IRIS-FLOWER-CLASSIFICATION-using-machine-learning-models
/
transformers
/tests
/models
/data2vec
/test_modeling_tf_data2vec_vision.py
| # coding=utf-8 | |
| # Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Testing suite for the TensorFlow Data2VecVision model. """ | |
| from __future__ import annotations | |
| import collections.abc | |
| import inspect | |
| import unittest | |
| import numpy as np | |
| from transformers import Data2VecVisionConfig | |
| from transformers.file_utils import cached_property, is_tf_available, is_vision_available | |
| from transformers.testing_utils import require_tf, require_vision, slow | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_tf_available(): | |
| import tensorflow as tf | |
| from transformers import ( | |
| TFData2VecVisionForImageClassification, | |
| TFData2VecVisionForSemanticSegmentation, | |
| TFData2VecVisionModel, | |
| ) | |
| from transformers.modeling_tf_utils import keras | |
| if is_vision_available(): | |
| from PIL import Image | |
| from transformers import BeitImageProcessor | |
| class TFData2VecVisionModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| vocab_size=100, | |
| batch_size=13, | |
| image_size=30, | |
| patch_size=2, | |
| num_channels=3, | |
| is_training=True, | |
| use_labels=True, | |
| hidden_size=32, | |
| num_hidden_layers=2, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| hidden_act="gelu", | |
| hidden_dropout_prob=0.1, | |
| attention_probs_dropout_prob=0.1, | |
| type_sequence_label_size=10, | |
| initializer_range=0.02, | |
| num_labels=3, | |
| scope=None, | |
| out_indices=[0, 1, 2, 3], | |
| ): | |
| self.parent = parent | |
| self.vocab_size = 100 | |
| self.batch_size = batch_size | |
| self.image_size = image_size | |
| self.patch_size = patch_size | |
| self.num_channels = num_channels | |
| self.is_training = is_training | |
| self.use_labels = use_labels | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.hidden_act = hidden_act | |
| self.hidden_dropout_prob = hidden_dropout_prob | |
| self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
| self.type_sequence_label_size = type_sequence_label_size | |
| self.initializer_range = initializer_range | |
| self.scope = scope | |
| self.out_indices = out_indices | |
| self.num_labels = num_labels | |
| def prepare_config_and_inputs(self): | |
| pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
| labels = None | |
| pixel_labels = None | |
| if self.use_labels: | |
| labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
| pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) | |
| config = self.get_config() | |
| return config, pixel_values, labels, pixel_labels | |
| def get_config(self): | |
| return Data2VecVisionConfig( | |
| vocab_size=self.vocab_size, | |
| image_size=self.image_size, | |
| patch_size=self.patch_size, | |
| num_channels=self.num_channels, | |
| hidden_size=self.hidden_size, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| intermediate_size=self.intermediate_size, | |
| hidden_act=self.hidden_act, | |
| hidden_dropout_prob=self.hidden_dropout_prob, | |
| attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
| is_decoder=False, | |
| initializer_range=self.initializer_range, | |
| out_indices=self.out_indices, | |
| ) | |
| def create_and_check_model(self, config, pixel_values, labels, pixel_labels): | |
| model = TFData2VecVisionModel(config=config) | |
| result = model(pixel_values, training=False) | |
| # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) | |
| image_size = ( | |
| self.image_size | |
| if isinstance(self.image_size, collections.abc.Iterable) | |
| else (self.image_size, self.image_size) | |
| ) | |
| patch_size = ( | |
| self.patch_size | |
| if isinstance(self.image_size, collections.abc.Iterable) | |
| else (self.patch_size, self.patch_size) | |
| ) | |
| num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) | |
| def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels): | |
| config.num_labels = self.type_sequence_label_size | |
| model = TFData2VecVisionForImageClassification(config) | |
| result = model(pixel_values, labels=labels, training=False) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) | |
| def create_and_check_for_image_segmentation(self, config, pixel_values, labels, pixel_labels): | |
| config.num_labels = self.num_labels | |
| model = TFData2VecVisionForSemanticSegmentation(config) | |
| result = model(pixel_values, training=False) | |
| self.parent.assertEqual( | |
| result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) | |
| ) | |
| result = model(pixel_values, labels=pixel_labels) | |
| self.parent.assertEqual( | |
| result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) | |
| ) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, pixel_values, labels, pixel_labels = config_and_inputs | |
| inputs_dict = {"pixel_values": pixel_values} | |
| return config, inputs_dict | |
| def prepare_config_and_inputs_for_keras_fit(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, pixel_values, _, _ = config_and_inputs | |
| inputs_dict = {"pixel_values": pixel_values, "labels": tf.zeros((self.batch_size))} | |
| return config, inputs_dict | |
| class TFData2VecVisionModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| """ | |
| Here we also overwrite some of the tests of test_modeling_common.py, as Data2VecVision does not use input_ids, inputs_embeds, | |
| attention_mask and seq_length. | |
| """ | |
| all_model_classes = ( | |
| (TFData2VecVisionModel, TFData2VecVisionForImageClassification, TFData2VecVisionForSemanticSegmentation) | |
| if is_tf_available() | |
| else () | |
| ) | |
| pipeline_model_mapping = ( | |
| {"feature-extraction": TFData2VecVisionModel, "image-classification": TFData2VecVisionForImageClassification} | |
| if is_tf_available() | |
| else {} | |
| ) | |
| test_pruning = False | |
| test_onnx = False | |
| test_resize_embeddings = False | |
| test_head_masking = False | |
| def setUp(self): | |
| self.model_tester = TFData2VecVisionModelTester(self) | |
| self.config_tester = ConfigTester( | |
| self, config_class=Data2VecVisionConfig, has_text_modality=False, hidden_size=37 | |
| ) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_inputs_embeds(self): | |
| # Data2VecVision does not use inputs_embeds | |
| pass | |
| def test_model_common_attributes(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| self.assertIsInstance(model.get_input_embeddings(), (keras.layers.Layer)) | |
| x = model.get_output_embeddings() | |
| self.assertTrue(x is None or isinstance(x, keras.layers.Layer)) | |
| def test_forward_signature(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| signature = inspect.signature(model.call) | |
| # signature.parameters is an OrderedDict => so arg_names order is deterministic | |
| arg_names = [*signature.parameters.keys()] | |
| expected_arg_names = ["pixel_values"] | |
| self.assertListEqual(arg_names[:1], expected_arg_names) | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_for_image_segmentation(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_image_segmentation(*config_and_inputs) | |
| def test_attention_outputs(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| config.return_dict = True | |
| # in Data2VecVision, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) | |
| image_size = ( | |
| self.model_tester.image_size | |
| if isinstance(self.model_tester.image_size, collections.abc.Iterable) | |
| else (self.model_tester.image_size, self.model_tester.image_size) | |
| ) | |
| patch_size = ( | |
| self.model_tester.patch_size | |
| if isinstance(self.model_tester.patch_size, collections.abc.Iterable) | |
| else (self.model_tester.patch_size, self.model_tester.patch_size) | |
| ) | |
| num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
| seq_len = num_patches + 1 | |
| encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) | |
| encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) | |
| chunk_length = getattr(self.model_tester, "chunk_length", None) | |
| if chunk_length is not None and hasattr(self.model_tester, "num_hashes"): | |
| encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes | |
| for model_class in self.all_model_classes: | |
| inputs_dict["output_attentions"] = True | |
| inputs_dict["output_hidden_states"] = False | |
| config.return_dict = True | |
| model = model_class(config) | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False) | |
| attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
| self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
| # check that output_attentions also work using config | |
| del inputs_dict["output_attentions"] | |
| config.output_attentions = True | |
| model = model_class(config) | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False) | |
| attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
| self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
| self.assertListEqual( | |
| list(attentions[0].shape[-3:]), | |
| [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], | |
| ) | |
| out_len = len(outputs) | |
| # Check attention is always last and order is fine | |
| inputs_dict["output_attentions"] = True | |
| inputs_dict["output_hidden_states"] = True | |
| model = model_class(config) | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False) | |
| self.assertEqual(out_len + 1, len(outputs)) | |
| self_attentions = outputs.attentions | |
| self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) | |
| self.assertListEqual( | |
| list(self_attentions[0].shape[-3:]), | |
| [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], | |
| ) | |
| def test_hidden_states_output(self): | |
| def check_hidden_states_output(inputs_dict, config, model_class): | |
| model = model_class(config) | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states | |
| expected_num_layers = getattr( | |
| self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 | |
| ) | |
| self.assertEqual(len(hidden_states), expected_num_layers) | |
| # Data2VecVision has a different seq_length | |
| image_size = ( | |
| self.model_tester.image_size | |
| if isinstance(self.model_tester.image_size, collections.abc.Iterable) | |
| else (self.model_tester.image_size, self.model_tester.image_size) | |
| ) | |
| patch_size = ( | |
| self.model_tester.patch_size | |
| if isinstance(self.model_tester.patch_size, collections.abc.Iterable) | |
| else (self.model_tester.patch_size, self.model_tester.patch_size) | |
| ) | |
| num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
| seq_length = num_patches + 1 | |
| self.assertListEqual( | |
| list(hidden_states[0].shape[-2:]), | |
| [seq_length, self.model_tester.hidden_size], | |
| ) | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| inputs_dict["output_hidden_states"] = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| # check that output_hidden_states also work using config | |
| del inputs_dict["output_hidden_states"] | |
| config.output_hidden_states = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| # Overriding this method since the base method won't be compatible with Data2VecVision. | |
| def test_keras_fit(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| # Since `TFData2VecVisionModel` cannot operate with the default `fit()` method. | |
| if model_class.__name__ != "TFData2VecVisionModel": | |
| model = model_class(config) | |
| if getattr(model, "hf_compute_loss", None): | |
| # Test that model correctly compute the loss with kwargs | |
| _, prepared_for_class = self.model_tester.prepare_config_and_inputs_for_keras_fit() | |
| label_names = {"labels"} | |
| self.assertGreater(len(label_names), 0, msg="No matching label names found!") | |
| labels = {key: val for key, val in prepared_for_class.items() if key in label_names} | |
| inputs_minus_labels = { | |
| key: val for key, val in prepared_for_class.items() if key not in label_names | |
| } | |
| self.assertGreater(len(inputs_minus_labels), 0) | |
| model.compile(optimizer=keras.optimizers.SGD(0.0), run_eagerly=True) | |
| # Make sure the model fits without crashing regardless of where we pass the labels | |
| history1 = model.fit( | |
| prepared_for_class, | |
| validation_data=prepared_for_class, | |
| steps_per_epoch=1, | |
| validation_steps=1, | |
| shuffle=False, | |
| ) | |
| val_loss1 = history1.history["val_loss"][0] | |
| history2 = model.fit( | |
| inputs_minus_labels, | |
| labels, | |
| validation_data=(inputs_minus_labels, labels), | |
| steps_per_epoch=1, | |
| validation_steps=1, | |
| shuffle=False, | |
| ) | |
| val_loss2 = history2.history["val_loss"][0] | |
| self.assertTrue(np.allclose(val_loss1, val_loss2, atol=1e-2, rtol=1e-3)) | |
| def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=2e-4, name="outputs", attributes=None): | |
| # We override with a slightly higher tol value, as semseg models tend to diverge a bit more | |
| super().check_pt_tf_outputs(tf_outputs, pt_outputs, model_class, tol, name, attributes) | |
| # Overriding this method since the base method won't be compatible with Data2VecVision. | |
| def test_loss_computation(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| # Since `TFData2VecVisionModel` won't have labels against which we | |
| # could compute loss. | |
| if model_class.__name__ != "TFData2VecVisionModel": | |
| model = model_class(config) | |
| if getattr(model, "hf_compute_loss", None): | |
| # The number of elements in the loss should be the same as the number of elements in the label | |
| _, prepared_for_class = self.model_tester.prepare_config_and_inputs_for_keras_fit() | |
| added_label = prepared_for_class[ | |
| sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)[0] | |
| ] | |
| loss_size = tf.size(added_label) | |
| # Test that model correctly compute the loss with kwargs | |
| possible_input_names = {"input_ids", "pixel_values", "input_features"} | |
| input_name = possible_input_names.intersection(set(prepared_for_class)).pop() | |
| model_input = prepared_for_class.pop(input_name) | |
| loss = model(model_input, **prepared_for_class)[0] | |
| self.assertEqual(loss.shape, [loss_size]) | |
| # Test that model correctly compute the loss with a dict | |
| _, prepared_for_class = self.model_tester.prepare_config_and_inputs_for_keras_fit() | |
| loss = model(**prepared_for_class)[0] | |
| self.assertEqual(loss.shape, [loss_size]) | |
| # Test that model correctly compute the loss with a tuple | |
| label_keys = prepared_for_class.keys() - inputs_dict.keys() | |
| signature = inspect.signature(model.call).parameters | |
| signature_names = list(signature.keys()) | |
| # Create a dictionary holding the location of the tensors in the tuple | |
| tuple_index_mapping = {0: input_name} | |
| for label_key in label_keys: | |
| label_key_index = signature_names.index(label_key) | |
| tuple_index_mapping[label_key_index] = label_key | |
| sorted_tuple_index_mapping = sorted(tuple_index_mapping.items()) | |
| # Initialize a list with their default values, update the values and convert to a tuple | |
| list_input = [] | |
| for name in signature_names: | |
| if name != "kwargs": | |
| list_input.append(signature[name].default) | |
| for index, value in sorted_tuple_index_mapping: | |
| list_input[index] = prepared_for_class[value] | |
| tuple_input = tuple(list_input) | |
| # Send to model | |
| loss = model(tuple_input[:-1])[0] | |
| self.assertEqual(loss.shape, [loss_size]) | |
| def test_for_image_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_image_classification(*config_and_inputs) | |
| def test_model_from_pretrained(self): | |
| model_name = "facebook/data2vec-vision-base-ft1k" | |
| model = TFData2VecVisionModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| # We will verify our results on an image of cute cats | |
| def prepare_img(): | |
| image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
| return image | |
| class TFData2VecVisionModelIntegrationTest(unittest.TestCase): | |
| def default_image_processor(self): | |
| return ( | |
| BeitImageProcessor.from_pretrained("facebook/data2vec-vision-base-ft1k") if is_vision_available() else None | |
| ) | |
| def test_inference_image_classification_head_imagenet_1k(self): | |
| model = TFData2VecVisionForImageClassification.from_pretrained("facebook/data2vec-vision-base-ft1k") | |
| image_processor = self.default_image_processor | |
| image = prepare_img() | |
| inputs = image_processor(images=image, return_tensors="tf") | |
| # forward pass | |
| outputs = model(**inputs) | |
| logits = outputs.logits | |
| # verify the logits | |
| expected_shape = tf.convert_to_tensor([1, 1000]) | |
| self.assertEqual(logits.shape, expected_shape) | |
| expected_slice = tf.convert_to_tensor([0.3277, -0.1395, 0.0911]) | |
| tf.debugging.assert_near(logits[0, :3], expected_slice, atol=1e-4) | |
| expected_top2 = [model.config.label2id[i] for i in ["remote control, remote", "tabby, tabby cat"]] | |
| self.assertEqual(tf.nn.top_k(outputs.logits[0], 2).indices.numpy().tolist(), expected_top2) | |