996834033646177e-05,
13
- "loss": 0.9175,
14
  "step": 10
15
  },
16
  {
17
- "epoch": 0.02,
18
- "learning_rate": 4.998733693645213e-05,
19
- "loss": 0.7595,
20
  "step": 20
21
  },
22
  {
23
- "epoch": 0.03,
24
- "learning_rate": 4.997151111381707e-05,
25
- "loss": 0.7375,
26
  "step": 30
27
  },
28
  {
29
- "epoch": 0.04,
30
- "learning_rate": 4.9949360574062774e-05,
31
- "loss": 0.7227,
32
  "step": 40
33
  },
34
  {
35
- "epoch": 0.05,
36
- "learning_rate": 4.9920890927418316e-05,
37
- "loss": 0.7147,
38
  "step": 50
39
  },
40
  {
41
- "epoch": 0.06,
42
- "learning_rate": 4.988610938459917e-05,
43
- "loss": 0.7102,
44
  "step": 60
45
  },
46
  {
47
- "epoch": 0.07,
48
- "learning_rate": 4.9845024754980876e-05,
49
- "loss": 0.7056,
50
  "step": 70
51
  },
52
  {
53
- "epoch": 0.08,
54
- "learning_rate": 4.979764744436784e-05,
55
- "loss": 0.7128,
56
  "step": 80
57
  },
58
  {
59
- "epoch": 0.09,
60
- "learning_rate": 4.9743989452357756e-05,
61
- "loss": 0.6982,
62
  "step": 90
63
  },
64
  {
65
- "epoch": 0.1,
66
- "learning_rate": 4.968406436930243e-05,
67
- "loss": 0.7258,
68
  "step": 100
69
  },
70
  {
71
- "epoch": 0.11,
72
- "learning_rate": 4.961788737286559e-05,
73
- "loss": 0.7095,
74
  "step": 110
75
  },
76
  {
77
- "epoch": 0.12,
78
- "learning_rate": 4.954547522417877e-05,
79
- "loss": 0.7048,
80
  "step": 120
81
  },
82
  {
83
- "epoch": 0.13,
84
- "learning_rate": 4.946684626359607e-05,
85
- "loss": 0.6805,
86
  "step": 130
87
  },
88
  {
89
- "epoch": 0.14,
90
- "learning_rate": 4.938202040604898e-05,
91
- "loss": 0.6798,
92
  "step": 140
93
  },
94
  {
95
- "epoch": 0.15,
96
- "learning_rate": 4.929101913600238e-05,
97
- "loss": 0.7134,
98
  "step": 150
99
  },
100
  {
101
- "epoch": 0.16,
102
- "learning_rate": 4.919386550201299e-05,
103
- "loss": 0.6895,
104
  "step": 160
105
  },
106
  {
107
- "epoch": 0.17,
108
- "learning_rate": 4.909058411089174e-05,
109
- "loss": 0.705,
110
  "step": 170
111
  },
112
  {
113
- "epoch": 0.18,
114
- "learning_rate": 4.8981201121471356e-05,
115
- "loss": 0.6712,
116
  "step": 180
117
  },
118
  {
119
- "epoch": 0.19,
120
- "learning_rate": 4.886574423798097e-05,
121
- "loss": 0.6744,
122
  "step": 190
123
  },
124
  {
125
- "epoch": 0.2,
126
- "learning_rate": 4.874424270302927e-05,
127
- "loss": 0.6675,
128
  "step": 200
129
  },
130
  {
131
- "epoch": 0.21,
132
- "learning_rate": 4.861672729019797e-05,
133
- "loss": 0.6726,
 
 
 
 
 
 
 
 
134
  "step": 210
135
  },
136
  {
137
- "epoch": 0.22,
138
- "learning_rate": 4.848323029624761e-05,
139
- "loss": 0.6821,
140
  "step": 220
141
  },
142
  {
143
- "epoch": 0.23,
144
- "learning_rate": 4.834378553293748e-05,
145
- "loss": 0.7133,
146
  "step": 230
147
  },
148
  {
149
- "epoch": 0.24,
150
- "learning_rate": 4.81984283184619e-05,
151
- "loss": 0.6681,
152
  "step": 240
153
  },
154
  {
155
- "epoch": 0.25,
156
- "learning_rate": 4.804719546850487e-05,
157
- "loss": 0.682,
158
  "step": 250
159
  },
160
  {
161
- "epoch": 0.26,
162
- "learning_rate": 4.789012528691558e-05,
163
- "loss": 0.6755,
164
  "step": 260
165
  },
166
  {
167
- "epoch": 0.27,
168
- "learning_rate": 4.772725755600682e-05,
169
- "loss": 0.68,
170
  "step": 270
171
  },
172
  {
173
- "epoch": 0.28,
174
- "learning_rate": 4.755863352647909e-05,
175
- "loss": 0.6663,
176
  "step": 280
177
  },
178
  {
179
- "epoch": 0.29,
180
- "learning_rate": 4.738429590697271e-05,
181
- "loss": 0.6672,
182
  "step": 290
183
  },
184
  {
185
- "epoch": 0.3,
186
- "learning_rate": 4.720428885325069e-05,
187
- "loss": 0.6466,
188
  "step": 300
189
  },
190
  {
191
- "epoch": 0.31,
192
- "learning_rate": 4.701865795701505e-05,
193
- "loss": 0.6668,
194
  "step": 310
195
  },
196
  {
197
- "epoch": 0.32,
198
- "learning_rate": 4.684682059461469e-05,
199
- "loss": 0.6591,
200
  "step": 320
201
  },
202
  {
203
- "epoch": 0.33,
204
- "learning_rate": 4.665063509461097e-05,
205
- "loss": 0.661,
206
  "step": 330
207
  },
208
  {
209
- "epoch": 0.34,
210
- "learning_rate": 4.644896598002736e-05,
211
- "loss": 0.6749,
212
  "step": 340
213
  },
214
  {
215
- "epoch": 0.35,
216
- "learning_rate": 4.624186432907437e-05,
217
- "loss": 0.6654,
218
  "step": 350
219
  },
220
  {
221
- "epoch": 0.36,
222
- "learning_rate": 4.602938259590072e-05,
223
- "loss": 0.6716,
224
  "step": 360
225
  },
226
  {
227
- "epoch": 0.37,
228
- "learning_rate": 4.581157459730783e-05,
229
- "loss": 0.6796,
230
  "step": 370
231
  },
232
  {
233
- "epoch": 0.39,
234
- "learning_rate": 4.558849549911931e-05,
235
- "loss": 0.6794,
236
  "step": 380
237
  },
238
  {
239
- "epoch": 0.4,
240
- "learning_rate": 4.536020180220871e-05,
241
- "loss": 0.6651,
242
  "step": 390
243
  },
244
  {
245
- "epoch": 0.41,
246
- "learning_rate": 4.515032675559024e-05,
247
- "loss": 0.6823,
248
  "step": 400
249
  },
250
  {
251
- "epoch": 0.42,
252
- "learning_rate": 4.4912285699446786e-05,
253
- "loss": 0.6677,
 
 
 
 
 
 
 
 
254
  "step": 410
255
  },
256
  {
257
- "epoch": 0.43,
258
- "learning_rate": 4.4669201313179155e-05,
259
- "loss": 0.6704,
260
  "step": 420
261
  },
262
  {
263
- "epoch": 0.44,
264
- "learning_rate": 4.442113516454638e-05,
265
- "loss": 0.6481,
266
  "step": 430
267
  },
268
  {
269
- "epoch": 0.45,
270
- "learning_rate": 4.416815008307488e-05,
271
- "loss": 0.665,
272
  "step": 440
273
  },
274
  {
275
- "epoch": 0.46,
276
- "learning_rate": 4.391031014414514e-05,
277
- "loss": 0.6658,
278
  "step": 450
279
  },
280
  {
281
- "epoch": 0.47,
282
- "learning_rate": 4.364768065276284e-05,
283
- "loss": 0.6699,
284
  "step": 460
285
  },
286
  {
287
- "epoch": 0.48,
288
- "learning_rate": 4.338032812701867e-05,
289
- "loss": 0.6664,
290
  "step": 470
291
  },
292
  {
293
- "epoch": 0.49,
294
- "learning_rate": 4.310832028124069e-05,
295
- "loss": 0.6817,
296
  "step": 480
297
  },
298
  {
299
- "epoch": 0.5,
300
- "learning_rate": 4.283172600884393e-05,
301
- "loss": 0.6791,
302
  "step": 490
303
  },
304
  {
305
- "epoch": 0.51,
306
- "learning_rate": 4.2550615364881194e-05,
307
- "loss": 0.6679,
308
  "step": 500
309
  },
310
  {
311
- "epoch": 0.52,
312
- "learning_rate": 4.226505954829973e-05,
313
- "loss": 0.6476,
314
  "step": 510
315
  },
316
  {
317
- "epoch": 0.53,
318
- "learning_rate": 4.197513088390813e-05,
319
- "loss": 0.6721,
320
  "step": 520
321
  },
322
  {
323
- "epoch": 0.54,
324
- "learning_rate": 4.1680902804058095e-05,
325
- "loss": 0.6563,
326
  "step": 530
327
  },
328
  {
329
- "epoch": 0.55,
330
- "learning_rate": 4.138244983004574e-05,
331
- "loss": 0.6391,
332
  "step": 540
333
  },
334
  {
335
- "epoch": 0.56,
336
- "learning_rate": 4.107984755323697e-05,
337
- "loss": 0.6672,
338
  "step": 550
339
  },
340
  {
341
- "epoch": 0.57,
342
- "learning_rate": 4.077317261592194e-05,
343
- "loss": 0.6497,
344
  "step": 560
345
  },
346
  {
347
- "epoch": 0.58,
348
- "learning_rate": 4.04625026919033e-05,
349
- "loss": 0.668,
350
  "step": 570
351
  },
352
  {
353
- "epoch": 0.59,
354
- "learning_rate": 4.0147916466823174e-05,
355
- "loss": 0.6682,
356
  "step": 580
357
  },
358
  {
359
- "epoch": 0.6,
360
- "learning_rate": 3.982949361823388e-05,
361
- "loss": 0.6352,
362
  "step": 590
363
  },
364
  {
365
- "epoch": 0.61,
366
- "learning_rate": 3.950731479541743e-05,
367
- "loss": 0.6698,
368
  "step": 600
369
  },
370
  {
371
- "epoch": 0.62,
372
- "learning_rate": 3.918146159895882e-05,
373
- "loss": 0.6549,
 
 
 
 
 
 
 
 
374
  "step": 610
375
  },
376
  {
377
- "epoch": 0.63,
378
- "learning_rate": 3.8852016560078605e-05,
379
- "loss": 0.6516,
380
  "step": 620
381
  },
382
  {
383
- "epoch": 0.64,
384
- "learning_rate": 3.851906311972943e-05,
385
- "loss": 0.6629,
386
  "step": 630
387
  },
388
  {
389
- "epoch": 0.65,
390
- "learning_rate": 3.821647502051616e-05,
391
- "loss": 0.6764,
392
  "step": 640
393
  },
394
  {
395
- "epoch": 0.66,
396
- "learning_rate": 3.787708866250794e-05,
397
- "loss": 0.6415,
398
  "step": 650
399
  },
400
  {
401
- "epoch": 0.67,
402
- "learning_rate": 3.7534440830144466e-05,
403
- "loss": 0.6463,
404
  "step": 660
405
  },
406
  {
407
- "epoch": 0.68,
408
- "learning_rate": 3.71886183083464e-05,
409
- "loss": 0.6508,
410
  "step": 670
411
  },
412
  {
413
- "epoch": 0.69,
414
- "learning_rate": 3.683970868611123e-05,
415
- "loss": 0.6411,
416
  "step": 680
417
  },
418
  {
419
- "epoch": 0.7,
420
- "learning_rate": 3.648780033432891e-05,
421
- "loss": 0.6266,
422
  "step": 690
423
  },
424
  {
425
- "epoch": 0.71,
426
- "learning_rate": 3.613298238339955e-05,
427
- "loss": 0.6409,
428
  "step": 700
429
  },
430
  {
431
- "epoch": 0.72,
432
- "learning_rate": 3.5775344700658705e-05,
433
- "loss": 0.6594,
434
  "step": 710
435
  },
436
  {
437
- "epoch": 0.73,
438
- "learning_rate": 3.5414977867616006e-05,
439
- "loss": 0.6427,
440
  "step": 720
441
  },
442
  {
443
- "epoch": 0.74,
444
- "learning_rate": 3.505197315701292e-05,
445
- "loss": 0.6462,
446
  "step": 730
447
  },
448
  {
449
- "epoch": 0.75,
450
- "learning_rate": 3.468642250970547e-05,
451
- "loss": 0.6277,
452
  "step": 740
453
  },
454
  {
455
- "epoch": 0.76,
456
- "learning_rate": 3.431841851137764e-05,
457
- "loss": 0.6551,
458
  "step": 750
459
  },
460
  {
461
- "epoch": 0.77,
462
- "learning_rate": 3.394805436909157e-05,
463
- "loss": 0.6402,
464
  "step": 760
465
  },
466
  {
467
- "epoch": 0.78,
468
- "learning_rate": 3.357542388768033e-05,
469
- "loss": 0.6515,
470
  "step": 770
471
  },
472
  {
473
- "epoch": 0.79,
474
- "learning_rate": 3.3200621445989226e-05,
475
- "loss": 0.6489,
476
  "step": 780
477
  },
478
  {
479
- "epoch": 0.8,
480
- "learning_rate": 3.282374197297185e-05,
481
- "loss": 0.6568,
482
  "step": 790
483
  },
484
  {
485
- "epoch": 0.81,
486
- "learning_rate": 3.2444880923646674e-05,
487
- "loss": 0.615,
488
  "step": 800
489
  },
490
  {
491
- "epoch": 0.82,
492
- "learning_rate": 3.20641342549205e-05,
493
- "loss": 0.6447,
 
 
 
 
 
 
 
 
494
  "step": 810
495
  },
496
  {
497
- "epoch": 0.83,
498
- "learning_rate": 3.168159840128472e-05,
499
- "loss": 0.6159,
500
  "step": 820
501
  },
502
  {
503
- "epoch": 0.84,
504
- "learning_rate": 3.129737025039068e-05,
505
- "loss": 0.6347,
506
  "step": 830
507
  },
508
  {
509
- "epoch": 0.85,
510
- "learning_rate": 3.091154711851022e-05,
511
- "loss": 0.6361,
512
  "step": 840
513
  },
514
  {
515
- "epoch": 0.86,
516
- "learning_rate": 3.052422672588765e-05,
517
- "loss": 0.6504,
518
  "step": 850
519
  },
520
  {
521
- "epoch": 0.87,
522
- "learning_rate": 3.013550717198948e-05,
523
- "loss": 0.6467,
524
  "step": 860
525
  },
526
  {
527
- "epoch": 0.88,
528
- "learning_rate": 2.9745486910657993e-05,
529
- "loss": 0.6364,
530
  "step": 870
531
  },
532
  {
533
- "epoch": 0.89,
534
- "learning_rate": 2.9354264725175185e-05,
535
- "loss": 0.6361,
536
  "step": 880
537
  },
538
  {
539
- "epoch": 0.9,
540
- "learning_rate": 2.8961939703243122e-05,
541
- "loss": 0.6441,
542
  "step": 890
543
  },
544
  {
545
- "epoch": 0.91,
546
- "learning_rate": 2.856861121188735e-05,
547
- "loss": 0.6404,
548
  "step": 900
549
  },
550
  {
551
- "epoch": 0.92,
552
- "learning_rate": 2.8174378872289446e-05,
553
- "loss": 0.6307,
554
  "step": 910
555
  },
556
  {
557
- "epoch": 0.93,
558
- "learning_rate": 2.777934253455522e-05,
559
- "loss": 0.6484,
560
  "step": 920
561
  },
562
  {
563
- "epoch": 0.94,
564
- "learning_rate": 2.7383602252424985e-05,
565
- "loss": 0.6237,
566
  "step": 930
567
  },
568
  {
569
- "epoch": 0.95,
570
- "learning_rate": 2.6987258257932175e-05,
571
- "loss": 0.6161,
572
  "step": 940
573
  },
574
  {
575
- "epoch": 0.96,
576
- "learning_rate": 2.6590410936016895e-05,
577
- "loss": 0.6381,
578
  "step": 950
579
  },
580
  {
581
- "epoch": 0.97,
582
- "learning_rate": 2.619316079910063e-05,
583
- "loss": 0.6366,
584
  "step": 960
585
  },
586
  {
587
- "epoch": 0.98,
588
- "learning_rate": 2.5795608461628802e-05,
589
- "loss": 0.6202,
590
  "step": 970
591
  },
592
  {
593
- "epoch": 0.99,
594
- "learning_rate": 2.5397854614587334e-05,
595
- "loss": 0.6334,
596
  "step": 980
597
  },
598
  {
599
- "epoch": 1.0,
600
- "learning_rate": 2.5e-05,
601
- "loss": 0.5954,
602
  "step": 990
603
  },
604
  {
605
- "epoch": 1.01,
606
- "learning_rate": 2.460214538541267e-05,
607
- "loss": 0.4963,
608
  "step": 1000
609
  },
610
  {
611
- "epoch": 1.02,
612
- "learning_rate": 2.4204391538371207e-05,
613
- "loss": 0.487,
 
 
 
 
 
 
 
 
614
  "step": 1010
615
  },
616
  {
617
- "epoch": 1.03,
618
- "learning_rate": 2.3806839200899377e-05,
619
- "loss": 0.489,
620
  "step": 1020
621
  },
622
  {
623
- "epoch": 1.04,
624
- "learning_rate": 2.3409589063983117e-05,
625
- "loss": 0.4805,
626
  "step": 1030
627
  },
628
  {
629
- "epoch": 1.05,
630
- "learning_rate": 2.3012741742067838e-05,
631
- "loss": 0.4907,
632
  "step": 1040
633
  },
634
  {
635
- "epoch": 1.06,
636
- "learning_rate": 2.261639774757503e-05,
637
- "loss": 0.4719,
638
  "step": 1050
639
  },
640
  {
641
- "epoch": 1.07,
642
- "learning_rate": 2.2220657465444782e-05,
643
- "loss": 0.4914,
644
  "step": 1060
645
  },
646
  {
647
- "epoch": 1.08,
648
- "learning_rate": 2.182562112771056e-05,
649
- "loss": 0.4775,
650
  "step": 1070
651
  },
652
  {
653
- "epoch": 1.09,
654
- "learning_rate": 2.143138878811265e-05,
655
- "loss": 0.4935,
656
  "step": 1080
657
  },
658
  {
659
- "epoch": 1.1,
660
- "learning_rate": 2.1038060296756883e-05,
661
- "loss": 0.5082,
662
  "step": 1090
663
  },
664
  {
665
- "epoch": 1.11,
666
- "learning_rate": 2.064573527482482e-05,
667
- "loss": 0.4868,
668
  "step": 1100
669
  },
670
  {
671
- "epoch": 1.12,
672
- "learning_rate": 2.025451308934201e-05,
673
- "loss": 0.4988,
674
  "step": 1110
675
  },
676
  {
677
- "epoch": 1.13,
678
- "learning_rate": 1.9864492828010526e-05,
679
- "loss": 0.4653,
680
  "step": 1120
681
  },
682
  {
683
- "epoch": 1.14,
684
- "learning_rate": 1.9475773274112354e-05,
685
- "loss": 0.4915,
686
  "step": 1130
687
  },
688
  {
689
- "epoch": 1.16,
690
- "learning_rate": 1.9088452881489787e-05,
691
- "loss": 0.4763,
692
  "step": 1140
693
  },
694
  {
695
- "epoch": 1.17,
696
- "learning_rate": 1.8702629749609324e-05,
697
- "loss": 0.4807,
698
  "step": 1150
699
  },
700
  {
701
- "epoch": 1.18,
702
- "learning_rate": 1.8318401598715284e-05,
703
- "loss": 0.4653,
704
  "step": 1160
705
  },
706
  {
707
- "epoch": 1.19,
708
- "learning_rate": 1.793586574507951e-05,
709
- "loss": 0.4778,
710
  "step": 1170
711
  },
712
  {
713
- "epoch": 1.2,
714
- "learning_rate": 1.7555119076353338e-05,
715
- "loss": 0.4839,
716
  "step": 1180
717
  },
718
  {
719
- "epoch": 1.21,
720
- "learning_rate": 1.7176258027028152e-05,
721
- "loss": 0.4718,
722
  "step": 1190
723
  },
724
  {
725
- "epoch": 1.22,
726
- "learning_rate": 1.6799378554010773e-05,
727
- "loss": 0.4793,
728
  "step": 1200
729
  },
730
  {
731
- "epoch": 1.23,
732
- "learning_rate": 1.6424576112319672e-05,
733
- "loss": 0.4825,
 
 
 
 
 
 
 
 
734
  "step": 1210
735
  },
736
  {
737
- "epoch": 1.24,
738
- "learning_rate": 1.6051945630908426e-05,
739
- "loss": 0.4857,
740
  "step": 1220
741
  },
742
  {
743
- "epoch": 1.25,
744
- "learning_rate": 1.5681581488622367e-05,
745
- "loss": 0.4802,
746
  "step": 1230
747
  },
748
  {
749
- "epoch": 1.26,
750
- "learning_rate": 1.5313577490294538e-05,
751
- "loss": 0.4812,
752
  "step": 1240
753
  },
754
  {
755
- "epoch": 1.27,
756
- "learning_rate": 1.4948026842987084e-05,
757
- "loss": 0.4682,
758
  "step": 1250
759
  },
760
  {
761
- "epoch": 1.28,
762
- "learning_rate": 1.4585022132384008e-05,
763
- "loss": 0.4974,
764
  "step": 1260
765
  },
766
  {
767
- "epoch": 1.29,
768
- "learning_rate": 1.4224655299341304e-05,
769
- "loss": 0.4737,
770
  "step": 1270
771
  },
772
  {
773
- "epoch": 1.3,
774
- "learning_rate": 1.3867017616600456e-05,
775
- "loss": 0.4877,
776
  "step": 1280
777
  },
778
  {
779
- "epoch": 1.31,
780
- "learning_rate": 1.3512199665671094e-05,
781
- "loss": 0.4753,
782
  "step": 1290
783
  },
784
  {
785
- "epoch": 1.32,
786
- "learning_rate": 1.316029131388878e-05,
787
- "loss": 0.4638,
788
  "step": 1300
789
  },
790
  {
791
- "epoch": 1.33,
792
- "learning_rate": 1.2811381691653607e-05,
793
- "loss": 0.4626,
794
  "step": 1310
795
  },
796
  {
797
- "epoch": 1.34,
798
- "learning_rate": 1.2465559169855535e-05,
799
- "loss": 0.4786,
800
  "step": 1320
801
  },
802
  {
803
- "epoch": 1.35,
804
- "learning_rate": 1.212291133749206e-05,
805
- "loss": 0.4717,
806
  "step": 1330
807
  },
808
  {
809
- "epoch": 1.36,
810
- "learning_rate": 1.178352497948384e-05,
811
- "loss": 0.4803,
812
  "step": 1340
813
  },
814
  {
815
- "epoch": 1.37,
816
- "learning_rate": 1.1447486054694112e-05,
817
- "loss": 0.4803,
818
  "step": 1350
819
  },
820
  {
821
- "epoch": 1.38,
822
- "learning_rate": 1.1114879674157233e-05,
823
- "loss": 0.4739,
824
  "step": 1360
825
  },
826
  {
827
- "epoch": 1.39,
828
- "learning_rate": 1.0785790079522001e-05,
829
- "loss": 0.471,
830
  "step": 1370
831
  },
832
  {
833
- "epoch": 1.4,
834
- "learning_rate": 1.046030062171512e-05,
835
- "loss": 0.4799,
836
  "step": 1380
837
  },
838
  {
839
- "epoch": 1.41,
840
- "learning_rate": 1.0138493739830352e-05,
841
- "loss": 0.4689,
842
  "step": 1390
843
  },
844
  {
845
- "epoch": 1.42,
846
- "learning_rate": 9.820450940248544e-06,
847
- "loss": 0.4599,
848
  "step": 1400
849
  },
850
  {
851
- "epoch": 1.43,
852
- "learning_rate": 9.506252775993882e-06,
853
- "loss": 0.5019,
 
 
 
 
 
 
 
 
854
  "step": 1410
855
  },
856
  {
857
- "epoch": 1.44,
858
- "learning_rate": 9.195978826331697e-06,
859
- "loss": 0.4764,
860
  "step": 1420
861
  },
862
  {
863
- "epoch": 1.45,
864
- "learning_rate": 8.889707676612791e-06,
865
- "loss": 0.4579,
866
  "step": 1430
867
  },
868
  {
869
- "epoch": 1.46,
870
- "learning_rate": 8.587516898369589e-06,
871
- "loss": 0.4592,
872
  "step": 1440
873
  },
874
  {
875
- "epoch": 1.47,
876
- "learning_rate": 8.289483029668972e-06,
877
- "loss": 0.4861,
878
  "step": 1450
879
  },
880
  {
881
- "epoch": 1.48,
882
- "learning_rate": 7.99568155572701e-06,
883
- "loss": 0.4753,
884
  "step": 1460
885
  },
886
  {
887
- "epoch": 1.49,
888
- "learning_rate": 7.706186889790209e-06,
889
- "loss": 0.4929,
890
  "step": 1470
891
  },
892
  {
893
- "epoch": 1.5,
894
- "learning_rate": 7.421072354288302e-06,
895
- "loss": 0.4594,
896
  "step": 1480
897
  },
898
  {
899
- "epoch": 1.51,
900
- "learning_rate": 7.140410162263414e-06,
901
- "loss": 0.4912,
902
  "step": 1490
903
  },
904
  {
905
- "epoch": 1.52,
906
- "learning_rate": 6.86427139908008e-06,
907
- "loss": 0.4681,
908
  "step": 1500
909
  },
910
  {
911
- "epoch": 1.53,
912
- "learning_rate": 6.5927260044209655e-06,
913
- "loss": 0.4816,
914
  "step": 1510
915
  },
916
  {
917
- "epoch": 1.54,
918
- "learning_rate": 6.3258427545727e-06,
919
- "loss": 0.4723,
920
  "step": 1520
921
  },
922
  {
923
- "epoch": 1.55,
924
- "learning_rate": 6.063689245006443e-06,
925
- "loss": 0.4856,
926
  "step": 1530
927
  },
928
  {
929
- "epoch": 1.56,
930
- "learning_rate": 5.806331873257462e-06,
931
- "loss": 0.4829,
932
  "step": 1540
933
  },
934
  {
935
- "epoch": 1.57,
936
- "learning_rate": 5.553835822108152e-06,
937
- "loss": 0.4741,
938
  "step": 1550
939
  },
940
  {
941
- "epoch": 1.58,
942
- "learning_rate": 5.306265043078693e-06,
943
- "loss": 0.4654,
944
  "step": 1560
945
  },
946
  {
947
- "epoch": 1.59,
948
- "learning_rate": 5.0636822402296165e-06,
949
- "loss": 0.4668,
950
  "step": 1570
951
  },
952
  {
953
- "epoch": 1.6,
954
- "learning_rate": 4.826148854280277e-06,
955
- "loss": 0.4723,
956
  "step": 1580
957
  },
958
  {
959
- "epoch": 1.61,
960
- "learning_rate": 4.593725047047293e-06,
961
- "loss": 0.4639,
962
  "step": 1590
963
  },
964
  {
965
- "epoch": 1.62,
966
- "learning_rate": 4.3664696862069505e-06,
967
- "loss": 0.4777,
968
  "step": 1600
969
  },
970
  {
971
- "epoch": 1.63,
972
- "learning_rate": 4.144440330385347e-06,
973
- "loss": 0.4546,
 
 
 
 
 
 
 
 
974
  "step": 1610
975
  },
976
  {
977
- "epoch": 1.64,
978
- "learning_rate": 3.927693214580075e-06,
979
- "loss": 0.4543,
980
  "step": 1620
981
  },
982
  {
983
- "epoch": 1.65,
984
- "learning_rate": 3.71628323591722e-06,
985
- "loss": 0.4543,
986
  "step": 1630
987
  },
988
  {
989
- "epoch": 1.66,
990
- "learning_rate": 3.5102639397471214e-06,
991
- "loss": 0.4659,
992
  "step": 1640
993
  },
994
  {
995
- "epoch": 1.67,
996
- "learning_rate": 3.3096875060825845e-06,
997
- "loss": 0.485,
998
  "step": 1650
999
  },
1000
  {
1001
- "epoch": 1.68,
1002
- "learning_rate": 3.11460473638282e-06,
1003
- "loss": 0.4768,
1004
  "step": 1660
1005
  },
1006
  {
1007
- "epoch": 1.69,
1008
- "learning_rate": 2.925065040686642e-06,
1009
- "loss": 0.4635,
1010
  "step": 1670
1011
  },
1012
  {
1013
- "epoch": 1.7,
1014
- "learning_rate": 2.741116425097995e-06,
1015
- "loss": 0.4681,
1016
  "step": 1680
1017
  },
1018
  {
1019
- "epoch": 1.71,
1020
- "learning_rate": 2.5628054796271063e-06,
1021
- "loss": 0.4492,
1022
  "step": 1690
1023
  },
1024
  {
1025
- "epoch": 1.72,
1026
- "learning_rate": 2.390177366390273e-06,
1027
- "loss": 0.4664,
1028
  "step": 1700
1029
  },
1030
  {
1031
- "epoch": 1.73,
1032
- "learning_rate": 2.22327580817136e-06,
1033
- "loss": 0.48,
1034
  "step": 1710
1035
  },
1036
  {
1037
- "epoch": 1.74,
1038
- "learning_rate": 2.0621430773477947e-06,
1039
- "loss": 0.4616,
1040
  "step": 1720
1041
  },
1042
  {
1043
- "epoch": 1.75,
1044
- "learning_rate": 1.906819985183908e-06,
1045
- "loss": 0.4854,
1046
  "step": 1730
1047
  },
1048
  {
1049
- "epoch": 1.76,
1050
- "learning_rate": 1.7573458714944063e-06,
1051
- "loss": 0.4846,
1052
  "step": 1740
1053
  },
1054
  {
1055
- "epoch": 1.77,
1056
- "learning_rate": 1.6137585946804674e-06,
1057
- "loss": 0.4552,
1058
  "step": 1750
1059
  },
1060
  {
1061
- "epoch": 1.78,
1062
- "learning_rate": 1.4760945221410638e-06,
1063
- "loss": 0.4615,
1064
  "step": 1760
1065
  },
1066
  {
1067
- "epoch": 1.79,
1068
- "learning_rate": 1.3443885210619428e-06,
1069
- "loss": 0.4735,
1070
  "step": 1770
1071
  },
1072
  {
1073
- "epoch": 1.8,
1074
- "learning_rate": 1.2186739495845477e-06,
1075
- "loss": 0.4705,
1076
  "step": 1780
1077
  },
1078
  {
1079
- "epoch": 1.81,
1080
- "learning_rate": 1.0989826483571552e-06,
1081
- "loss": 0.4653,
1082
  "step": 1790
1083
  },
1084
  {
1085
- "epoch": 1.82,
1086
- "learning_rate": 9.85344932470364e-07,
1087
- "loss": 0.4632,
1088
  "step": 1800
1089
  },
1090
  {
1091
- "epoch": 1.83,
1092
- "learning_rate": 8.77789583778979e-07,
1093
- "loss": 0.481,
 
 
 
 
 
 
 
 
1094
  "step": 1810
1095
  },
1096
  {
1097
- "epoch": 1.84,
1098
- "learning_rate": 7.763438436122122e-07,
1099
- "loss": 0.4773,
1100
  "step": 1820
1101
  },
1102
  {
1103
- "epoch": 1.85,
1104
- "learning_rate": 6.810334058740736e-07,
1105
- "loss": 0.4791,
1106
  "step": 1830
1107
  },
1108
  {
1109
- "epoch": 1.86,
1110
- "learning_rate": 5.918824105356797e-07,
1111
- "loss": 0.4793,
1112
  "step": 1840
1113
  },
1114
  {
1115
- "epoch": 1.87,
1116
- "learning_rate": 5.08913437521169e-07,
1117
- "loss": 0.4647,
1118
  "step": 1850
1119
  },
1120
  {
1121
- "epoch": 1.88,
1122
- "learning_rate": 4.3214750098869995e-07,
1123
- "loss": 0.4765,
1124
  "step": 1860
1125
  },
1126
  {
1127
- "epoch": 1.89,
1128
- "learning_rate": 3.616040440080432e-07,
1129
- "loss": 0.4787,
1130
  "step": 1870
1131
  },
1132
  {
1133
- "epoch": 1.9,
1134
- "learning_rate": 2.973009336361021e-07,
1135
- "loss": 0.4723,
1136
  "step": 1880
1137
  },
1138
  {
1139
- "epoch": 1.91,
1140
- "learning_rate": 2.392544563915883e-07,
1141
- "loss": 0.453,
1142
  "step": 1890
1143
  },
1144
  {
1145
- "epoch": 1.93,
1146
- "learning_rate": 1.8747931413001795e-07,
1147
- "loss": 0.4561,
1148
  "step": 1900
1149
  },
1150
  {
1151
- "epoch": 1.94,
1152
- "learning_rate": 1.4198862032005488e-07,
1153
- "loss": 0.4612,
1154
  "step": 1910
1155
  },
1156
  {
1157
- "epoch": 1.95,
1158
- "learning_rate": 1.0279389672218365e-07,
1159
- "loss": 0.4774,
1160
  "step": 1920
1161
  },
1162
  {
1163
- "epoch": 1.96,
1164
- "learning_rate": 6.990507047049676e-08,
1165
- "loss": 0.4635,
1166
  "step": 1930
1167
  },
1168
  {
1169
- "epoch": 1.97,
1170
- "learning_rate": 4.3330471558378213e-08,
1171
- "loss": 0.4761,
1172
  "step": 1940
1173
  },
1174
  {
1175
- "epoch": 1.98,
1176
- "learning_rate": 2.3076830728713252e-08,
1177
- "loss": 0.4593,
1178
  "step": 1950
1179
  },
1180
  {
1181
- "epoch": 1.99,
1182
- "learning_rate": 9.149277769132658e-09,
1183
- "loss": 0.4736,
1184
  "step": 1960
1185
  },
1186
  {
1187
- "epoch": 2.0,
1188
- "learning_rate": 1.551340212760377e-09,
1189
- "loss": 0.4486,
1190
  "step": 1970
1191
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1192
  {
1193
  "epoch": 2.0,
1194
- "step": 1974,
1195
- "total_flos": 3.437359013145084e+19,
1196
- "train_loss": 0.5708327819994277,
1197
- "train_runtime": 105327.89,
1198
- "train_samples_per_second": 4.797,
1199
- "train_steps_per_second": 0.019
1200
  }
1201
  ],
1202
- "max_steps": 1974,
1203
  "num_train_epochs": 2,
1204
- "total_flos": 3.437359013145084e+19,
1205
  "trial_name": null,
1206
  "trial_params": null
1207
  }
 
1
  {
2
+ "best_metric": 0.41885045170783997,
3
+ "best_model_checkpoint": "output/Baichuan-13B-Chat_lora_wqs_nlp/checkpoint-2400",
4
+ "epoch": 1.9992665933259994,
5
+ "global_step": 2726,
6
  "is_hyper_param_search": false,
7
  "is_local_process_zero": true,
8
  "is_world_process_zero": true,
9
  "log_history": [
10
  {
11
  "epoch": 0.01,
12
+ "learning_rate": 4.999865525734509e-05,
13
+ "loss": 1.5452,
14
  "step": 10
15
  },
16
  {
17
+ "epoch": 0.01,
18
+ "learning_rate": 4.9994621174046976e-05,
19
+ "loss": 1.3291,
20
  "step": 20
21
  },
22
  {
23
+ "epoch": 0.02,
24
+ "learning_rate": 4.9986985231938546e-05,
25
+ "loss": 1.1048,
26
  "step": 30
27
  },
28
  {
29
+ "epoch": 0.03,
30
+ "learning_rate": 4.99760306731191e-05,
31
+ "loss": 0.9155,
32
  "step": 40
33
  },
34
  {
35
+ "epoch": 0.04,
36
+ "learning_rate": 4.9961758952505326e-05,
37
+ "loss": 0.8856,
38
  "step": 50
39
  },
40
  {
41
+ "epoch": 0.04,
42
+ "learning_rate": 4.9944171965578836e-05,
43
+ "loss": 0.8052,
44
  "step": 60
45
  },
46
  {
47
+ "epoch": 0.05,
48
+ "learning_rate": 4.992327204813435e-05,
49
+ "loss": 0.7332,
50
  "step": 70
51
  },
52
  {
53
+ "epoch": 0.06,
54
+ "learning_rate": 4.989906197596955e-05,
55
+ "loss": 0.6982,
56
  "step": 80
57
  },
58
  {
59
+ "epoch": 0.07,
60
+ "learning_rate": 4.987154496451635e-05,
61
+ "loss": 0.6811,
62
  "step": 90
63
  },
64
  {
65
+ "epoch": 0.07,
66
+ "learning_rate": 4.984072466841389e-05,
67
+ "loss": 0.6323,
68
  "step": 100
69
  },
70
  {
71
+ "epoch": 0.08,
72
+ "learning_rate": 4.981016546765289e-05,
73
+ "loss": 0.6234,
74
  "step": 110
75
  },
76
  {
77
+ "epoch": 0.09,
78
+ "learning_rate": 4.977308057009269e-05,
79
+ "loss": 0.6125,
80
  "step": 120
81
  },
82
  {
83
+ "epoch": 0.1,
84
+ "learning_rate": 4.97327054653146e-05,
85
+ "loss": 0.5977,
86
  "step": 130
87
  },
88
  {
89
+ "epoch": 0.1,
90
+ "learning_rate": 4.968904551569013e-05,
91
+ "loss": 0.6179,
92
  "step": 140
93
  },
94
  {
95
+ "epoch": 0.11,
96
+ "learning_rate": 4.9642106519863544e-05,
97
+ "loss": 0.5879,
98
  "step": 150
99
  },
100
  {
101
+ "epoch": 0.12,
102
+ "learning_rate": 4.959189471198171e-05,
103
+ "loss": 0.5472,
104
  "step": 160
105
  },
106
  {
107
+ "epoch": 0.12,
108
+ "learning_rate": 4.953841676086613e-05,
109
+ "loss": 0.602,
110
  "step": 170
111
  },
112
  {
113
+ "epoch": 0.13,
114
+ "learning_rate": 4.9481679769127275e-05,
115
+ "loss": 0.5773,
116
  "step": 180
117
  },
118
  {
119
+ "epoch": 0.14,
120
+ "learning_rate": 4.9421691272221167e-05,
121
+ "loss": 0.5615,
122
  "step": 190
123
  },
124
  {
125
+ "epoch": 0.15,
126
+ "learning_rate": 4.935845923744865e-05,
127
+ "loss": 0.5704,
128
  "step": 200
129
  },
130
  {
131
+ "epoch": 0.15,
132
+ "eval_loss": 0.5564362406730652,
133
+ "eval_runtime": 72.9469,
134
+ "eval_samples_per_second": 15.107,
135
+ "eval_steps_per_second": 1.522,
136
+ "step": 200
137
+ },
138
+ {
139
+ "epoch": 0.15,
140
+ "learning_rate": 4.9291992062897183e-05,
141
+ "loss": 0.5803,
142
  "step": 210
143
  },
144
  {
145
+ "epoch": 0.16,
146
+ "learning_rate": 4.922229857632545e-05,
147
+ "loss": 0.5655,
148
  "step": 220
149
  },
150
  {
151
+ "epoch": 0.17,
152
+ "learning_rate": 4.9149388033990966e-05,
153
+ "loss": 0.5769,
154
  "step": 230
155
  },
156
  {
157
+ "epoch": 0.18,
158
+ "learning_rate": 4.9073270119420635e-05,
159
+ "loss": 0.5862,
160
  "step": 240
161
  },
162
  {
163
+ "epoch": 0.18,
164
+ "learning_rate": 4.899395494212471e-05,
165
+ "loss": 0.5506,
166
  "step": 250
167
  },
168
  {
169
+ "epoch": 0.19,
170
+ "learning_rate": 4.891145303625408e-05,
171
+ "loss": 0.5183,
172
  "step": 260
173
  },
174
  {
175
+ "epoch": 0.2,
176
+ "learning_rate": 4.882577535920121e-05,
177
+ "loss": 0.575,
178
  "step": 270
179
  },
180
  {
181
+ "epoch": 0.21,
182
+ "learning_rate": 4.8736933290144815e-05,
183
+ "loss": 0.5359,
184
  "step": 280
185
  },
186
  {
187
+ "epoch": 0.21,
188
+ "learning_rate": 4.8644938628538606e-05,
189
+ "loss": 0.5302,
190
  "step": 290
191
  },
192
  {
193
+ "epoch": 0.22,
194
+ "learning_rate": 4.8549803592544076e-05,
195
+ "loss": 0.5399,
196
  "step": 300
197
  },
198
  {
199
+ "epoch": 0.23,
200
+ "learning_rate": 4.845154081740783e-05,
201
+ "loss": 0.5379,
202
  "step": 310
203
  },
204
  {
205
+ "epoch": 0.23,
206
+ "learning_rate": 4.835016335378343e-05,
207
+ "loss": 0.5299,
208
  "step": 320
209
  },
210
  {
211
+ "epoch": 0.24,
212
+ "learning_rate": 4.8245684665998073e-05,
213
+ "loss": 0.535,
214
  "step": 330
215
  },
216
  {
217
+ "epoch": 0.25,
218
+ "learning_rate": 4.813811863026436e-05,
219
+ "loss": 0.5145,
220
  "step": 340
221
  },
222
  {
223
+ "epoch": 0.26,
224
+ "learning_rate": 4.802747953283732e-05,
225
+ "loss": 0.5126,
226
  "step": 350
227
  },
228
  {
229
+ "epoch": 0.26,
230
+ "learning_rate": 4.791378206811704e-05,
231
+ "loss": 0.5012,
232
  "step": 360
233
  },
234
  {
235
+ "epoch": 0.27,
236
+ "learning_rate": 4.7797041336696995e-05,
237
+ "loss": 0.5373,
238
  "step": 370
239
  },
240
  {
241
+ "epoch": 0.28,
242
+ "learning_rate": 4.767727284335852e-05,
243
+ "loss": 0.4778,
244
  "step": 380
245
  },
246
  {
247
+ "epoch": 0.29,
248
+ "learning_rate": 4.755449249501155e-05,
249
+ "loss": 0.4894,
250
  "step": 390
251
  },
252
  {
253
+ "epoch": 0.29,
254
+ "learning_rate": 4.7428716598581934e-05,
255
+ "loss": 0.4986,
256
  "step": 400
257
  },
258
  {
259
+ "epoch": 0.29,
260
+ "eval_loss": 0.4967592656612396,
261
+ "eval_runtime": 70.0948,
262
+ "eval_samples_per_second": 15.722,
263
+ "eval_steps_per_second": 1.584,
264
+ "step": 400
265
+ },
266
+ {
267
+ "epoch": 0.3,
268
+ "learning_rate": 4.729996185884571e-05,
269
+ "loss": 0.4928,
270
  "step": 410
271
  },
272
  {
273
+ "epoch": 0.31,
274
+ "learning_rate": 4.716824537621042e-05,
275
+ "loss": 0.4807,
276
  "step": 420
277
  },
278
  {
279
+ "epoch": 0.32,
280
+ "learning_rate": 4.703358464444397e-05,
281
+ "loss": 0.4734,
282
  "step": 430
283
  },
284
  {
285
+ "epoch": 0.32,
286
+ "learning_rate": 4.689599754835122e-05,
287
+ "loss": 0.4603,
288
  "step": 440
289
  },
290
  {
291
+ "epoch": 0.33,
292
+ "learning_rate": 4.6755502361398616e-05,
293
+ "loss": 0.4661,
294
  "step": 450
295
  },
296
  {
297
+ "epoch": 0.34,
298
+ "learning_rate": 4.6612117743287234e-05,
299
+ "loss": 0.5072,
300
  "step": 460
301
  },
302
  {
303
+ "epoch": 0.34,
304
+ "learning_rate": 4.646586273747452e-05,
305
+ "loss": 0.5056,
306
  "step": 470
307
  },
308
  {
309
+ "epoch": 0.35,
310
+ "learning_rate": 4.631675676864503e-05,
311
+ "loss": 0.4391,
312
  "step": 480
313
  },
314
  {
315
+ "epoch": 0.36,
316
+ "learning_rate": 4.6164819640130595e-05,
317
+ "loss": 0.483,
318
  "step": 490
319
  },
320
  {
321
+ "epoch": 0.37,
322
+ "learning_rate": 4.601007153128014e-05,
323
+ "loss": 0.4774,
324
  "step": 500
325
  },
326
  {
327
+ "epoch": 0.37,
328
+ "learning_rate": 4.5852532994779606e-05,
329
+ "loss": 0.4848,
330
  "step": 510
331
  },
332
  {
333
+ "epoch": 0.38,
334
+ "learning_rate": 4.5692224953922266e-05,
335
+ "loss": 0.5099,
336
  "step": 520
337
  },
338
  {
339
+ "epoch": 0.39,
340
+ "learning_rate": 4.5529168699829805e-05,
341
+ "loss": 0.4851,
342
  "step": 530
343
  },
344
  {
345
+ "epoch": 0.4,
346
+ "learning_rate": 4.536338588862459e-05,
347
+ "loss": 0.498,
348
  "step": 540
349
  },
350
  {
351
+ "epoch": 0.4,
352
+ "learning_rate": 4.519489853855341e-05,
353
+ "loss": 0.5398,
354
  "step": 550
355
  },
356
  {
357
+ "epoch": 0.41,
358
+ "learning_rate": 4.50237290270632e-05,
359
+ "loss": 0.4566,
360
  "step": 560
361
  },
362
  {
363
+ "epoch": 0.42,
364
+ "learning_rate": 4.484990008782893e-05,
365
+ "loss": 0.4942,
366
  "step": 570
367
  },
368
  {
369
+ "epoch": 0.43,
370
+ "learning_rate": 4.467343480773433e-05,
371
+ "loss": 0.4625,
372
  "step": 580
373
  },
374
  {
375
+ "epoch": 0.43,
376
+ "learning_rate": 4.44943566238056e-05,
377
+ "loss": 0.4703,
378
  "step": 590
379
  },
380
  {
381
+ "epoch": 0.44,
382
+ "learning_rate": 4.431268932009865e-05,
383
+ "loss": 0.464,
384
  "step": 600
385
  },
386
  {
387
+ "epoch": 0.44,
388
+ "eval_loss": 0.46821752190589905,
389
+ "eval_runtime": 69.9505,
390
+ "eval_samples_per_second": 15.754,
391
+ "eval_steps_per_second": 1.587,
392
+ "step": 600
393
+ },
394
+ {
395
+ "epoch": 0.45,
396
+ "learning_rate": 4.412845702454024e-05,
397
+ "loss": 0.4739,
398
  "step": 610
399
  },
400
  {
401
+ "epoch": 0.45,
402
+ "learning_rate": 4.394168420572349e-05,
403
+ "loss": 0.4529,
404
  "step": 620
405
  },
406
  {
407
+ "epoch": 0.46,
408
+ "learning_rate": 4.3752395669658086e-05,
409
+ "loss": 0.4433,
410
  "step": 630
411
  },
412
  {
413
+ "epoch": 0.47,
414
+ "learning_rate": 4.356061655647571e-05,
415
+ "loss": 0.459,
416
  "step": 640
417
  },
418
  {
419
+ "epoch": 0.48,
420
+ "learning_rate": 4.336637233709107e-05,
421
+ "loss": 0.4877,
422
  "step": 650
423
  },
424
  {
425
+ "epoch": 0.48,
426
+ "learning_rate": 4.316968880981903e-05,
427
+ "loss": 0.4676,
428
  "step": 660
429
  },
430
  {
431
+ "epoch": 0.49,
432
+ "learning_rate": 4.2970592096948236e-05,
433
+ "loss": 0.4782,
434
  "step": 670
435
  },
436
  {
437
+ "epoch": 0.5,
438
+ "learning_rate": 4.276910864127168e-05,
439
+ "loss": 0.4778,
440
  "step": 680
441
  },
442
  {
443
+ "epoch": 0.51,
444
+ "learning_rate": 4.25652652025748e-05,
445
+ "loss": 0.454,
446
  "step": 690
447
  },
448
  {
449
+ "epoch": 0.51,
450
+ "learning_rate": 4.235908885408133e-05,
451
+ "loss": 0.4399,
452
  "step": 700
453
  },
454
  {
455
+ "epoch": 0.52,
456
+ "learning_rate": 4.215060697885767e-05,
457
+ "loss": 0.5106,
458
  "step": 710
459
  },
460
  {
461
+ "epoch": 0.53,
462
+ "learning_rate": 4.1939847266176e-05,
463
+ "loss": 0.4683,
464
  "step": 720
465
  },
466
  {
467
+ "epoch": 0.54,
468
+ "learning_rate": 4.172683770783677e-05,
469
+ "loss": 0.4896,
470
  "step": 730
471
  },
472
  {
473
+ "epoch": 0.54,
474
+ "learning_rate": 4.1511606594451016e-05,
475
+ "loss": 0.4633,
476
  "step": 740
477
  },
478
  {
479
+ "epoch": 0.55,
480
+ "learning_rate": 4.1294182511682946e-05,
481
+ "loss": 0.4486,
482
  "step": 750
483
  },
484
  {
485
+ "epoch": 0.56,
486
+ "learning_rate": 4.1074594336453384e-05,
487
+ "loss": 0.4706,
488
  "step": 760
489
  },
490
  {
491
+ "epoch": 0.56,
492
+ "learning_rate": 4.085287123310455e-05,
493
+ "loss": 0.4797,
494
  "step": 770
495
  },
496
  {
497
+ "epoch": 0.57,
498
+ "learning_rate": 4.062904264952657e-05,
499
+ "loss": 0.4251,
500
  "step": 780
501
  },
502
  {
503
+ "epoch": 0.58,
504
+ "learning_rate": 4.0403138313246435e-05,
505
+ "loss": 0.4687,
506
  "step": 790
507
  },
508
  {
509
+ "epoch": 0.59,
510
+ "learning_rate": 4.017518822747976e-05,
511
+ "loss": 0.48,
512
  "step": 800
513
  },
514
  {
515
+ "epoch": 0.59,
516
+ "eval_loss": 0.4554018974304199,
517
+ "eval_runtime": 70.2392,
518
+ "eval_samples_per_second": 15.689,
519
+ "eval_steps_per_second": 1.58,
520
+ "step": 800
521
+ },
522
+ {
523
+ "epoch": 0.59,
524
+ "learning_rate": 3.994522266714594e-05,
525
+ "loss": 0.4662,
526
  "step": 810
527
  },
528
  {
529
+ "epoch": 0.6,
530
+ "learning_rate": 3.9713272174847246e-05,
531
+ "loss": 0.4837,
532
  "step": 820
533
  },
534
  {
535
+ "epoch": 0.61,
536
+ "learning_rate": 3.947936755681229e-05,
537
+ "loss": 0.5014,
538
  "step": 830
539
  },
540
  {
541
+ "epoch": 0.62,
542
+ "learning_rate": 3.92435398788046e-05,
543
+ "loss": 0.4764,
544
  "step": 840
545
  },
546
  {
547
+ "epoch": 0.62,
548
+ "learning_rate": 3.9005820461996604e-05,
549
+ "loss": 0.4587,
550
  "step": 850
551
  },
552
  {
553
+ "epoch": 0.63,
554
+ "learning_rate": 3.876624087880979e-05,
555
+ "loss": 0.484,
556
  "step": 860
557
  },
558
  {
559
+ "epoch": 0.64,
560
+ "learning_rate": 3.85248329487214e-05,
561
+ "loss": 0.4285,
562
  "step": 870
563
  },
564
  {
565
+ "epoch": 0.65,
566
+ "learning_rate": 3.828162873403843e-05,
567
+ "loss": 0.4742,
568
  "step": 880
569
  },
570
  {
571
+ "epoch": 0.65,
572
+ "learning_rate": 3.803666053563926e-05,
573
+ "loss": 0.4533,
574
  "step": 890
575
  },
576
  {
577
+ "epoch": 0.66,
578
+ "learning_rate": 3.778996088868365e-05,
579
+ "loss": 0.4395,
580
  "step": 900
581
  },
582
  {
583
+ "epoch": 0.67,
584
+ "learning_rate": 3.754156255829167e-05,
585
+ "loss": 0.4519,
586
  "step": 910
587
  },
588
  {
589
+ "epoch": 0.67,
590
+ "learning_rate": 3.7291498535191996e-05,
591
+ "loss": 0.4684,
592
  "step": 920
593
  },
594
  {
595
+ "epoch": 0.68,
596
+ "learning_rate": 3.703980203134029e-05,
597
+ "loss": 0.4259,
598
  "step": 930
599
  },
600
  {
601
+ "epoch": 0.69,
602
+ "learning_rate": 3.678650647550822e-05,
603
+ "loss": 0.4576,
604
  "step": 940
605
  },
606
  {
607
+ "epoch": 0.7,
608
+ "learning_rate": 3.6531645508843636e-05,
609
+ "loss": 0.446,
610
  "step": 950
611
  },
612
  {
613
+ "epoch": 0.7,
614
+ "learning_rate": 3.6275252980402544e-05,
615
+ "loss": 0.4439,
616
  "step": 960
617
  },
618
  {
619
+ "epoch": 0.71,
620
+ "learning_rate": 3.601736294265354e-05,
621
+ "loss": 0.476,
622
  "step": 970
623
  },
624
  {
625
+ "epoch": 0.72,
626
+ "learning_rate": 3.5758009646955115e-05,
627
+ "loss": 0.4153,
628
  "step": 980
629
  },
630
  {
631
+ "epoch": 0.73,
632
+ "learning_rate": 3.5497227539006614e-05,
633
+ "loss": 0.4444,
634
  "step": 990
635
  },
636
  {
637
+ "epoch": 0.73,
638
+ "learning_rate": 3.523505125427341e-05,
639
+ "loss": 0.4395,
640
  "step": 1000
641
  },
642
  {
643
+ "epoch": 0.73,
644
+ "eval_loss": 0.44357746839523315,
645
+ "eval_runtime": 70.1513,
646
+ "eval_samples_per_second": 15.709,
647
+ "eval_steps_per_second": 1.582,
648
+ "step": 1000
649
+ },
650
+ {
651
+ "epoch": 0.74,
652
+ "learning_rate": 3.497151561338678e-05,
653
+ "loss": 0.4387,
654
  "step": 1010
655
  },
656
  {
657
+ "epoch": 0.75,
658
+ "learning_rate": 3.470665561751928e-05,
659
+ "loss": 0.4559,
660
  "step": 1020
661
  },
662
  {
663
+ "epoch": 0.76,
664
+ "learning_rate": 3.444050644373611e-05,
665
+ "loss": 0.4349,
666
  "step": 1030
667
  },
668
  {
669
+ "epoch": 0.76,
670
+ "learning_rate": 3.417310344032309e-05,
671
+ "loss": 0.4661,
672
  "step": 1040
673
  },
674
  {
675
+ "epoch": 0.77,
676
+ "learning_rate": 3.390448212209191e-05,
677
+ "loss": 0.4945,
678
  "step": 1050
679
  },
680
  {
681
+ "epoch": 0.78,
682
+ "learning_rate": 3.3634678165663325e-05,
683
+ "loss": 0.4399,
684
  "step": 1060
685
  },
686
  {
687
+ "epoch": 0.78,
688
+ "learning_rate": 3.336372740472877e-05,
689
+ "loss": 0.4399,
690
  "step": 1070
691
  },
692
  {
693
+ "epoch": 0.79,
694
+ "learning_rate": 3.309166582529114e-05,
695
+ "loss": 0.4251,
696
  "step": 1080
697
  },
698
  {
699
+ "epoch": 0.8,
700
+ "learning_rate": 3.281852956088537e-05,
701
+ "loss": 0.4385,
702
  "step": 1090
703
  },
704
  {
705
+ "epoch": 0.81,
706
+ "learning_rate": 3.254435488777941e-05,
707
+ "loss": 0.4566,
708
  "step": 1100
709
  },
710
  {
711
+ "epoch": 0.81,
712
+ "learning_rate": 3.226917822015623e-05,
713
+ "loss": 0.4352,
714
  "step": 1110
715
  },
716
  {
717
+ "epoch": 0.82,
718
+ "learning_rate": 3.199303610527749e-05,
719
+ "loss": 0.4617,
720
  "step": 1120
721
  },
722
  {
723
+ "epoch": 0.83,
724
+ "learning_rate": 3.1715965218629595e-05,
725
+ "loss": 0.476,
726
  "step": 1130
727
  },
728
  {
729
+ "epoch": 0.84,
730
+ "learning_rate": 3.143800235905268e-05,
731
+ "loss": 0.4322,
732
  "step": 1140
733
  },
734
  {
735
+ "epoch": 0.84,
736
+ "learning_rate": 3.115918444385315e-05,
737
+ "loss": 0.4736,
738
  "step": 1150
739
  },
740
  {
741
+ "epoch": 0.85,
742
+ "learning_rate": 3.0879548503900665e-05,
743
+ "loss": 0.4322,
744
  "step": 1160
745
  },
746
  {
747
+ "epoch": 0.86,
748
+ "learning_rate": 3.0599131678709836e-05,
749
+ "loss": 0.4152,
750
  "step": 1170
751
  },
752
  {
753
+ "epoch": 0.87,
754
+ "learning_rate": 3.031797121150764e-05,
755
+ "loss": 0.4187,
756
  "step": 1180
757
  },
758
  {
759
+ "epoch": 0.87,
760
+ "learning_rate": 3.0036104444286954e-05,
761
+ "loss": 0.4331,
762
  "step": 1190
763
  },
764
  {
765
+ "epoch": 0.88,
766
+ "learning_rate": 2.9753568812847065e-05,
767
+ "loss": 0.45,
768
  "step": 1200
769
  },
770
  {
771
+ "epoch": 0.88,
772
+ "eval_loss": 0.43782830238342285,
773
+ "eval_runtime": 70.0939,
774
+ "eval_samples_per_second": 15.722,
775
+ "eval_steps_per_second": 1.584,
776
+ "step": 1200
777
+ },
778
+ {
779
+ "epoch": 0.89,
780
+ "learning_rate": 2.9470401841821686e-05,
781
+ "loss": 0.4457,
782
  "step": 1210
783
  },
784
  {
785
+ "epoch": 0.89,
786
+ "learning_rate": 2.9186641139695108e-05,
787
+ "loss": 0.4667,
788
  "step": 1220
789
  },
790
  {
791
+ "epoch": 0.9,
792
+ "learning_rate": 2.8902324393807333e-05,
793
+ "loss": 0.4516,
794
  "step": 1230
795
  },
796
  {
797
+ "epoch": 0.91,
798
+ "learning_rate": 2.861748936534867e-05,
799
+ "loss": 0.4695,
800
  "step": 1240
801
  },
802
  {
803
+ "epoch": 0.92,
804
+ "learning_rate": 2.8332173884344477e-05,
805
+ "loss": 0.45,
806
  "step": 1250
807
  },
808
  {
809
+ "epoch": 0.92,
810
+ "learning_rate": 2.8046415844630857e-05,
811
+ "loss": 0.4246,
812
  "step": 1260
813
  },
814
  {
815
+ "epoch": 0.93,
816
+ "learning_rate": 2.7760253198821822e-05,
817
+ "loss": 0.4449,
818
  "step": 1270
819
  },
820
  {
821
+ "epoch": 0.94,
822
+ "learning_rate": 2.7473723953268687e-05,
823
+ "loss": 0.4217,
824
  "step": 1280
825
  },
826
  {
827
+ "epoch": 0.95,
828
+ "learning_rate": 2.7186866163012232e-05,
829
+ "loss": 0.4495,
830
  "step": 1290
831
  },
832
  {
833
+ "epoch": 0.95,
834
+ "learning_rate": 2.6899717926728535e-05,
835
+ "loss": 0.4523,
836
  "step": 1300
837
  },
838
  {
839
+ "epoch": 0.96,
840
+ "learning_rate": 2.6612317381668915e-05,
841
+ "loss": 0.4523,
842
  "step": 1310
843
  },
844
  {
845
+ "epoch": 0.97,
846
+ "learning_rate": 2.632470269859478e-05,
847
+ "loss": 0.45,
848
  "step": 1320
849
  },
850
  {
851
+ "epoch": 0.98,
852
+ "learning_rate": 2.603691207670803e-05,
853
+ "loss": 0.4371,
854
  "step": 1330
855
  },
856
  {
857
+ "epoch": 0.98,
858
+ "learning_rate": 2.5748983738577653e-05,
859
+ "loss": 0.4221,
860
  "step": 1340
861
  },
862
  {
863
+ "epoch": 0.99,
864
+ "learning_rate": 2.5460955925063268e-05,
865
+ "loss": 0.4565,
866
  "step": 1350
867
  },
868
  {
869
+ "epoch": 1.0,
870
+ "learning_rate": 2.5172866890236203e-05,
871
+ "loss": 0.3892,
872
  "step": 1360
873
  },
874
  {
875
+ "epoch": 1.0,
876
+ "learning_rate": 2.48847548962988e-05,
877
+ "loss": 0.3973,
878
  "step": 1370
879
  },
880
  {
881
+ "epoch": 1.01,
882
+ "learning_rate": 2.4596658208502713e-05,
883
+ "loss": 0.4151,
884
  "step": 1380
885
  },
886
  {
887
+ "epoch": 1.02,
888
+ "learning_rate": 2.4308615090066735e-05,
889
+ "loss": 0.3839,
890
  "step": 1390
891
  },
892
  {
893
+ "epoch": 1.03,
894
+ "learning_rate": 2.4020663797094864e-05,
895
+ "loss": 0.4062,
896
  "step": 1400
897
  },
898
  {
899
+ "epoch": 1.03,
900
+ "eval_loss": 0.43284282088279724,
901
+ "eval_runtime": 70.1658,
902
+ "eval_samples_per_second": 15.706,
903
+ "eval_steps_per_second": 1.582,
904
+ "step": 1400
905
+ },
906
+ {
907
+ "epoch": 1.03,
908
+ "learning_rate": 2.373284257349544e-05,
909
+ "loss": 0.4003,
910
  "step": 1410
911
  },
912
  {
913
+ "epoch": 1.04,
914
+ "learning_rate": 2.3445189645901806e-05,
915
+ "loss": 0.4447,
916
  "step": 1420
917
  },
918
  {
919
+ "epoch": 1.05,
920
+ "learning_rate": 2.3157743218595247e-05,
921
+ "loss": 0.4565,
922
  "step": 1430
923
  },
924
  {
925
+ "epoch": 1.06,
926
+ "learning_rate": 2.287054146843097e-05,
927
+ "loss": 0.4265,
928
  "step": 1440
929
  },
930
  {
931
+ "epoch": 1.06,
932
+ "learning_rate": 2.2583622539767668e-05,
933
+ "loss": 0.4056,
934
  "step": 1450
935
  },
936
  {
937
+ "epoch": 1.07,
938
+ "learning_rate": 2.2297024539401463e-05,
939
+ "loss": 0.4074,
940
  "step": 1460
941
  },
942
  {
943
+ "epoch": 1.08,
944
+ "learning_rate": 2.2010785531504716e-05,
945
+ "loss": 0.4281,
946
  "step": 1470
947
  },
948
  {
949
+ "epoch": 1.09,
950
+ "learning_rate": 2.172494353257066e-05,
951
+ "loss": 0.4663,
952
  "step": 1480
953
  },
954
  {
955
+ "epoch": 1.09,
956
+ "learning_rate": 2.1439536506364274e-05,
957
+ "loss": 0.4281,
958
  "step": 1490
959
  },
960
  {
961
+ "epoch": 1.1,
962
+ "learning_rate": 2.1154602358880122e-05,
963
+ "loss": 0.4111,
964
  "step": 1500
965
  },
966
  {
967
+ "epoch": 1.11,
968
+ "learning_rate": 2.0870178933307948e-05,
969
+ "loss": 0.4187,
970
  "step": 1510
971
  },
972
  {
973
+ "epoch": 1.11,
974
+ "learning_rate": 2.0586304005006585e-05,
975
+ "loss": 0.3964,
976
  "step": 1520
977
  },
978
  {
979
+ "epoch": 1.12,
980
+ "learning_rate": 2.030301527648684e-05,
981
+ "loss": 0.4331,
982
  "step": 1530
983
  },
984
  {
985
+ "epoch": 1.13,
986
+ "learning_rate": 2.0020350372404102e-05,
987
+ "loss": 0.4432,
988
  "step": 1540
989
  },
990
  {
991
+ "epoch": 1.14,
992
+ "learning_rate": 1.9738346834561254e-05,
993
+ "loss": 0.4056,
994
  "step": 1550
995
  },
996
  {
997
+ "epoch": 1.14,
998
+ "learning_rate": 1.945704211692262e-05,
999
+ "loss": 0.4354,
1000
  "step": 1560
1001
  },
1002
  {
1003
+ "epoch": 1.15,
1004
+ "learning_rate": 1.9176473580639538e-05,
1005
+ "loss": 0.4309,
1006
  "step": 1570
1007
  },
1008
  {
1009
+ "epoch": 1.16,
1010
+ "learning_rate": 1.8896678489088304e-05,
1011
+ "loss": 0.4058,
1012
  "step": 1580
1013
  },
1014
  {
1015
+ "epoch": 1.17,
1016
+ "learning_rate": 1.8617694002921064e-05,
1017
+ "loss": 0.4319,
1018
  "step": 1590
1019
  },
1020
  {
1021
+ "epoch": 1.17,
1022
+ "learning_rate": 1.8339557175130383e-05,
1023
+ "loss": 0.4267,
1024
  "step": 1600
1025
  },
1026
  {
1027
+ "epoch": 1.17,
1028
+ "eval_loss": 0.42894992232322693,
1029
+ "eval_runtime": 70.251,
1030
+ "eval_samples_per_second": 15.687,
1031
+ "eval_steps_per_second": 1.58,
1032
+ "step": 1600
1033
+ },
1034
+ {
1035
+ "epoch": 1.18,
1036
+ "learning_rate": 1.8062304946128073e-05,
1037
+ "loss": 0.3921,
1038
  "step": 1610
1039
  },
1040
  {
1041
+ "epoch": 1.19,
1042
+ "learning_rate": 1.7785974138839018e-05,
1043
+ "loss": 0.4206,
1044
  "step": 1620
1045
  },
1046
  {
1047
+ "epoch": 1.2,
1048
+ "learning_rate": 1.7510601453810594e-05,
1049
+ "loss": 0.4356,
1050
  "step": 1630
1051
  },
1052
  {
1053
+ "epoch": 1.2,
1054
+ "learning_rate": 1.723622346433828e-05,
1055
+ "loss": 0.4167,
1056
  "step": 1640
1057
  },
1058
  {
1059
+ "epoch": 1.21,
1060
+ "learning_rate": 1.6962876611608262e-05,
1061
+ "loss": 0.4233,
1062
  "step": 1650
1063
  },
1064
  {
1065
+ "epoch": 1.22,
1066
+ "learning_rate": 1.6690597199857523e-05,
1067
+ "loss": 0.4176,
1068
  "step": 1660
1069
  },
1070
  {
1071
+ "epoch": 1.22,
1072
+ "learning_rate": 1.6419421391552142e-05,
1073
+ "loss": 0.4241,
1074
  "step": 1670
1075
  },
1076
  {
1077
+ "epoch": 1.23,
1078
+ "learning_rate": 1.6149385202584423e-05,
1079
+ "loss": 0.4524,
1080
  "step": 1680
1081
  },
1082
  {
1083
+ "epoch": 1.24,
1084
+ "learning_rate": 1.5880524497489474e-05,
1085
+ "loss": 0.4647,
1086
  "step": 1690
1087
  },
1088
  {
1089
+ "epoch": 1.25,
1090
+ "learning_rate": 1.5612874984681923e-05,
1091
+ "loss": 0.4036,
1092
  "step": 1700
1093
  },
1094
  {
1095
+ "epoch": 1.25,
1096
+ "learning_rate": 1.534647221171334e-05,
1097
+ "loss": 0.4148,
1098
  "step": 1710
1099
  },
1100
  {
1101
+ "epoch": 1.26,
1102
+ "learning_rate": 1.5081351560551021e-05,
1103
+ "loss": 0.408,
1104
  "step": 1720
1105
  },
1106
  {
1107
+ "epoch": 1.27,
1108
+ "learning_rate": 1.4817548242878759e-05,
1109
+ "loss": 0.457,
1110
  "step": 1730
1111
  },
1112
  {
1113
+ "epoch": 1.28,
1114
+ "learning_rate": 1.45550972954203e-05,
1115
+ "loss": 0.4193,
1116
  "step": 1740
1117
  },
1118
  {
1119
+ "epoch": 1.28,
1120
+ "learning_rate": 1.4294033575285914e-05,
1121
+ "loss": 0.4149,
1122
  "step": 1750
1123
  },
1124
  {
1125
+ "epoch": 1.29,
1126
+ "learning_rate": 1.4034391755342972e-05,
1127
+ "loss": 0.4032,
1128
  "step": 1760
1129
  },
1130
  {
1131
+ "epoch": 1.3,
1132
+ "learning_rate": 1.3776206319610823e-05,
1133
+ "loss": 0.4078,
1134
  "step": 1770
1135
  },
1136
  {
1137
+ "epoch": 1.31,
1138
+ "learning_rate": 1.3519511558680892e-05,
1139
+ "loss": 0.4123,
1140
  "step": 1780
1141
  },
1142
  {
1143
+ "epoch": 1.31,
1144
+ "learning_rate": 1.3264341565162422e-05,
1145
+ "loss": 0.4089,
1146
  "step": 1790
1147
  },
1148
  {
1149
+ "epoch": 1.32,
1150
+ "learning_rate": 1.3010730229154445e-05,
1151
+ "loss": 0.383,
1152
  "step": 1800
1153
  },
1154
  {
1155
+ "epoch": 1.32,
1156
+ "eval_loss": 0.4250344932079315,
1157
+ "eval_runtime": 70.4814,
1158
+ "eval_samples_per_second": 15.635,
1159
+ "eval_steps_per_second": 1.575,
1160
+ "step": 1800
1161
+ },
1162
+ {
1163
+ "epoch": 1.33,
1164
+ "learning_rate": 1.2758711233744783e-05,
1165
+ "loss": 0.3936,
1166
  "step": 1810
1167
  },
1168
  {
1169
+ "epoch": 1.33,
1170
+ "learning_rate": 1.2508318050536421e-05,
1171
+ "loss": 0.4127,
1172
  "step": 1820
1173
  },
1174
  {
1175
+ "epoch": 1.34,
1176
+ "learning_rate": 1.2259583935202062e-05,
1177
+ "loss": 0.4015,
1178
  "step": 1830
1179
  },
1180
  {
1181
+ "epoch": 1.35,
1182
+ "learning_rate": 1.2012541923067244e-05,
1183
+ "loss": 0.4203,
1184
  "step": 1840
1185
  },
1186
  {
1187
+ "epoch": 1.36,
1188
+ "learning_rate": 1.176722482472286e-05,
1189
+ "loss": 0.4367,
1190
  "step": 1850
1191
  },
1192
  {
1193
+ "epoch": 1.36,
1194
+ "learning_rate": 1.1523665221667398e-05,
1195
+ "loss": 0.4233,
1196
  "step": 1860
1197
  },
1198
  {
1199
+ "epoch": 1.37,
1200
+ "learning_rate": 1.1281895461979732e-05,
1201
+ "loss": 0.4405,
1202
  "step": 1870
1203
  },
1204
  {
1205
+ "epoch": 1.38,
1206
+ "learning_rate": 1.104194765602281e-05,
1207
+ "loss": 0.4379,
1208
  "step": 1880
1209
  },
1210
  {
1211
+ "epoch": 1.39,
1212
+ "learning_rate": 1.0803853672178946e-05,
1213
+ "loss": 0.4146,
1214
  "step": 1890
1215
  },
1216
  {
1217
+ "epoch": 1.39,
1218
+ "learning_rate": 1.0567645132617316e-05,
1219
+ "loss": 0.4438,
1220
  "step": 1900
1221
  },
1222
  {
1223
+ "epoch": 1.4,
1224
+ "learning_rate": 1.0333353409094015e-05,
1225
+ "loss": 0.3915,
1226
  "step": 1910
1227
  },
1228
  {
1229
+ "epoch": 1.41,
1230
+ "learning_rate": 1.0101009618785528e-05,
1231
+ "loss": 0.4063,
1232
  "step": 1920
1233
  },
1234
  {
1235
+ "epoch": 1.42,
1236
+ "learning_rate": 9.870644620155877e-06,
1237
+ "loss": 0.3974,
1238
  "step": 1930
1239
  },
1240
  {
1241
+ "epoch": 1.42,
1242
+ "learning_rate": 9.642289008858244e-06,
1243
+ "loss": 0.4015,
1244
  "step": 1940
1245
  },
1246
  {
1247
+ "epoch": 1.43,
1248
+ "learning_rate": 9.41597311367142e-06,
1249
+ "loss": 0.4264,
1250
  "step": 1950
1251
  },
1252
  {
1253
+ "epoch": 1.44,
1254
+ "learning_rate": 9.191726992471725e-06,
1255
+ "loss": 0.4334,
1256
  "step": 1960
1257
  },
1258
  {
1259
+ "epoch": 1.44,
1260
+ "learning_rate": 8.969580428240903e-06,
1261
+ "loss": 0.4197,
1262
  "step": 1970
1263
  },
1264
+ {
1265
+ "epoch": 1.45,
1266
+ "learning_rate": 8.74956292511056e-06,
1267
+ "loss": 0.422,
1268
+ "step": 1980
1269
+ },
1270
+ {
1271
+ "epoch": 1.46,
1272
+ "learning_rate": 8.531703704443575e-06,
1273
+ "loss": 0.4077,
1274
+ "step": 1990
1275
+ },
1276
+ {
1277
+ "epoch": 1.47,
1278
+ "learning_rate": 8.316031700953086e-06,
1279
+ "loss": 0.4334,
1280
+ "step": 2000
1281
+ },
1282
+ {
1283
+ "epoch": 1.47,
1284
+ "eval_loss": 0.4206145107746124,
1285
+ "eval_runtime": 70.0533,
1286
+ "eval_samples_per_second": 15.731,
1287
+ "eval_steps_per_second": 1.585,
1288
+ "step": 2000
1289
+ },
1290
+ {
1291
+ "epoch": 1.47,
1292
+ "learning_rate": 8.102575558859612e-06,
1293
+ "loss": 0.4171,
1294
+ "step": 2010
1295
+ },
1296
+ {
1297
+ "epoch": 1.48,
1298
+ "learning_rate": 7.891363628086671e-06,
1299
+ "loss": 0.3957,
1300
+ "step": 2020
1301
+ },
1302
+ {
1303
+ "epoch": 1.49,
1304
+ "learning_rate": 7.682423960495517e-06,
1305
+ "loss": 0.4174,
1306
+ "step": 2030
1307
+ },
1308
+ {
1309
+ "epoch": 1.5,
1310
+ "learning_rate": 7.475784306159478e-06,
1311
+ "loss": 0.4187,
1312
+ "step": 2040
1313
+ },
1314
+ {
1315
+ "epoch": 1.5,
1316
+ "learning_rate": 7.271472109678379e-06,
1317
+ "loss": 0.3775,
1318
+ "step": 2050
1319
+ },
1320
+ {
1321
+ "epoch": 1.51,
1322
+ "learning_rate": 7.0695145065334585e-06,
1323
+ "loss": 0.4019,
1324
+ "step": 2060
1325
+ },
1326
+ {
1327
+ "epoch": 1.52,
1328
+ "learning_rate": 6.869938319483471e-06,
1329
+ "loss": 0.4143,
1330
+ "step": 2070
1331
+ },
1332
+ {
1333
+ "epoch": 1.53,
1334
+ "learning_rate": 6.67277005500222e-06,
1335
+ "loss": 0.3853,
1336
+ "step": 2080
1337
+ },
1338
+ {
1339
+ "epoch": 1.53,
1340
+ "learning_rate": 6.478035899758139e-06,
1341
+ "loss": 0.4403,
1342
+ "step": 2090
1343
+ },
1344
+ {
1345
+ "epoch": 1.54,
1346
+ "learning_rate": 6.285761717136335e-06,
1347
+ "loss": 0.3888,
1348
+ "step": 2100
1349
+ },
1350
+ {
1351
+ "epoch": 1.55,
1352
+ "learning_rate": 6.095973043803577e-06,
1353
+ "loss": 0.4123,
1354
+ "step": 2110
1355
+ },
1356
+ {
1357
+ "epoch": 1.55,
1358
+ "learning_rate": 5.908695086316701e-06,
1359
+ "loss": 0.4035,
1360
+ "step": 2120
1361
+ },
1362
+ {
1363
+ "epoch": 1.56,
1364
+ "learning_rate": 5.723952717774763e-06,
1365
+ "loss": 0.4219,
1366
+ "step": 2130
1367
+ },
1368
+ {
1369
+ "epoch": 1.57,
1370
+ "learning_rate": 5.54177047451562e-06,
1371
+ "loss": 0.4209,
1372
+ "step": 2140
1373
+ },
1374
+ {
1375
+ "epoch": 1.58,
1376
+ "learning_rate": 5.362172552857128e-06,
1377
+ "loss": 0.4286,
1378
+ "step": 2150
1379
+ },
1380
+ {
1381
+ "epoch": 1.58,
1382
+ "learning_rate": 5.18518280588354e-06,
1383
+ "loss": 0.4134,
1384
+ "step": 2160
1385
+ },
1386
+ {
1387
+ "epoch": 1.59,
1388
+ "learning_rate": 5.010824740277501e-06,
1389
+ "loss": 0.4005,
1390
+ "step": 2170
1391
+ },
1392
+ {
1393
+ "epoch": 1.6,
1394
+ "learning_rate": 4.83912151319802e-06,
1395
+ "loss": 0.3973,
1396
+ "step": 2180
1397
+ },
1398
+ {
1399
+ "epoch": 1.61,
1400
+ "learning_rate": 4.6700959292048875e-06,
1401
+ "loss": 0.3959,
1402
+ "step": 2190
1403
+ },
1404
+ {
1405
+ "epoch": 1.61,
1406
+ "learning_rate": 4.503770437229918e-06,
1407
+ "loss": 0.4017,
1408
+ "step": 2200
1409
+ },
1410
+ {
1411
+ "epoch": 1.61,
1412
+ "eval_loss": 0.41970890760421753,
1413
+ "eval_runtime": 69.9019,
1414
+ "eval_samples_per_second": 15.765,
1415
+ "eval_steps_per_second": 1.588,
1416
+ "step": 2200
1417
+ },
1418
+ {
1419
+ "epoch": 1.62,
1420
+ "learning_rate": 4.340167127595407e-06,
1421
+ "loss": 0.4013,
1422
+ "step": 2210
1423
+ },
1424
+ {
1425
+ "epoch": 1.63,
1426
+ "learning_rate": 4.179307729080256e-06,
1427
+ "loss": 0.4069,
1428
+ "step": 2220
1429
+ },
1430
+ {
1431
+ "epoch": 1.64,
1432
+ "learning_rate": 4.021213606034064e-06,
1433
+ "loss": 0.3857,
1434
+ "step": 2230
1435
+ },
1436
+ {
1437
+ "epoch": 1.64,
1438
+ "learning_rate": 3.8659057555396645e-06,
1439
+ "loss": 0.4262,
1440
+ "step": 2240
1441
+ },
1442
+ {
1443
+ "epoch": 1.65,
1444
+ "learning_rate": 3.713404804624418e-06,
1445
+ "loss": 0.3953,
1446
+ "step": 2250
1447
+ },
1448
+ {
1449
+ "epoch": 1.66,
1450
+ "learning_rate": 3.5637310075206544e-06,
1451
+ "loss": 0.4231,
1452
+ "step": 2260
1453
+ },
1454
+ {
1455
+ "epoch": 1.66,
1456
+ "learning_rate": 3.416904242975635e-06,
1457
+ "loss": 0.407,
1458
+ "step": 2270
1459
+ },
1460
+ {
1461
+ "epoch": 1.67,
1462
+ "learning_rate": 3.2729440116113843e-06,
1463
+ "loss": 0.4254,
1464
+ "step": 2280
1465
+ },
1466
+ {
1467
+ "epoch": 1.68,
1468
+ "learning_rate": 3.131869433334725e-06,
1469
+ "loss": 0.4054,
1470
+ "step": 2290
1471
+ },
1472
+ {
1473
+ "epoch": 1.69,
1474
+ "learning_rate": 2.9936992447979068e-06,
1475
+ "loss": 0.3801,
1476
+ "step": 2300
1477
+ },
1478
+ {
1479
+ "epoch": 1.69,
1480
+ "learning_rate": 2.8584517969101054e-06,
1481
+ "loss": 0.4335,
1482
+ "step": 2310
1483
+ },
1484
+ {
1485
+ "epoch": 1.7,
1486
+ "learning_rate": 2.7261450524001807e-06,
1487
+ "loss": 0.412,
1488
+ "step": 2320
1489
+ },
1490
+ {
1491
+ "epoch": 1.71,
1492
+ "learning_rate": 2.596796583430969e-06,
1493
+ "loss": 0.4456,
1494
+ "step": 2330
1495
+ },
1496
+ {
1497
+ "epoch": 1.72,
1498
+ "learning_rate": 2.470423569265462e-06,
1499
+ "loss": 0.3972,
1500
+ "step": 2340
1501
+ },
1502
+ {
1503
+ "epoch": 1.72,
1504
+ "learning_rate": 2.34704279398516e-06,
1505
+ "loss": 0.3935,
1506
+ "step": 2350
1507
+ },
1508
+ {
1509
+ "epoch": 1.73,
1510
+ "learning_rate": 2.2266706442609226e-06,
1511
+ "loss": 0.3974,
1512
+ "step": 2360
1513
+ },
1514
+ {
1515
+ "epoch": 1.74,
1516
+ "learning_rate": 2.109323107176578e-06,
1517
+ "loss": 0.4157,
1518
+ "step": 2370
1519
+ },
1520
+ {
1521
+ "epoch": 1.75,
1522
+ "learning_rate": 1.9950157681056318e-06,
1523
+ "loss": 0.4379,
1524
+ "step": 2380
1525
+ },
1526
+ {
1527
+ "epoch": 1.75,
1528
+ "learning_rate": 1.8837638086413063e-06,
1529
+ "loss": 0.4035,
1530
+ "step": 2390
1531
+ },
1532
+ {
1533
+ "epoch": 1.76,
1534
+ "learning_rate": 1.7755820045802145e-06,
1535
+ "loss": 0.4455,
1536
+ "step": 2400
1537
+ },
1538
+ {
1539
+ "epoch": 1.76,
1540
+ "eval_loss": 0.41885045170783997,
1541
+ "eval_runtime": 70.0957,
1542
+ "eval_samples_per_second": 15.721,
1543
+ "eval_steps_per_second": 1.584,
1544
+ "step": 2400
1545
+ },
1546
+ {
1547
+ "epoch": 1.77,
1548
+ "learning_rate": 1.6704847239599364e-06,
1549
+ "loss": 0.4532,
1550
+ "step": 2410
1551
+ },
1552
+ {
1553
+ "epoch": 1.77,
1554
+ "learning_rate": 1.5684859251507394e-06,
1555
+ "loss": 0.4213,
1556
+ "step": 2420
1557
+ },
1558
+ {
1559
+ "epoch": 1.78,
1560
+ "learning_rate": 1.4695991550017164e-06,
1561
+ "loss": 0.3873,
1562
+ "step": 2430
1563
+ },
1564
+ {
1565
+ "epoch": 1.79,
1566
+ "learning_rate": 1.373837547041576e-06,
1567
+ "loss": 0.4163,
1568
+ "step": 2440
1569
+ },
1570
+ {
1571
+ "epoch": 1.8,
1572
+ "learning_rate": 1.2812138197343392e-06,
1573
+ "loss": 0.3946,
1574
+ "step": 2450
1575
+ },
1576
+ {
1577
+ "epoch": 1.8,
1578
+ "learning_rate": 1.1917402747901152e-06,
1579
+ "loss": 0.41,
1580
+ "step": 2460
1581
+ },
1582
+ {
1583
+ "epoch": 1.81,
1584
+ "learning_rate": 1.105428795531327e-06,
1585
+ "loss": 0.4126,
1586
+ "step": 2470
1587
+ },
1588
+ {
1589
+ "epoch": 1.82,
1590
+ "learning_rate": 1.0222908453143804e-06,
1591
+ "loss": 0.4505,
1592
+ "step": 2480
1593
+ },
1594
+ {
1595
+ "epoch": 1.83,
1596
+ "learning_rate": 9.423374660072065e-07,
1597
+ "loss": 0.4303,
1598
+ "step": 2490
1599
+ },
1600
+ {
1601
+ "epoch": 1.83,
1602
+ "learning_rate": 8.655792765227405e-07,
1603
+ "loss": 0.4179,
1604
+ "step": 2500
1605
+ },
1606
+ {
1607
+ "epoch": 1.84,
1608
+ "learning_rate": 7.920264714085828e-07,
1609
+ "loss": 0.4376,
1610
+ "step": 2510
1611
+ },
1612
+ {
1613
+ "epoch": 1.85,
1614
+ "learning_rate": 7.216888194930272e-07,
1615
+ "loss": 0.4069,
1616
+ "step": 2520
1617
+ },
1618
+ {
1619
+ "epoch": 1.86,
1620
+ "learning_rate": 6.545756625876031e-07,
1621
+ "loss": 0.3887,
1622
+ "step": 2530
1623
+ },
1624
+ {
1625
+ "epoch": 1.86,
1626
+ "learning_rate": 5.906959142463947e-07,
1627
+ "loss": 0.3972,
1628
+ "step": 2540
1629
+ },
1630
+ {
1631
+ "epoch": 1.87,
1632
+ "learning_rate": 5.300580585821696e-07,
1633
+ "loss": 0.4078,
1634
+ "step": 2550
1635
+ },
1636
+ {
1637
+ "epoch": 1.88,
1638
+ "learning_rate": 4.7267014913956463e-07,
1639
+ "loss": 0.4467,
1640
+ "step": 2560
1641
+ },
1642
+ {
1643
+ "epoch": 1.88,
1644
+ "learning_rate": 4.1853980782549097e-07,
1645
+ "loss": 0.4567,
1646
+ "step": 2570
1647
+ },
1648
+ {
1649
+ "epoch": 1.89,
1650
+ "learning_rate": 3.6767422389682173e-07,
1651
+ "loss": 0.4494,
1652
+ "step": 2580
1653
+ },
1654
+ {
1655
+ "epoch": 1.9,
1656
+ "learning_rate": 3.2008015300555306e-07,
1657
+ "loss": 0.4344,
1658
+ "step": 2590
1659
+ },
1660
+ {
1661
+ "epoch": 1.91,
1662
+ "learning_rate": 2.757639163015774e-07,
1663
+ "loss": 0.4101,
1664
+ "step": 2600
1665
+ },
1666
+ {
1667
+ "epoch": 1.91,
1668
+ "eval_loss": 0.41886425018310547,
1669
+ "eval_runtime": 70.2179,
1670
+ "eval_samples_per_second": 15.694,
1671
+ "eval_steps_per_second": 1.581,
1672
+ "step": 2600
1673
+ },
1674
+ {
1675
+ "epoch": 1.91,
1676
+ "learning_rate": 2.347313995931466e-07,
1677
+ "loss": 0.4058,
1678
+ "step": 2610
1679
+ },
1680
+ {
1681
+ "epoch": 1.92,
1682
+ "learning_rate": 1.9698805256513908e-07,
1683
+ "loss": 0.414,
1684
+ "step": 2620
1685
+ },
1686
+ {
1687
+ "epoch": 1.93,
1688
+ "learning_rate": 1.6253888805527474e-07,
1689
+ "loss": 0.4254,
1690
+ "step": 2630
1691
+ },
1692
+ {
1693
+ "epoch": 1.94,
1694
+ "learning_rate": 1.3138848138835313e-07,
1695
+ "loss": 0.4017,
1696
+ "step": 2640
1697
+ },
1698
+ {
1699
+ "epoch": 1.94,
1700
+ "learning_rate": 1.0354096976856186e-07,
1701
+ "loss": 0.4258,
1702
+ "step": 2650
1703
+ },
1704
+ {
1705
+ "epoch": 1.95,
1706
+ "learning_rate": 7.900005173002712e-08,
1707
+ "loss": 0.4098,
1708
+ "step": 2660
1709
+ },
1710
+ {
1711
+ "epoch": 1.96,
1712
+ "learning_rate": 5.776898664557051e-08,
1713
+ "loss": 0.42,
1714
+ "step": 2670
1715
+ },
1716
+ {
1717
+ "epoch": 1.97,
1718
+ "learning_rate": 3.985059429383875e-08,
1719
+ "loss": 0.3886,
1720
+ "step": 2680
1721
+ },
1722
+ {
1723
+ "epoch": 1.97,
1724
+ "learning_rate": 2.5247254484794813e-08,
1725
+ "loss": 0.4276,
1726
+ "step": 2690
1727
+ },
1728
+ {
1729
+ "epoch": 1.98,
1730
+ "learning_rate": 1.3960906743634706e-08,
1731
+ "loss": 0.4006,
1732
+ "step": 2700
1733
+ },
1734
+ {
1735
+ "epoch": 1.99,
1736
+ "learning_rate": 5.993050053204607e-09,
1737
+ "loss": 0.4243,
1738
+ "step": 2710
1739
+ },
1740
+ {
1741
+ "epoch": 1.99,
1742
+ "learning_rate": 1.3447426549129117e-09,
1743
+ "loss": 0.4439,
1744
+ "step": 2720
1745
+ },
1746
  {
1747
  "epoch": 2.0,
1748
+ "step": 2726,
1749
+ "total_flos": 1.1289170586615415e+19,
1750
+ "train_loss": 0.46561298847898175,
1751
+ "train_runtime": 35477.4141,
1752
+ "train_samples_per_second": 6.149,
1753
+ "train_steps_per_second": 0.077
1754
  }
1755
  ],
1756
+ "max_steps": 2726,
1757
  "num_train_epochs": 2,
1758
+ "total_flos": 1.1289170586615415e+19,
1759
  "trial_name": null,
1760
  "trial_params": null
1761
  }
{Baichuan-13B-Chat-full → Baichuan-13B-Chat-lora-Task}/training_args.bin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fe0b7bf81fc699ffb5b38f22a7bd9ad201bc6a51a7928e5d8ae8e14abe781142
3
- size 5752
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0037c3e69fa21891dd65687a3f79ad20a8abc0a75790c554b437378b35c59fe9
3
+ size 4600
Baichuan-13B-Chat-lora-Task/training_eval_loss.png ADDED
Baichuan-13B-Chat-lora-Task/training_loss.png ADDED
README.md CHANGED
@@ -1,3 +1,150 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - zh
5
+ tags:
6
+ - finance
7
  ---
8
+
9
+ This repository contains the DISC-FinLLM, version of Baichuan-13B-Chat as the base model.
10
+
11
+ <div align="center">
12
+
13
+ [Demo](https://law.fudan-disc.com) | [技术报告](https://arxiv.org/abs/2309.11325)
14
+ </div>
15
+
16
+ **Please note that due to the ongoing development of the project, the model weights in this repository may differ from those in our currently deployed demo.**
17
+
18
+
19
+ DISC-LawLLM is a large language model specialized in Chinese legal domain, developed and open-sourced by [Data Intelligence and Social Computing Lab of Fudan University (Fudan-DISC)](http://fudan-disc.com), to provide comprehensive intelligent legal services. The advtantages is:
20
+ * **Legal Texts Generic Processing Capability**
21
+ * **Legal Thinking and Reasoning**
22
+ * **Legal knowledge Retrieval Capacity**
23
+
24
+ In addition, the contributions include:
25
+
26
+ * **High-quality SFT datasets and effective training paradigms**
27
+ * **Chinese legal LLMs evaluation framework**
28
+
29
+ Check our [HOME](https://github.com/FudanDISC/DISC-LawLLM) for more information.
30
+
31
+ # DISC-Law-SFT Dataset
32
+
33
+ we construct a high-quality supervised fine-tuning dataset, DISC-Law-SFT with two subsets, namely DISC-Law-SFT-Pair and DISC-Law-SFT-Triplet. Our dataset converge a range of legal tasks, including legal information extraction, judgment prediction, document summarization, and legal question answering, ensuring coverage of diverse scenarios.
34
+ <img src="" alt="" width=""/>
35
+
36
+ <table>
37
+ <tr>
38
+ <th>Dataset</th>
39
+ <th>Task/Source</th>
40
+ <th>Size</th>
41
+ <th>Scenario</th>
42
+ </tr>
43
+ <tr>
44
+ <td rowspan="10">DISC-LawLLM-SFT-Pair</td>
45
+ <td>Legal information extraction</td>
46
+ <td>32K</td>
47
+ <td rowspan="7">Legal professional assistant</td>
48
+ </tr>
49
+ <tr>
50
+ <td>Legal event detection</td>
51
+ <td>27K</td>
52
+ </tr>
53
+ <tr>
54
+ <td>Legal case classification</td>
55
+ <td>20K</td>
56
+ </tr>
57
+ <tr>
58
+ <td>Legal judgement prediction</td>
59
+ <td>11K</td>
60
+ </tr>
61
+ <tr>
62
+ <td>Legal case matching</td>
63
+ <td>8K</td>
64
+ </tr>
65
+ <tr>
66
+ <td>Legal text summarization</td>
67
+ <td>9K</td>
68
+ </tr>
69
+ <tr>
70
+ <td>Judicial public opinion summarization</td>
71
+ <td>6K</td>
72
+ </tr>
73
+ <tr>
74
+ <td>Legal question answering</td>
75
+ <td>93K</td>
76
+ <td>Legal consultation services</td>
77
+ </tr>
78
+ <tr>
79
+ <td>Legal reading comprehension</td>
80
+ <td>38K</td>
81
+ <td rowspan="2">Judicial examination assistant</td>
82
+ </tr>
83
+ <tr>
84
+ <td>Judicial examination</td>
85
+ <td>12K</td>
86
+ </tr>
87
+ <tr>
88
+ <td rowspan="2">DISC-LawLLM-SFT-Triple</td>
89
+ <td>Legal judgement prediction</td>
90
+ <td>16K</td>
91
+ <td>Legal professional assistant</td>
92
+ </tr>
93
+ <tr>
94
+ <td>Legal question answering</td>
95
+ <td>23K</td>
96
+ <td>Legal consultation services</td>
97
+ </tr>
98
+ <tr>
99
+ <td rowspan="2">General</td>
100
+ <td>Alpaca-GPT4</td>
101
+ <td>48K</td>
102
+ <td rowspan="2">General scenarios</td>
103
+ </tr>
104
+ <tr>
105
+ <td>Firefly</td>
106
+ <td>60K</td>
107
+ </tr>
108
+ <tr>
109
+ <td>Total</td>
110
+ <td colspan="3">403K</td>
111
+ </tr>
112
+ </table>
113
+
114
+ # Using through hugging face transformers
115
+
116
+ ```python
117
+ >>>import torch
118
+ >>>>>>from transformers import AutoModelForCausalLM, AutoTokenizer
119
+ >>>from transformers.generation.utils import GenerationConfig
120
+ >>>tokenizer = AutoTokenizer.from_pretrained("ShengbinYue/DISC-LawLLM", use_fast=False, trust_remote_code=True)
121
+ >>>model = AutoModelForCausalLM.from_pretrained("ShengbinYue/DISC-LawLLM", device_map="auto", torch_dtype=torch.float16, trust_remote_code=True)
122
+ >>>model.generation_config = GenerationConfig.from_pretrained("ShengbinYue/DISC-LawLLM")
123
+ >>>messages = []
124
+ >>>messages.append({"role": "user", "content": "生产销售假冒伪劣商品罪如何判刑?"})
125
+ >>>response = model.chat(tokenizer, messages)
126
+ >>>print(response)
127
+ ```
128
+
129
+ # Disclaimer
130
+
131
+ DISC-LawLLM comes with issues and limitations that current LLMs have yet to overcome. While it can provide Chinese legal services in many a wide variety of tasks and scenarios, the model should be used for reference purposes only and cannot replace professional lawyers and legal experts. We encourage users of DISC-LawLLM to evaluate the model critically. We do not take responsibility for any issues, risks, or adverse consequences that may arise from the use of DISC-LawLLM.
132
+
133
+ # Citation
134
+
135
+ If our work is helpful for your, please kindly cite our work as follows:
136
+
137
+ ```
138
+ @misc{yue2023disclawllm,
139
+ title={DISC-LawLLM: Fine-tuning Large Language Models for Intelligent Legal Services},
140
+ author={Shengbin Yue and Wei Chen and Siyuan Wang and Bingxuan Li and Chenchen Shen and Shujun Liu and Yuxuan Zhou and Yao Xiao and Song Yun and Wei Lin and Xuanjing Huang and Zhongyu Wei},
141
+ year={2023},
142
+ eprint={2309.11325},
143
+ archivePrefix={arXiv},
144
+ primaryClass={cs.CL}
145
+ }
146
+ ```
147
+
148
+ # License
149
+
150
+ The use of the source code in this repository complies with the Apache 2.0 License.